Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Mol Cell ; 84(4): 659-674.e7, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266640

RESUMEN

Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.


Asunto(s)
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Recombinación Homóloga
2.
Mol Cell ; 84(12): 2223-2237.e4, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38870937

RESUMEN

In Saccharomyces cerevisiae (S. cerevisiae), Mre11-Rad50-Xrs2 (MRX)-Sae2 nuclease activity is required for the resection of DNA breaks with secondary structures or protein blocks, while in humans, the MRE11-RAD50-NBS1 (MRN) homolog with CtIP is needed to initiate DNA end resection of all breaks. Phosphorylated Sae2/CtIP stimulates the endonuclease activity of MRX/N. Structural insights into the activation of the Mre11 nuclease are available only for organisms lacking Sae2/CtIP, so little is known about how Sae2/CtIP activates the nuclease ensemble. Here, we uncover the mechanism of Mre11 activation by Sae2 using a combination of AlphaFold2 structural modeling of biochemical and genetic assays. We show that Sae2 stabilizes the Mre11 nuclease in a conformation poised to cleave substrate DNA. Several designs of compensatory mutations establish how Sae2 activates MRX in vitro and in vivo, supporting the structural model. Finally, our study uncovers how human CtIP, despite considerable sequence divergence, employs a similar mechanism to activate MRN.


Asunto(s)
Proteínas de Unión al ADN , Endodesoxirribonucleasas , Endonucleasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Endonucleasas/metabolismo , Endonucleasas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/química , Humanos , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Modelos Moleculares , Fosforilación , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Roturas del ADN de Doble Cadena , Ácido Anhídrido Hidrolasas/metabolismo , Ácido Anhídrido Hidrolasas/genética , Mutación , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Reparación del ADN , Activación Enzimática
3.
EMBO J ; 43(6): 1015-1042, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360994

RESUMEN

Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Reparación del ADN , Daño del ADN , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/metabolismo , Endonucleasas de ADN Solapado/uso terapéutico , Exodesoxirribonucleasas/genética , Enzimas Reparadoras del ADN/genética
4.
Proc Natl Acad Sci U S A ; 121(16): e2322924121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38607933

RESUMEN

Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Humanos , Regiones no Traducidas 3'/genética , Endodesoxirribonucleasas , Exodesoxirribonucleasas/genética , Estudio de Asociación del Genoma Completo , Enfermedad de Huntington/genética , MicroARNs/genética , Enzimas Multifuncionales
5.
Bioessays ; 46(8): e2400066, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837436

RESUMEN

The Three Prime Repair Exonuclease 1 (TREX1) has been implicated in several pathologies characterized by chronic and inborn inflammation. Aberrant innate immunity caused by DNA sensing through the cGAS-STING pathway has been proposed to play a major role in the etiology of these interferonopathies. However, the molecular source of this DNA sensing and the possible involvement of TREX1 in genome (in)stability remains poorly understood. Recent findings reignite the debate about the cellular functions performed by TREX1 nuclease, notably in chromosome biology and stability. Here I put into perspective recent findings that suggest that TREX1 is at the crossroads of DNA damage response and inflammation in different pathological contexts.


Asunto(s)
Exodesoxirribonucleasas , Inestabilidad Genómica , Fosfoproteínas , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Humanos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Animales , Daño del ADN , Citosol/metabolismo , Inmunidad Innata/genética , Inflamación/genética , Reparación del ADN/genética
6.
Nucleic Acids Res ; 52(7): 4067-4078, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38471810

RESUMEN

Mitochondrial genome maintenance exonuclease 1 (MGME1) helps to ensure mitochondrial DNA (mtDNA) integrity by serving as an ancillary 5'-exonuclease for DNA polymerase γ. Curiously, MGME1 exhibits unique bidirectionality in vitro, being capable of degrading DNA from either the 5' or 3' end. The structural basis of this bidirectionally and, particularly, how it processes DNA from the 5' end to assist in mtDNA maintenance remain unclear. Here, we present a crystal structure of human MGME1 in complex with a 5'-overhang DNA, revealing that MGME1 functions as a rigid DNA clamp equipped with a single-strand (ss)-selective arch, allowing it to slide on single-stranded DNA in either the 5'-to-3' or 3'-to-5' direction. Using a nuclease activity assay, we have dissected the structural basis of MGME1-derived DNA cleavage patterns in which the arch serves as a ruler to determine the cleavage site. We also reveal that MGME1 displays partial DNA-unwinding ability that helps it to better resolve 5'-DNA flaps, providing insights into MGME1-mediated 5'-end processing of nascent mtDNA. Our study builds on previously solved MGME1-DNA complex structures, finally providing the comprehensive functional mechanism of this bidirectional, ss-specific exonuclease.


Asunto(s)
ADN Mitocondrial , Exodesoxirribonucleasas , Genoma Mitocondrial , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Mitocondrial/química , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Cristalografía por Rayos X , Modelos Moleculares , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/química , Conformación de Ácido Nucleico , ADN Polimerasa gamma/metabolismo , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/química
7.
Nucleic Acids Res ; 52(9): 5121-5137, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38520409

RESUMEN

The S-phase checkpoint is involved in coupling DNA unwinding with nascent strand synthesis and is critical to maintain replication fork stability in conditions of replicative stress. However, its role in the specific regulation of leading and lagging strands at stalled forks is unclear. By conditionally depleting RNaseH2 and analyzing polymerase usage genome-wide, we examine the enzymology of DNA replication during a single S-phase in the presence of replicative stress and show that there is a differential regulation of lagging and leading strands. In checkpoint proficient cells, lagging strand replication is down-regulated through an Elg1-dependent mechanism. Nevertheless, when checkpoint function is impaired we observe a defect specifically at the leading strand, which was partially dependent on Exo1 activity. Further, our genome-wide mapping of DNA single-strand breaks reveals that strand discontinuities highly accumulate at the leading strand in HU-treated cells, whose dynamics are affected by checkpoint function and Exo1 activity. Our data reveal an unexpected role of Exo1 at the leading strand and support a model of fork stabilization through prevention of unrestrained Exo1-dependent resection of leading strand-associated nicks after fork stalling.


Asunto(s)
Roturas del ADN de Cadena Simple , Replicación del ADN , Exodesoxirribonucleasas , Puntos de Control de la Fase S del Ciclo Celular , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ribonucleasa H/metabolismo , Ribonucleasa H/genética , Fase S/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
8.
Nucleic Acids Res ; 52(11): 6376-6391, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38721777

RESUMEN

DNA replication faces challenges from DNA lesions originated from endogenous or exogenous sources of stress, leading to the accumulation of single-stranded DNA (ssDNA) that triggers the activation of the ATR checkpoint response. To complete genome replication in the presence of damaged DNA, cells employ DNA damage tolerance mechanisms that operate not only at stalled replication forks but also at ssDNA gaps originated by repriming of DNA synthesis downstream of lesions. Here, we demonstrate that human cells accumulate post-replicative ssDNA gaps following replicative stress induction. These gaps, initiated by PrimPol repriming and expanded by the long-range resection factors EXO1 and DNA2, constitute the principal origin of the ssDNA signal responsible for ATR activation upon replication stress, in contrast to stalled forks. Strikingly, the loss of EXO1 or DNA2 results in synthetic lethality when combined with BRCA1 deficiency, but not BRCA2. This phenomenon aligns with the observation that BRCA1 alone contributes to the expansion of ssDNA gaps. Remarkably, BRCA1-deficient cells become addicted to the overexpression of EXO1, DNA2 or BLM. This dependence on long-range resection unveils a new vulnerability of BRCA1-mutant tumors, shedding light on potential therapeutic targets for these cancers.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Proteína BRCA1 , ADN Helicasas , Replicación del ADN , ADN de Cadena Simple , Exodesoxirribonucleasas , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Replicación del ADN/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Supervivencia Celular/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Daño del ADN
9.
Nucleic Acids Res ; 52(8): 4328-4343, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38407383

RESUMEN

Meiotic recombination is of central importance for the proper segregation of homologous chromosomes, but also for creating genetic diversity. It is initiated by the formation of double-strand breaks (DSBs) in DNA catalysed by evolutionarily conserved Spo11, together with additional protein partners. Difficulties in purifying the Spo11 protein have limited the characterization of its biochemical properties and of its interactions with other DSB proteins. In this study, we have purified fragments of Spo11 and show for the first time that Spo11 can physically interact with Mre11 and modulates its DNA binding, bridging, and nuclease activities. The interaction of Mre11 with Spo11 requires its far C-terminal region, which is in line with the severe meiotic phenotypes of various mre11 mutations located at the C-terminus. Moreover, calibrated ChIP for Mre11 shows that Spo11 promotes Mre11 recruitment to chromatin, independent of DSB formation. A mutant deficient in Spo11 interaction severely reduces the association of Mre11 with meiotic chromatin. Consistent with the reduction of Mre11 foci in this mutant, it strongly impedes DSB formation, leading to spore death. Our data provide evidence that physical interaction between Spo11 and Mre11, together with end-bridging, promote normal recruitment of Mre11 to hotspots and DSB formation.


Asunto(s)
Cromatina , Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas , Meiosis , Proteínas de Saccharomyces cerevisiae , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Meiosis/genética , Mutación , Unión Proteica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
Nucleic Acids Res ; 52(5): 2355-2371, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38180815

RESUMEN

The yeast Rif2 protein is known to inhibit Mre11 nuclease and the activation of Tel1 kinase through a short motif termed MIN, which binds the Rad50 subunit and simulates its ATPase activity in vitro. The mechanism by which Rif2 restrains Tel1 activation and the consequences of this inhibition at DNA double-strand breaks (DSBs) are poorly understood. In this study, we employed AlphaFold-Multimer modelling to pinpoint and validate the interaction surface between Rif2 MIN and Rad50. We also engineered the rif2-S6E mutation that enhances the inhibitory effect of Rif2 by increasing Rif2-Rad50 interaction. Unlike rif2Δ, the rif2-S6E mutation impairs hairpin cleavage. Furthermore, it diminishes Tel1 activation by inhibiting Tel1 binding to DSBs while leaving MRX association unchanged, indicating that Rif2 can directly inhibit Tel1 recruitment to DSBs. Additionally, Rif2S6E reduces Tel1-MRX interaction and increases stimulation of ATPase by Rad50, indicating that Rif2 binding to Rad50 induces an ADP-bound MRX conformation that is not suitable for Tel1 binding. The decreased Tel1 recruitment to DSBs in rif2-S6E cells impairs DSB end-tethering and this bridging defect is suppressed by expressing a Tel1 mutant variant that increases Tel1 persistence at DSBs, suggesting a direct role for Tel1 in the bridging of DSB ends.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Proteínas de Unión a Telómeros , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , ADN/genética , ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo
11.
Nucleic Acids Res ; 52(7): 3722-3739, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38321948

RESUMEN

Telomeres protect chromosome ends and are distinguished from DNA double-strand breaks (DSBs) by means of a specialized chromatin composed of DNA repeats bound by a multiprotein complex called shelterin. We investigated the role of telomere-associated proteins in establishing end-protection by studying viable mutants lacking these proteins. Mutants were studied using a Schizosaccharomyces pombe model system that induces cutting of a 'proto-telomere' bearing telomere repeats to rapidly form a new stable chromosomal end, in contrast to the rapid degradation of a control DSB. Cells lacking the telomere-associated proteins Taz1, Rap1, Poz1 or Rif1 formed a chromosome end that was stable. Surprisingly, cells lacking Ccq1, or impaired for recruiting Ccq1 to the telomere, converted the cleaved proto-telomere to a rapidly degraded DSB. Ccq1 recruits telomerase, establishes heterochromatin and affects DNA damage checkpoint activation; however, these functions were separable from protection of the new telomere by Ccq1. In cells lacking Ccq1, telomere degradation was greatly reduced by eliminating the nuclease activity of Mre11 (part of the Mre11-Rad50-Nbs1/Xrs2 DSB processing complex), and higher amounts of nuclease-deficient Mre11 associated with the new telomere. These results demonstrate a novel function for S. pombe Ccq1 to effect end-protection by restraining Mre11-dependent degradation of the DNA end.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Unión a Telómeros , Telómero , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Telómero/metabolismo , Telómero/genética , Complejo Shelterina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Telomerasa/metabolismo , Telomerasa/genética , Mutación , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética
12.
Nucleic Acids Res ; 52(11): 6347-6359, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38661211

RESUMEN

Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Magnesio , Mitomicina , Mitomicina/farmacología , Mitomicina/química , Magnesio/química , Magnesio/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Modelos Moleculares , Dominio Catalítico , Reparación del ADN , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Cristalografía por Rayos X , ADN/metabolismo , ADN/química , Exonucleasas/metabolismo , Exonucleasas/química
13.
J Biol Chem ; 300(7): 107438, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838778

RESUMEN

HIV-1 integration into the human genome is dependent on 3'-processing of the viral DNA. Recently, we reported that the cellular Three Prime Repair Exonuclease 1 (TREX1) enhances HIV-1 integration by degrading the unprocessed viral DNA, while the integration-competent 3'-processed DNA remained resistant. Here, we describe the mechanism by which the 3'-processed HIV-1 DNA resists TREX1-mediated degradation. Our kinetic studies revealed that the rate of cleavage (kcat) of the 3'-processed DNA was significantly lower (approximately 2-2.5-fold) than the unprocessed HIV-1 DNA by TREX1. The kcat values of human TREX1 for the processed U5 and U3 DNA substrates were 3.8 s-1 and 4.5 s-1, respectively. In contrast, the unprocessed U5 and U3 substrates were cleaved at 10.2 s-1 and 9.8 s-1, respectively. The efficiency of degradation (kcat/Km) of the 3'-processed DNA (U5-70.2 and U3-28.05 pM-1s-1) was also significantly lower than the unprocessed DNA (U5-103.1 and U3-65.3 pM-1s-1). Furthermore, the binding affinity (Kd) of TREX1 was markedly lower (∼2-fold) for the 3'-processed DNA than the unprocessed DNA. Molecular docking and dynamics studies revealed distinct conformational binding modes of TREX1 with the 3'-processed and unprocessed HIV-1 DNA. Particularly, the unprocessed DNA was favorably positioned in the active site with polar interactions with the catalytic residues of TREX1. Additionally, a stable complex was formed between TREX1 and the unprocessed DNA compared the 3'-processed DNA. These results pinpoint the mechanism by which TREX1 preferentially degrades the integration-incompetent HIV-1 DNA and reveal the unique structural and conformational properties of the integration-competent 3'-processed HIV-1 DNA.


Asunto(s)
ADN Viral , Exodesoxirribonucleasas , VIH-1 , Fosfoproteínas , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , VIH-1/metabolismo , Humanos , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , ADN Viral/metabolismo , ADN Viral/genética , ADN Viral/química , Cinética , Integración Viral , Termodinámica
14.
J Biol Chem ; 300(6): 107379, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762184

RESUMEN

Bacterial RecJ exhibits 5'→3' exonuclease activity that is specific to ssDNA; however, archaeal RecJs show 5' or 3' exonuclease activity. The hyperthermophilic archaea Methanocaldococcus jannaschii encodes the 5'-exonuclease MjRecJ1 and the 3'-exonuclease MjRecJ2. In addition to nuclease activity, archaeal RecJ interacts with GINS, a structural subcomplex of the replicative DNA helicase complex. However, MjRecJ1 and MjRecJ2 do not interact with MjGINS. Here, we report the structural basis for the inability of the MjRecJ2 homologous dimer to interact with MjGINS and its efficient 3' hydrolysis polarity for short dinucleotides. Based on the crystal structure of MjRecJ2, we propose that the interaction surface of the MjRecJ2 dimer overlaps the potential interaction surface for MjGINS and blocks the formation of the MjRecJ2-GINS complex. Exposing the interaction surface of the MjRecJ2 dimer restores its interaction with MjGINS. The cocrystal structures of MjRecJ2 with substrate dideoxynucleotides or product dCMP/CMP show that MjRecJ2 has a short substrate binding patch, which is perpendicular to the longer patch of bacterial RecJ. Our results provide new insights into the function and diversification of archaeal RecJ/Cdc45 proteins.


Asunto(s)
Proteínas Arqueales , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Cristalografía por Rayos X , Methanocaldococcus/enzimología , Methanocaldococcus/metabolismo , Unión Proteica , Multimerización de Proteína , ADN Helicasas/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , Modelos Moleculares , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética
15.
J Biol Chem ; 300(3): 105708, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311177

RESUMEN

A DNA double-strand break (DSB) is one of the most dangerous types of DNA damage that is repaired largely by homologous recombination or nonhomologous end-joining (NHEJ). The interplay of repair factors at the break directs which pathway is used, and a subset of these factors also function in more mutagenic alternative (alt) repair pathways. Resection is a key event in repair pathway choice and extensive resection, which is a hallmark of homologous recombination, and it is mediated by two nucleases, Exo1 and Dna2. We observed differences in resection and repair outcomes in cells harboring nuclease-dead dna2-1 compared with dna2Δ pif1-m2 that could be attributed to the level of Exo1 recovered at DSBs. Cells harboring dna2-1 showed reduced Exo1 localization, increased NHEJ, and a greater resection defect compared with cells where DNA2 was deleted. Both the resection defect and the increased rate of NHEJ in dna2-1 mutants were reversed upon deletion of KU70 or ectopic expression of Exo1. By contrast, when DNA2 was deleted, Exo1 and Ku70 recovery levels did not change; however, Nej1 increased as did the frequency of alt-end joining/microhomology-mediated end-joining repair. Our findings demonstrate that decreased Exo1 at DSBs contributed to the resection defect in cells expressing inactive Dna2 and highlight the complexity of understanding how functionally redundant factors are regulated in vivo to promote genome stability.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Helicasas , Proteínas de Unión al ADN , Exodesoxirribonucleasas , Proteínas de Saccharomyces cerevisiae , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Mol Psychiatry ; 29(3): 566-579, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38129659

RESUMEN

Three Prime Repair Exonuclease 1 (TREX1) gene mutations have been associated with Aicardi-Goutières Syndrome (AGS) - a rare, severe pediatric autoimmune disorder that primarily affects the brain and has a poorly understood etiology. Microglia are brain-resident macrophages indispensable for brain development and implicated in multiple neuroinflammatory diseases. However, the role of TREX1 - a DNase that cleaves cytosolic nucleic acids, preventing viral- and autoimmune-related inflammatory responses - in microglia biology remains to be elucidated. Here, we leverage a model of human embryonic stem cell (hESC)-derived engineered microglia-like cells, bulk, and single-cell transcriptomics, optical and transmission electron microscopy, and three-month-old assembloids composed of microglia and oligodendrocyte-containing organoids to interrogate TREX1 functions in human microglia. Our analyses suggest that TREX1 influences cholesterol metabolism, leading to an active microglial morphology with increased phagocytosis in the absence of TREX1. Notably, regulating cholesterol metabolism with an HMG-CoA reductase inhibitor, FDA-approved atorvastatin, rescues these microglial phenotypes. Functionally, TREX1 in microglia is necessary for the transition from gliogenic intermediate progenitors known as pre-oligodendrocyte precursor cells (pre-OPCs) to precursors of the oligodendrocyte lineage known as OPCs, impairing oligodendrogenesis in favor of astrogliogenesis in human assembloids. Together, these results suggest routes for therapeutic intervention in pathologies such as AGS based on microglia-specific molecular and cellular mechanisms.


Asunto(s)
Diferenciación Celular , Colesterol , Exodesoxirribonucleasas , Homeostasis , Microglía , Oligodendroglía , Fosfoproteínas , Humanos , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Microglía/metabolismo , Diferenciación Celular/fisiología , Oligodendroglía/metabolismo , Colesterol/metabolismo , Fosfoproteínas/metabolismo , Homeostasis/fisiología , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/genética , Encéfalo/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Organoides/metabolismo
17.
Cell Mol Life Sci ; 81(1): 339, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120648

RESUMEN

Senataxin is an evolutionarily conserved DNA/RNA helicase, whose dysfunctions are linked to neurodegeneration and cancer. A main activity of this protein is the removal of R-loops, which are nucleic acid structures capable to promote DNA damage and replication stress. Here we found that Senataxin deficiency causes the release of damaged DNA into extranuclear bodies, called micronuclei, triggering the massive recruitment of cGAS, the apical sensor of the innate immunity pathway, and the downstream stimulation of interferon genes. Such cGAS-positive micronuclei are characterized by defective membrane envelope and are particularly abundant in cycling cells lacking Senataxin, but not after exposure to a DNA breaking agent or in absence of the tumor suppressor BRCA1 protein, a partner of Senataxin in R-loop removal. Micronuclei with a discontinuous membrane are normally cleared by autophagy, a process that we show is impaired in Senataxin-deficient cells. The formation of Senataxin-dependent inflamed micronuclei is promoted by the persistence of nuclear R-loops stimulated by the DSIF transcription elongation complex and the engagement of EXO1 nuclease activity on nuclear DNA. Coherently, high levels of EXO1 result in poor prognosis in a subset of tumors lacking Senataxin expression. Hence, R-loop homeostasis impairment, together with autophagy failure and unscheduled EXO1 activity, elicits innate immune response through micronuclei formation in cells lacking Senataxin.


Asunto(s)
Autofagia , Daño del ADN , ADN Helicasas , Inflamación , Enzimas Multifuncionales , Nucleotidiltransferasas , Estructuras R-Loop , ARN Helicasas , Humanos , Autofagia/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/deficiencia , ADN Helicasas/metabolismo , ADN Helicasas/genética , ADN Helicasas/deficiencia , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/deficiencia , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Inmunidad Innata , Inflamación/patología , Inflamación/metabolismo , Inflamación/genética , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Fosfoproteínas , ARN Helicasas/metabolismo , ARN Helicasas/genética
18.
BMC Biol ; 22(1): 119, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769511

RESUMEN

BACKGROUND: Many efforts have been made to improve the precision of Cas9-mediated gene editing through increasing knock-in efficiency and decreasing byproducts, which proved to be challenging. RESULTS: Here, we have developed a human exonuclease 1-based genome-editing tool, referred to as exonuclease editor. When compared to Cas9, the exonuclease editor gave rise to increased HDR efficiency, reduced NHEJ repair frequency, and significantly elevated HDR/indel ratio. Robust gene editing precision of exonuclease editor was even superior to the fusion of Cas9 with E1B or DN1S, two previously reported precision-enhancing domains. Notably, exonuclease editor inhibited NHEJ at double strand breaks locally rather than globally, reducing indel frequency without compromising genome integrity. The replacement of Cas9 with single-strand DNA break-creating Cas9 nickase further increased the HDR/indel ratio by 453-fold than the original Cas9. In addition, exonuclease editor resulted in high microhomology-mediated end joining efficiency, allowing accurate and flexible deletion of targeted sequences with extended lengths with the aid of paired sgRNAs. Exonuclease editor was further used for correction of DMD patient-derived induced pluripotent stem cells, where 30.0% of colonies were repaired by HDR versus 11.1% in the control. CONCLUSIONS: Therefore, the exonuclease editor system provides a versatile and safe genome editing tool with high precision and holds promise for therapeutic gene correction.


Asunto(s)
Exodesoxirribonucleasas , Edición Génica , Edición Génica/métodos , Humanos , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Sistemas CRISPR-Cas , Células HEK293 , Enzimas Reparadoras del ADN
19.
Anal Chem ; 96(33): 13379-13388, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39105793

RESUMEN

Highly sensitive detection of low-frequency EGFR-L858R mutation is particularly important in guiding targeted therapy of nonsmall-cell lung carcinoma (NSCLC). To this end, a ligase chain reaction (LCR)-based electrochemical biosensor (e-LCR) with an inverted sandwich-type architecture was provided by combining a cooperation of lambda exonuclease-RecJf exonuclease (λ-RecJf exo). In this work, by designing a knife-like DNA substrate (an overhang ssDNA part referred to the "knife arm") and introducing the λ-RecJf exo, the unreacted DNA probes in the LCR were specially degraded while only the ligated products were preserved, after which the ligated knife-like DNA products were hybridized with capture probes on the gold electrode surface through the "knife arms", forming the inverted sandwich-type DNA structure and bringing the methylene blue-label close to the electrode surface to engender the electrical signal. Finally, the sensitivity of the e-LCR could be improved by 3 orders of magnitude with the help of the λ-RecJf exo, and due to the mutation recognizing in the ligation site of the employed ligase, this method could detect EGFR-L858R mutation down to 0.01%, along with a linear range of 1 fM-10 pM and a limit detection of 0.8 fM. Further, the developed method could distinguish between L858R positive and negative mutations in cultured cell samples, tumor tissue samples, and plasma samples, whose accuracy was verified by the droplet digital PCR, holding a huge potential in liquid biopsy for precisely guiding individualized-treatment of NSCLC patients with advantages of high sensitivity, low cost, and adaptability to point-of-care testing.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Técnicas Electroquímicas , Receptores ErbB , Exodesoxirribonucleasas , Neoplasias Pulmonares , Mutación , Receptores ErbB/genética , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Técnicas Biosensibles , Reacción en Cadena de la Ligasa , Límite de Detección , Proteínas Virales
20.
Biochem Biophys Res Commun ; 712-713: 149893, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38657529

RESUMEN

RecJ exonucleases are members of the DHH phosphodiesterase family ancestors of eukaryotic Cdc45, the key component of the CMG (Cdc45-MCM-GINS) complex at the replication fork. They are involved in DNA replication and repair, RNA maturation and Okazaki fragment degradation. Bacterial RecJs resect 5'-end ssDNA. Conversely, archaeal RecJs are more versatile being able to hydrolyse in both directions and acting on ssDNA as well as on RNA. In Methanocaldococcus jannaschii two RecJs were previously characterized: RecJ1 is a 5'→3' DNA exonuclease, MjaRecJ2 works only on 3'-end DNA/RNA with a preference for RNA. Here, I present the crystal structure of MjaRecJ2, solved at a resolution of 2.8 Å, compare it with the other RecJ structures, in particular the 5'→3' TkoGAN and the bidirectional PfuRecJ, and discuss its characteristics in light of the more recent knowledge on RecJs. This work adds new structural data that might improve the knowledge of these class of proteins.


Asunto(s)
Methanocaldococcus , Modelos Moleculares , Methanocaldococcus/enzimología , Cristalografía por Rayos X , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Exonucleasas/metabolismo , Exonucleasas/química , Conformación Proteica , Secuencia de Aminoácidos , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda