RESUMEN
The ß common chain cytokines GM-CSF, IL-3, and IL-5 regulate varied inflammatory responses that promote the rapid clearance of pathogens but also contribute to pathology in chronic inflammation. Therapeutic interventions manipulating these cytokines are approved for use in some cancers as well as allergic and autoimmune disease, and others show promising early clinical activity. These approaches are based on our understanding of the inflammatory roles of these cytokines; however, GM-CSF also participates in the resolution of inflammation, and IL-3 and IL-5 may also have such properties. Here, we review the functions of the ß common cytokines in health and disease. We discuss preclinical and clinical data, highlighting the potential inherent in targeting these cytokine pathways, the limitations, and the important gaps in understanding of the basic biology of this cytokine family.
Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Inflamación/inmunología , Interleucina-3/inmunología , Interleucina-5/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/deficiencia , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Hematopoyesis/inmunología , Humanos , Inflamación/terapia , Interleucina-3/antagonistas & inhibidores , Interleucina-3/deficiencia , Interleucina-3/genética , Interleucina-5/antagonistas & inhibidores , Interleucina-5/deficiencia , Interleucina-5/genética , Ratones , Ratones Noqueados , Familia de Multigenes , Neoplasias/inmunología , Neoplasias/terapia , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Receptores de Interleucina-3/genética , Receptores de Interleucina-3/inmunología , Receptores de Interleucina-5/genética , Receptores de Interleucina-5/inmunología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéutico , Transducción de Señal , Relación Estructura-Actividad , Vacunación , Cicatrización de Heridas/inmunologíaRESUMEN
Colony-stimulating factors have been shown to improve anti-disialoganglioside 2 (anti-GD2) monoclonal antibody response in high-risk neuroblastoma by enhancing antibody-dependent cell-mediated cytotoxicity (ADCC). A substantial amount of research has focused on recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjuvant to anti-GD2 monoclonal antibodies. There may be a disparity in care among patients as access to GM-CSF therapy and anti-GD2 monoclonal antibodies is not uniform. Only select countries have approved these agents for use, and even with regulatory approvals, access to these agents can be complex and cost prohibitive. This comprehensive review summarizes clinical data regarding efficacy and safety of GM-CSF, recombinant human granulocyte colony-stimulating factor (G-CSF) or no cytokine in combination with anti-GD2 monoclonal antibodies (ie, dinutuximab, dinutuximab beta or naxitamab) for immunotherapy of patients with high-risk neuroblastoma. A substantial body of clinical data support the immunotherapy combination of anti-GD2 monoclonal antibodies and GM-CSF. In contrast, clinical data supporting the use of G-CSF are limited. No formal comparison between GM-CSF, G-CSF and no cytokine has been identified. The treatment of high-risk neuroblastoma with anti-GD2 therapy plus GM-CSF is well established. Suboptimal efficacy outcomes with G-CSF raise concerns about its suitability as an alternative to GM-CSF as an adjuvant in immunotherapy for patients with high-risk neuroblastoma. While programs exist to facilitate obtaining GM-CSF and anti-GD2 monoclonal antibodies in regions where they are not commercially available, continued work is needed to ensure equitable therapeutic options are available globally.
Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Neuroblastoma , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Adyuvantes Inmunológicos/uso terapéutico , InmunoterapiaRESUMEN
OBJECTIVE: Folate receptor alpha (FRα) is overexpressed on >90% of high-grade epithelial ovarian cancers (EOC). Targeting FRα with antibody-drug conjugates has proven utility in the platinum-resistant setting. It is also a potential therapeutic target for immuno-oncologic agents, such as peptide vaccines that work primarily via adaptive and humoral immunity. We tested the hypothesis that FRα peptide immunization could improve outcomes in patients with EOC following response to platinum-based therapy. METHODS: We conducted a randomized, double-blind, multicenter, phase II study to evaluate the safety and efficacy of TPIV200 (a multi-epitope FRα peptide vaccine admixed with GM-CSF) versus GM-CSF alone in 120 women who did not have disease progression after at least 4 cycles of first-line platinum-based therapy. Patients were vaccinated intradermally once every 4 weeks up to 6 times, followed by a boosting period of 6 vaccinations at 12-week intervals. Primary endpoints included safety, tolerability, and progression free survival (PFS). RESULTS: At study termination with a median follow-up of 15.2 months (range 1.2-28.4 months), 68 of 119 intention-to-treat patients had disease progression (55% in TPIV200 + GM-CSF arm and 59% in GM-CSF alone arm). The median PFS was 11.1 months (95% CI 8.3-16.6 months) with no significant difference between the treatment groups (10.9 months with TPIV200 + GM-CSF versus 11.1 months with GM-CSF, HR, 0.85; upper 90% CI 1.17]. No patient experienced a ≥ grade 3 drug-related adverse event. CONCLUSION: TPIV200 was well tolerated but was not associated with improved PFS. Additional studies are required to uncover potential synergies using multiepitope vaccines targeting FRα. Trial Registration NLM/NCBI Registry, NCT02978222, https://clinicaltrials.gov/search?term=NCT02978222.
Asunto(s)
Vacunas contra el Cáncer , Carcinoma Epitelial de Ovario , Receptor 1 de Folato , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Neoplasias Ováricas , Humanos , Femenino , Receptor 1 de Folato/inmunología , Persona de Mediana Edad , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/efectos adversos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/terapia , Anciano , Carcinoma Epitelial de Ovario/inmunología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/terapia , Método Doble Ciego , Adulto , Factor Estimulante de Colonias de Granulocitos y Macrófagos/administración & dosificación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/efectos adversos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/efectos adversos , Supervivencia sin Progresión , Anciano de 80 o más AñosRESUMEN
We describe in this review the historical evidence leading up to the concept and design of Vigil and subsequent clinical applications including safety and efficacy in a randomized, controlled Phase IIB trial. Vigil (gemogenovatucel-T) is a unique triple function targeted immunotherapy that demonstrates preclinical and clinical systemic anticancer activity. Construction of Vigil involves harvest of autologous malignant tissue for neoantigen targeting (ideally containing clonal neoantigens) followed by a two-day process involving transfection with a plasmid to provide a permissive 'training environment' for the patient's immune system. Transfected plasmid components contain an expressive human GMCSF DNA segment to enhance anticancer immune functional response and a second component expressing bi-shRNAfurin which reduces TGFß isomers (TGFß1 and TGFß2) thereby reducing cancer inhibition of the targeted immune response. Results generated to date justify advancement to confirmatory clinical trials supporting product regulatory approval.
Vigil is an anticancer treatment that employs three methods of enhancing the body's immune system to identify and kill cancer cells. The construction of Vigil involves cancer cells from the same person being treated (personalized therapy) in combination with added anticancer genetic signals to enhance the number and function anti-anticancer immune cells and to guide the immune cells to the cancer and not to normal organs of the body. In this manner, an army of immune cells are created that can move to attacking the cancer using blood vessels to get to the cancer anywhere it tries to grow in the body. One study (Phase I) performed with this product to determine safety and dose range demonstrated an optimal dose and schedule. Another study (Phase IIA) showed initial clinical benefit. A third more complex study (Phase IIB) in patients treated with Vigil compared with standard of care without Vigil demonstrated the ability to prolong the patients life and time without their cancer getting worse without any significant side effects associated with the treatment in a unique subset of ovarian cancer patients, those with the ability to repair their DNA. Based on the composite of these results, Vigil is an attractive targeted immunotherapy justified for late-stage clinical testing.
Asunto(s)
Vacunas contra el Cáncer , Inmunoterapia , Neoplasias , Plásmidos , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Inmunoterapia/métodos , Plásmidos/genética , Vacunas contra el Cáncer/uso terapéutico , Vacunas contra el Cáncer/inmunología , Antígenos de Neoplasias/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , AnimalesRESUMEN
BACKGROUND: Pulmonary Alveolar Proteinosis (PAP) is extremely rare and can be caused by hereditary dysfunction of the granulocyte macrophage colony-stimulating factor receptor (GM-CSF) receptor, autoantibodies against GM-CSF, or other diseases leading to alveolar macrophage (AM) dysfunction. This leads to protein accumulation in the lung and severe dyspnea and hypoxemia. Whole lung lavage (WLL) is the first line treatment strategy. METHODS: Here, we present data from more than ten years of WLL practice in pediatric PAP. WLL performed by the use of a single lumen or double lumen tube (SLT vs. DLT) were compared for technical features, procedure time, and adverse events. RESULTS: A total of n=57 procedures in six PAP patients between 3.5 and 14.3 years of age were performed. SLT based WLL in smaller children was associated with comparable rates of adverse events but with longer intervention times and postprocedural intensive care treatment when compared to DLT based procedures. DISCUSSION: Our data shows that WLL is feasible even in small children. DLT based WLL seems to be more effective, and our data supports the notion that it should be considered as early as possible in pediatric PAP. CONCLUSION: WLL lavage is possible in small PAP patients but should performed in close interdisciplinary cooperation and with age appropriate protocols.
Asunto(s)
Proteinosis Alveolar Pulmonar , Humanos , Niño , Proteinosis Alveolar Pulmonar/diagnóstico , Proteinosis Alveolar Pulmonar/terapia , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Lavado Broncoalveolar/métodos , Pulmón , AutoanticuerposRESUMEN
BACKGROUND: The efficacy and safety of oncolytic virotherapies in the treatment of advanced melanoma still remains controversal. It is necessary to conduct quantitative evaluation on the basis of preclinical trial reports. METHODS: Publicly available databases (PubMed, Embase, Medline, Web of Science and Cochrane Library.) and register (Clinicaltrials.gov) were searched to collect treatment outcomes of oncolytic virotherapies (including herpes simplex virus type 1 (HSV), coxsackievirus A21 (CVA21), adenovirus, poxvirus and reovirus) for advanced/unresectable melanoma. Comparisons of treatment response, adverse events (AEs) and survival analyses for different virotherapies were performed by R software based on the extracted data from eligible studies. RESULTS: Finally, thirty-four eligible studies were analysed and HSV virotherapy had the highest average complete response (CR, 24.8%) and HSV had a slightly higher average overall response rate (ORR) than CVA21 (43.8% vs 42.6%). In the pooled results of comparing talimogene laherparepve (T-VEC) with or without GM-CSF/ICIs (immune checkpoint inhibitors) to GM-CSF/ICIs monotherapy suggested virotherapy was more efficient in subgroups CR (RR = 1.80, 95% CI [1.30; 2.51], P < 0.01), ORR (RR = 1.17, 95% CI [1.02; 1.34], P < 0.05), and DCR (RR = 1.27, 95% CI [1.15; 1.40], P < 0.01). In patients treated with T-VEC+ICIs, 2-year overall survival (12.1 ± 6.9 months) and progression-free survival (9.9 ± 6.9) were significantly longer than those treated with T-VEC alone. Furthermore, we found that AEs occurred frequently in virotherapy but decreased in a large cohort of enrolled patients, some of which, such as abdominal distension/pain, injection site pain and pruritus, were found to be positively associated with disease progression in patients treated with T-VEC monotherapy. CONCLUSION: Given the relative safety and tolerability of oncolytic viruses, and the lack of reports of dose-limiting-dependent toxicities, more patients treated with T-VEC with or without ICIs should be added to future assessment analyses. There is still a long way to go before it can be used as a first-line therapy for patients with advanced or unresectable melanoma.
Asunto(s)
Melanoma , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Viroterapia Oncolítica/efectos adversos , Viroterapia Oncolítica/métodos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Inmunoterapia/métodos , Melanoma/tratamiento farmacológico , Virus Oncolíticos/genética , DolorRESUMEN
PURPOSE OF REVIEW: We discuss the most recent advances in the treatment of pulmonary alveolar proteinosis (PAP), an ultra-rare syndrome. RECENT FINDINGS: Whole lung lavage (WLL) remains the gold standard of treatment for PAP syndrome. For the autoimmune form, recent trials with recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) confirmed the efficacy in up to 70% of cases, especially under continuous administration. In patients with hereditary PAP with underlying GM-CSF receptor mutations, ex vivo autologous hematopoietic stem-cell gene therapy and transplantation of autologous ex vivo gene-corrected macrophages directly into the lungs are promising approaches. SUMMARY: There are no drugs approved for PAP at present, but cause-based treatments such as GM-CSF augmentation and pulmonary macrophage transplantation are paving the way for targeted therapy for this complex syndrome.
Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Proteinosis Alveolar Pulmonar , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Proteinosis Alveolar Pulmonar/genética , Proteinosis Alveolar Pulmonar/terapia , Pulmón , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Macrófagos AlveolaresRESUMEN
OBJECTIVES: Describe the statistical design of the Personalized Immunomodulation in Sepsis-induced Multiple Organ Dysfunction Syndrome (MODS) (PRECISE) study. DESIGN: Children with sepsis-induced MODS undergo real-time immune testing followed by assignment to an immunophenotype-specific study cohort. Interventional cohorts include the granulocyte macrophage-colony stimulating factor (GM-CSF) for the Reversal of Immunoparalysis in Pediatric Sepsis-induced MODS (GRACE)-2 trial, which uses the drug GM-CSF (or placebo) to reverse immunoparalysis; and the Targeted Reversal of Inflammation in Pediatric Sepsis-induced MODS (TRIPS) trial, which uses the drug anakinra (or placebo) to reverse systemic inflammation. Both trials have adaptive components and use a statistical framework in which frequent data monitoring assesses futility and efficacy, allowing potentially earlier stopping than traditional approaches. Prespecified simulation-based stopping boundaries are customized to each trial to preserve an overall one-sided type I error rate. The TRIPS trial also uses response-adaptive randomization, updating randomization allocation proportions to favor active arms that appear more efficacious based on accumulating data. SETTING: Twenty-four U.S. academic PICUs. PATIENTS: Septic children with specific immunologic derangements during ongoing dysfunction of at least two organs. INTERVENTIONS: The GRACE-2 trial compares GM-CSF and placebo in children with immunoparalysis. The TRIPS trial compares four different doses of anakinra to placebo in children with moderate to severe systemic inflammation. MEASUREMENTS AND MAIN RESULTS: Both trials assess primary efficacy using the sum of the daily pediatric logistic organ dysfunction-2 score over 28 days. Ranked summed scores, with mortality assigned the worst possible value, are compared between arms using the Wilcoxon Rank Sum test (GRACE-2) and a dose-response curve (TRIPS). We present simulation-based operating characteristics under several scenarios to demonstrate the behavior of the adaptive design. CONCLUSIONS: The adaptive design incorporates innovative statistical features that allow for multiple active arms to be compared with placebo based on a child's personal immunophenotype. The design increases power and provides optimal operating characteristics compared with traditional conservative methods.
Asunto(s)
Insuficiencia Multiorgánica , Sepsis , Humanos , Niño , Insuficiencia Multiorgánica/etiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , InflamaciónRESUMEN
PURPOSE: To identify the inflammatory cytokine profile in the aqueous humor (AH) of patients with intraocular inflammation (IOI) after intravitreal administration of brolucizumab (IVBr) for neovascular age-related macular degeneration. METHODS: Eight eyes from seven patients with IOI after initial IVBr (IVBrIOI +) were enrolled. Sixteen eyes from 16 patients without IOI after IVBr (IVBrIOI -) and aflibercept (IVA) were used as controls. AH samples were analyzed using a multiplex immunoassay. RESULTS: C-C motif chemokine ligand (CCL)2, C-X-C motif chemokine ligand (CXCL)1, CXCL10, CXCL13, interleukin (IL)-6, IL-8, IL-10, matrix metalloproteinase (MMP)-1, MMP-9, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), intercellular adhesion molecule (ICAM)-1, E-selectin, and P-selectin levels were significantly higher in IVBrIOI + than in IVBrIOI - and IVA. Vascular endothelial growth factor (VEGF) was significantly lower in IVBrIOI - compared to that in IVBrIOI + and IVA. In the IVBrIOI + group, there were significant correlations between CCL2, CXCL1, IL-6, IL-8, IL-10, G-CSF, GM-CSF, ICAM-1, and E-selectin, which also exhibited significant correlations in the IVBrIOI - group. CONCLUSION: The number of inflammatory cytokines increases during IOI, which is associated with type IV hypersensitivity and vascular inflammation. Some cytokines exhibit correlations even in non-inflamed eyes, indicating a subclinical response to IVBr.
Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Degeneración Macular , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Humor Acuoso/metabolismo , Interleucina-10 , Selectina E/metabolismo , Selectina E/uso terapéutico , Interleucina-8/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ligandos , Citocinas/metabolismo , Interleucina-6 , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Degeneración Macular/tratamiento farmacológico , Inflamación/metabolismo , Inyecciones Intravítreas , Inhibidores de la Angiogénesis/uso terapéuticoRESUMEN
BACKGROUND: A previous clinical trial for autoimmune pulmonary alveolar proteinosis (APAP) demonstrated that granulocyte-macrophage colony-stimulating factor (GM-CSF) inhalation reduced the mean density of the lung field on computed tomography (CT) across 18 axial slice planes at a two-dimensional level. In contrast, in this study, we challenged three-dimensional analysis for changes in CT density distribution using the same datasets. METHODS: As a sub-study of the trial, CT data of 31 and 27 patients who received GM-CSF and placebo, respectively, were analyzed. To overcome the difference between various shooting conditions, a newly developed automatic lung field segmentation algorithm was applied to CT data to extract the whole lung volume, and the accuracy of the segmentation was evaluated by five pulmonary physicians independently. For normalization, the percent pixel (PP) in a certain density range was calculated as a percentage of the total number of pixels from -1,000 to 0 HU. RESULTS: The automatically segmented images revealed that the lung field was accurately extracted except for 7 patients with minor deletion or addition. Using the change in PP from baseline to week 25 (ΔPP) as the vertical axis, we created a histogram with 143 HU bins set for each patient. The most significant difference in ΔPP between GM-CSF and placebo groups was observed in two ranges: from -1,000 to -857 and -143 to 0 HU. CONCLUSION: Whole lung extraction followed by density histogram analysis of ΔPP may be an appropriate evaluation method for assessing CT improvement in APAP.
Asunto(s)
Proteinosis Alveolar Pulmonar , Humanos , Proteinosis Alveolar Pulmonar/diagnóstico por imagen , Proteinosis Alveolar Pulmonar/tratamiento farmacológico , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Pulmón/diagnóstico por imagen , Administración por Inhalación , Tomografía Computarizada por Rayos XRESUMEN
Autoimmune pulmonary alveolar proteinosis (PAP) is a rare disease characterized by myeloid cell dysfunction, abnormal pulmonary surfactant accumulation, and innate immune deficiency. It has a prevalence of 7-10 per million; occurs in individuals of all races, geographic regions, sex, and socioeconomic status; and accounts for 90% of all patients with PAP syndrome. The most common presentation is dyspnea of insidious onset with or without cough, production of scant white and frothy sputum, and diffuse radiographic infiltrates in a previously healthy adult, but it can also occur in children as young as 3 years. Digital clubbing, fever, and hemoptysis are not typical, and the latter two indicate that intercurrent infection may be present. Low prevalence and nonspecific clinical, radiological, and laboratory findings commonly lead to misdiagnosis as pneumonia and substantially delay an accurate diagnosis. The clinical course, although variable, usually includes progressive hypoxemic respiratory insufficiency and, in some patients, secondary infections, pulmonary fibrosis, respiratory failure, and death. Two decades of research have raised autoimmune PAP from obscurity to a paradigm of molecular pathogenesis-based diagnostic and therapeutic development. Pathogenesis is driven by GM-CSF (granulocyte/macrophage colony-stimulating factor) autoantibodies, which are present at high concentrations in blood and tissues and form the basis of an accurate, commercially available diagnostic blood test with sensitivity and specificity of 100%. Although whole-lung lavage remains the first-line therapy, inhaled GM-CSF is a promising pharmacotherapeutic approach demonstrated in well-controlled trials to be safe, well tolerated, and efficacious. Research has established GM-CSF as a pulmonary regulatory molecule critical to surfactant homeostasis, alveolar stability, lung function, and host defense.
Asunto(s)
Enfermedades Autoinmunes , Proteinosis Alveolar Pulmonar , Adulto , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/terapia , Lavado Broncoalveolar , Niño , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Humanos , Proteinosis Alveolar Pulmonar/diagnóstico , Proteinosis Alveolar Pulmonar/patología , Proteinosis Alveolar Pulmonar/terapiaRESUMEN
Angiogenesis is a hallmark of cancer and is required for tumor growth and progression. Antiangiogenic therapy has been revolutionarily developing and was approved for the treatment of various types of cancer for nearly two decades, among which bevacizumab and sorafenib continue to be the two most frequently used antiangiogenic drugs. Although antiangiogenic therapy has brought substantial survival benefits to many cancer patients, resistance to antiangiogenic drugs frequently occurs during clinical treatment, leading to poor outcomes and treatment failure. Cumulative evidence has demonstrated that the intricate interplay among tumor cells, bone marrow-derived cells, and local stromal cells critically allows for tumor escape from antiangiogenic therapy. Currently, drug resistance has become the main challenge that hinders the therapeutic efficacies of antiangiogenic therapy. In this review, we describe and summarize the cellular and molecular mechanisms conferring tumor drug resistance to antiangiogenic therapy, which was predominantly associated with redundancy in angiogenic signaling molecules (e.g., VEGFs, GM-CSF, G-CSF, and IL17), alterations in biological processes of tumor cells (e.g., tumor invasiveness and metastasis, stemness, autophagy, metabolic reprogramming, vessel co-option, and vasculogenic mimicry), increased recruitment of bone marrow-derived cells (e.g., myeloid-derived suppressive cells, tumor-associated macrophages, and tumor-associated neutrophils), and changes in the biological functions and features of local stromal cells (e.g., pericytes, cancer-associated fibroblasts, and endothelial cells). We also review potential biomarkers to predict the response to antiangiogenic therapy in cancer patients, which mainly consist of imaging biomarkers, cellular and extracellular proteins, a certain type of bone marrow-derived cells, local stromal cell content (e.g., pericyte coverage) as well as serum or plasma biomarkers (e.g., non-coding RNAs). Finally, we highlight the recent advances in combination strategies with the aim of enhancing the response to antiangiogenic therapy in cancer patients and mouse models. This review introduces a comprehensive understanding of the mechanisms and biomarkers associated with the evasion of antiangiogenic therapy in cancer, providing an outlook for developing more effective approaches to promote the therapeutic efficacy of antiangiogenic therapy.
Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Neoplasias , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Bevacizumab/uso terapéutico , Células Endoteliales/metabolismo , Células Endoteliales/patología , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Sorafenib/uso terapéuticoRESUMEN
BACKGROUND: Myofascial Pain Syndrome (MPS) is a common pain disorder. Diagnostic criteria include physical findings which are often unreliable or not universally accepted. A precise biosignature may improve diagnosis and treatment effectiveness. The purpose of this study was to assess whether microanalytic assays significantly correlate with characteristic clinical findings in people with MPS. METHODS: This descriptive, prospective study included 38 participants (25 women) with greater than 3 months of myofascial pain in the upper trapezius. Assessments were performed at a university laboratory. The main outcome measures were the Beighton Index, shoulder range of motion, strength asymmetries and microanalytes: DHEA, Kynurenine, VEGF, interleukins (IL-1b, IL-2, IL-4, IL-5, IL-7, IL-8, IL-13), growth factors (IGF-1, IGF2, G-CSF, GM-CSF), MCP-1, MIP-1b, BDNF, Dopamine, Noradrenaline, NPY, and Acetylcholine. Mann-Whitney test and Spearman's multivariate correlation were applied for all variables. The Spearman's analysis results were used to generate a standard correlation matrix and heat map matrix. RESULTS: Mean age of participants was 32 years (20-61). Eight (21%) had widespread pain (Widespread Pain Index ≥ 7). Thirteen (34%) had MPS for 1-3 years, 14 (37%) 3-10 years, and 11 (29%) for > 10 years. The following showed strong correlations: IL1b,2,4,5,7,8; GM-CSF and IL 2,4,5,7; between DHEA and BDNF and between BDNF and Kynurenine, NPY and acetylcholine. The heat map analysis demonstrated strong correlations between the Beighton Index and IL 5,7, GM-CSF, DHEA. Asymmetries of shoulder and cervical spine motion and strength associated with select microanalytes. CONCLUSION: Cytokine levels significantly correlate with selected clinical assessments. This indirectly suggests possible biological relevance for understanding MPS. Correlations among some cytokine clusters; and DHEA, BDNF kynurenine, NPY, and acetylcholine may act together in MPS. These findings should be further investigated for confirmation that link these microanalytes with select clinical findings in people with MPS.
Asunto(s)
Fibromialgia , Síndromes del Dolor Miofascial , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Estudios Prospectivos , Acetilcolina/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo , Quinurenina/uso terapéutico , Síndromes del Dolor Miofascial/diagnóstico , Síndromes del Dolor Miofascial/terapia , Citocinas , Dolor , DeshidroepiandrosteronaRESUMEN
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a glycoprotein and is derived from both hemopoietic and nonhemopoietic sources which exert immunomodulatory properties. Various theories have been proposed to explain why some wounds become chronic and non-healing. Generalized suppression of inflammation locally or systemically may impede the body's physiological healing response by crippling the activity of reparative cells within the wound ecosystem. Thus, highlighting the importance of promoting host-directed therapeutics with immunomodulatory properties. The temporal and spatial expression of GM-CSF and GM-CSF receptors in the integumentary system suggests that epithelial-derived GM-CSF functions in an autocrine/paracrine manner. This may positively affect wound healing physiology via local inflammatory regulation promoting macrophage survival. Although diabetes negatively affects multiple aspects of wound healing GM-CSF activation is particularly impacted. Compared to acute/healthy wounds diabetic foot ulcers (DFU) only partially activate GM-CSF activity. There is a deleterious chain of events associated with this unfortunate sequala. DFUs also have a high proportion of monocytes and an absence of activated macrophages which results in an impaired inflammatory response. This may potentially serve as a vital point for GM-CSF to act as a companion diagnostic/theragnostic modality to help modulate the inflammatory response in wound healing. Correcting macrophage immune dysfunction with exogenous GM-CSF may help restore the immune balance in the wound ecosystem and jumpstart the wound healing cascade. Thus, the recognized beneficial role of GM-CSF in immune regulation across many studies provides a rationale for the initiation of the ongoing randomized controlled trials using GM-CSF.
Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Granulocitos/metabolismo , Macrófagos/metabolismo , Cicatrización de Heridas/fisiologíaRESUMEN
BACKGROUND: Ischemic stroke affects about 700 000 patients per year in the United States, and to date, there are no effective pharmacological agents that promote recovery. Here, we studied the pharmacokinetics, pharmacodynamics, and efficacy of NTS-105, a novel neuroactive steroid, and NTS-104, a prodrug of NTS-105, in 2 models of ischemic stroke. METHODS: The pharmacodynamics and pharmacokinetics of NTS-104/105 were investigated in naive and stroke rats, and models of embolic and transient middle cerebral artery occlusion were used to investigate the dose-related effects of NTS-104. All rats were randomly assigned into the experimental groups, and all outcome measurements were performed blindly. RESULTS: Blood plasma and brain pharmacokinetic analysis revealed that NTS-104 rapidly converted to NTS-105, which reached peak concentration at ≈1 hour after dosing and distributed similarly to normal and ischemic brains. NTS-104 administration 4 hours after embolic middle cerebral artery occlusion led to a dose-dependent improvement of neurological outcomes and a dose-dependent reduction of infarct volumes relative to vehicle-treated animals. A single dose level study confirmed that NTS-104 administered 4 hours after transient middle cerebral artery occlusion was also neuroprotective. Quantitative ELISA revealed that NTS-104 treatment resulted in time- and dose-dependent changes in AKT activation and cytokine levels within the ischemic brain, which included reductions of IL-6, VEGF, ICAM-1, IL-1ß, MCP-1, RAGE, and GM-CSF. Time- and dose-dependent reductions in IL-6 and GM-CSF were also observed in the plasma along with an elevation of galectin-1. CONCLUSIONS: NTS-104 is a novel prodrug that converts to a novel neuroactive steroid, NTS-105, which improves functional outcomes in experimental ischemic stroke models.
Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Neuroesteroides , Profármacos , Accidente Cerebrovascular , Animales , Ratas , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Profármacos/farmacología , Profármacos/uso terapéutico , Molécula 1 de Adhesión Intercelular/uso terapéutico , Galectina 1/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Interleucina-6 , Proteínas Proto-Oncogénicas c-akt , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Modelos Animales de Enfermedad , Accidente Cerebrovascular/tratamiento farmacológicoRESUMEN
BACKGROUND: Pulmonary alveolar proteinosis is a disease characterized by abnormal accumulation of surfactant in the alveoli. Most cases are autoimmune and are associated with an autoantibody against granulocyte-macrophage colony-stimulating factor (GM-CSF) that prevents clearing of pulmonary surfactant by alveolar macrophages. An open-label, phase 2 study showed some therapeutic efficacy of inhaled recombinant human GM-CSF in patients with severe pulmonary alveolar proteinosis; however, the efficacy in patients with mild-to-moderate disease remains unclear. METHODS: We conducted a double-blind, placebo-controlled trial of daily inhaled recombinant human GM-CSF (sargramostim), at a dose of 125 µg twice daily for 7 days, every other week for 24 weeks, or placebo in 64 patients with autoimmune pulmonary alveolar proteinosis who had a partial pressure of arterial oxygen (Pao2) while breathing ambient air of less than 70 mm Hg (or <75 mm Hg in symptomatic patients). Patients with severe pulmonary alveolar proteinosis (Pao2 <50 mm Hg) were excluded to avoid possible exacerbation of the disease in patients who were assigned to receive placebo. The primary end point was the change in the alveolar-arterial oxygen gradient between baseline and week 25. RESULTS: The change in the mean (±SD) alveolar-arterial oxygen gradient was significantly better in the GM-CSF group (33 patients) than in the placebo group (30 patients) (mean change from baseline, -4.50±9.03 mm Hg vs. 0.17±10.50 mm Hg; P = 0.02). The change between baseline and week 25 in the density of the lung field on computed tomography was also better in the GM-CSF group (between-group difference, -36.08 Hounsfield units; 95% confidence interval, -61.58 to -6.99, calculated with the use of the Mann-Whitney U test and the Hodges-Lehmann estimate of confidence intervals for pseudo-medians). Serious adverse events developed in 6 patients in the GM-CSF group and in 3 patients in the placebo group. CONCLUSIONS: In this randomized, controlled trial, inhaled recombinant human GM-CSF was associated with a modest salutary effect on the laboratory outcome of arterial oxygen tension, and no clinical benefits were noted. (Funded by the Japan Agency for Medical Research and Development and the Ministry of Health, Labor, and Welfare of Japan; PAGE ClinicalTrials.gov number, NCT02835742; Japan Medical Association Center for Clinical Trials number, JMA-IIA00205.).
Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Factores Inmunológicos/uso terapéutico , Proteinosis Alveolar Pulmonar/tratamiento farmacológico , Administración por Inhalación , Adulto , Anciano , Autoanticuerpos/sangre , Enfermedades Autoinmunes/diagnóstico por imagen , Método Doble Ciego , Esquema de Medicación , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/administración & dosificación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/efectos adversos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Humanos , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/efectos adversos , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Persona de Mediana Edad , Oxígeno/sangre , Proteinosis Alveolar Pulmonar/diagnóstico por imagen , Proteinosis Alveolar Pulmonar/inmunología , Capacidad de Difusión Pulmonar , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/uso terapéutico , Fumar/efectos adversos , Tomografía Computarizada por Rayos X , Prueba de PasoRESUMEN
BACKGROUND: Selectively replicating herpes simplex virus-2 (HSV-2) vector is a promising treatment for cancer therapy. The insertion of multiple transgenes into the viral genome has been performed to improve its oncolytic activity. METHODS: Herein, we simultaneously constructed five "armed" oncolytic viruses (OVs), designated oHSV2-IL12, -IL15, GM-CSF, -PD1v, and IL7 × CCL19. These OVs delete the ICP34.5 and ICP47 genes with the insertion of transgenes into the deleted ICP34.5 locus. The anti-tumor efficacy in vivo was tested in the syngeneic 4T1 and CT26 tumor-bearing mice model. RESULTS: The OVs showed comparable oncolytic capability in vitro. The combination therapy of oHSV2-IL12, -IL15, GM-CSF, -PD1v, and IL7 × CCL19 exhibited the highest tumor inhibition efficacy compared with the treatment of single OV or two OVs combination. CONCLUSIONS: The OVs armed with different transgenes combination therapy also named 5-valent oHSV2 (also called cocktail therapy) might be an effective therapeutic strategy for solid tumors.
Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Vectores Genéticos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Herpesvirus Humano 2/genética , Interleucina-12/genética , Interleucina-15/genética , Interleucina-7/genética , Ratones , Neoplasias/tratamiento farmacológico , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genéticaRESUMEN
We perceive the potential of combined immunotherapy for the synergistic treatment of human papillomavirus (HPV)-associated tumors. So, the tumor inhibiting effects of combination of L. casei TD2a and GM-CSF on the TC-1 growth were evaluated In Vivo using lymphocyte proliferation, lymphocyte cytotoxicity, splenocyte, and tumor cytokine assays. The results showed that tumor inhibition in transplanted mice in the GM-CSF combined with probiotic L. casei group was significantly higher than that observed in the other groups excluding GM-CSF group whose tumor inhibition effect was considerable. The findings also indicated that the combined group could generate tumor-specific cytolytic and splenocyte proliferative responses. The levels of IFN-γ, IL-4, and IL-12 after treating with GM-CSF combined with probiotic L. casei were significantly higher than those of other groups. The intratumoral Tumor Necrosis Factor Related Apoptosis-Inducing Ligand (TRAIL) was also significantly increased in the combined group. Tumor analysis further showed that the combined group decreased the accumulation of IL-10 in the tumor microenvironment of treated mice. Furthermore, tumor volume analysis demonstrated that combination group and even GM-CSF suppress tumor growth. Our findings showed that the combination of GM-CSF and probiotic results in improved tumor suppression against HPV-associated tumors and stimulates enhancement of specific antitumor immune responses.
Asunto(s)
Lacticaseibacillus casei , Probióticos , Neoplasias del Cuello Uterino , Animales , Modelos Animales de Enfermedad , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Humanos , Inmunidad , Ratones , Ratones Endogámicos BALB C , Microambiente Tumoral , Neoplasias del Cuello Uterino/tratamiento farmacológicoRESUMEN
Influenza-related acute lung injury (ALI) is a life-threatening condition that results mostly from uncontrolled replication of influenza virus (IV) and severe proinflammatory responses. The methoxy flavonoid compound 5-methoxyflavone (5-MF) is believed to have superior biological activity in the treatment of cancer. However, the effects and underlying mechanism of 5-MF on IV-mediated ALI are still unclear. Here, we showed that 5-MF significantly improved the survival of mice with lethal IV infection and ameliorated IV-mediated lung edema, lung histological changes, and inflammatory cell lung recruitment. We found that 5-MF has antiviral activity against influenza A virus (IAV), which was probably associated with increased expression of radical S-adenosyl methionine domain containing 2 (RSAD2) and suppression of endosomal acidification. Moreover, IV-infected A549 cells with 5-MF treatment markedly reduced proinflammatory mediator expression (IL-6, CXCL8, TNF-α, CXCL10, CCL2, CCL3, CCL4, GM-CSF, COX-2, and PGE2) and prevented P-IKBα, P-P65, and P-P38 activation. Interestingly, we demonstrated that 5-MF treatment could trigger activation of AMP-activated protein kinase (AMPK)α in IV-infected A549 cells, as evidenced by activation of the AMPKα downstream molecule P53. Importantly, the addition of AMPKα blocker compound C dramatically abolished 5-MF-mediated increased levels of RSAD2, the inhibitory effects on H1N1 virus-elicited endosomal acidification, and the suppression expression of proinflammatory mediators (IL-6, TNF-α, CXCL10, COX-2 and PGE2), as well as the inactivation of P-IKBα, P-P65, and P-P38 MAPK signaling pathways. Furthermore, inhibition of AMPKα abrogated the protective effects of 5-MF on H1N1 virus-mediated lung injury and excessive inflammation in vivo. Taken together, these results indicate that 5-MF alleviated IV-mediated ALI and suppressed excessive inflammatory responses through activation of AMPKα signaling.
Asunto(s)
Lesión Pulmonar Aguda , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Proteínas Quinasas Activadas por AMP/metabolismo , Lesión Pulmonar Aguda/metabolismo , Animales , Antivirales/farmacología , Ciclooxigenasa 2 , Flavonas , Flavonoides/farmacología , Flavonoides/uso terapéutico , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Inflamación/tratamiento farmacológico , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Virus de la Influenza A/metabolismo , Interleucina-6/metabolismo , Metionina/farmacología , Metionina/uso terapéutico , Ratones , FN-kappa B/metabolismo , Prostaglandinas E/farmacología , Prostaglandinas E/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Proteína p53 Supresora de Tumor , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Poor sperm quality in oligoasthenoteratospermia patients negatively affects assisted reproductive technology outcomes. Therefore, the development of sperm media is necessary to improve sperm parameters. This study investigated the effect of GM-CSF via PI3K/AKT pathway on sperm quality in OAT patients. Semen samples were collected from 20 OAT patients, and each sample was divided into two groups: Experiment and Control. In the experimental group, the samples were incubated with medium containing GM-CSF, and control samples were incubated without GM-CSF. Sperm parameters, mitochondrial membrane potential, acrosome reaction and DFI were studied; in addition, gene expression of PI3KR1, PI3KCA, GLUT1, GLUT3 and AKT1 was analysed, evaluation of PAKT/TAKT, and expression of GLUT 1, 3 was examined; subsequent fertilization rate and embryo quality were assessed. Our data showed that GM-CSF supplementation could significantly increase motility, mitochondrial activity, gene expression of PI3KCA, AKT1, the protein level of PAKT/TAKT and expression of GLUT 1, 3 while it decreases DNA fragmentation. The fertilization rate and embryo quality significantly improved in the treatment group. LY294002 had adverse effects on sperm motility and the PAKT/TAKT ratio. GM-CSF can improve in vitro sperm quality and could be a suitable supplement to sperm media for OAT patients.