Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 655
Filtrar
1.
Immunity ; 54(1): 68-83.e6, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33238133

RESUMEN

While antibiotics are intended to specifically target bacteria, most are known to affect host cell physiology. In addition, some antibiotic classes are reported as immunosuppressive for reasons that remain unclear. Here, we show that Linezolid, a ribosomal-targeting antibiotic (RAbo), effectively blocked the course of a T cell-mediated autoimmune disease. Linezolid and other RAbos were strong inhibitors of T helper-17 cell effector function in vitro, showing that this effect was independent of their antibiotic activity. Perturbing mitochondrial translation in differentiating T cells, either with RAbos or through the inhibition of mitochondrial elongation factor G1 (mEF-G1) progressively compromised the integrity of the electron transport chain. Ultimately, this led to deficient oxidative phosphorylation, diminishing nicotinamide adenine dinucleotide concentrations and impairing cytokine production in differentiating T cells. In accordance, mice lacking mEF-G1 in T cells were protected from experimental autoimmune encephalomyelitis, demonstrating that this pathway is crucial in maintaining T cell function and pathogenicity.


Asunto(s)
Antibacterianos/uso terapéutico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Linezolid/uso terapéutico , Mitocondrias/metabolismo , Péptidos Cíclicos/uso terapéutico , Ribosomas/metabolismo , Células Th17/fisiología , Animales , Autoinmunidad/efectos de los fármacos , Diferenciación Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Terapia Molecular Dirigida , Esclerosis Múltiple/tratamiento farmacológico , NAD/metabolismo , Fosforilación Oxidativa , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo
2.
Cell ; 160(1-2): 219-27, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25594181

RESUMEN

The universally conserved GTPase elongation factor G (EF-G) catalyzes the translocation of tRNA and mRNA on the ribosome after peptide bond formation. Despite numerous studies suggesting that EF-G undergoes extensive conformational rearrangements during translocation, high-resolution structures exist for essentially only one conformation of EF-G in complex with the ribosome. Here, we report four atomic-resolution crystal structures of EF-G bound to the ribosome programmed in the pre- and posttranslocational states and to the ribosome trapped by the antibiotic dityromycin. We observe a previously unseen conformation of EF-G in the pretranslocation complex, which is independently captured by dityromycin on the ribosome. Our structures provide insights into the conformational space that EF-G samples on the ribosome and reveal that tRNA translocation on the ribosome is facilitated by a structural transition of EF-G from a compact to an elongated conformation, which can be prevented by the antibiotic dityromycin.


Asunto(s)
Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Thermus thermophilus/metabolismo , Depsipéptidos/farmacología , Escherichia coli/química , Escherichia coli/metabolismo , Modelos Moleculares , ARN de Transferencia/química , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Thermus thermophilus/química , Difracción de Rayos X
3.
Cell ; 163(5): 1267-1280, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26590426

RESUMEN

Nearly half of the ribosomes translating a particular bacteriophage T4 mRNA bypass a region of 50 nt, resuming translation 3' of this gap. How this large-scale, specific hop occurs and what determines whether a ribosome bypasses remain unclear. We apply single-molecule fluorescence with zero-mode waveguides to track individual Escherichia coli ribosomes during translation of T4's gene 60 mRNA. Ribosomes that bypass are characterized by a 10- to 20-fold longer pause in a non-canonical rotated state at the take-off codon. During the pause, mRNA secondary structure rearrangements are coupled to ribosome forward movement, facilitated by nascent peptide interactions that disengage the ribosome anticodon-codon interactions for slippage. Close to the landing site, the ribosome then scans mRNA in search of optimal base-pairing interactions. Our results provide a mechanistic and conformational framework for bypassing, highlighting a non-canonical ribosomal state to allow for mRNA structure refolding to drive large-scale ribosome movements.


Asunto(s)
Escherichia coli/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/química , Ribosomas/metabolismo , Región de Flanqueo 5' , Anticodón , Secuencia de Bases , Codón , Transferencia Resonante de Energía de Fluorescencia , Secuencias Invertidas Repetidas , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Factor G de Elongación Peptídica/metabolismo , ARN Mensajero/metabolismo , Ribosomas/química
4.
Cell ; 157(7): 1619-31, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949973

RESUMEN

Programmed -1 ribosomal frameshifting (-1PRF) is an mRNA recoding event utilized by cells to enhance the information content of the genome and to regulate gene expression. The mechanism of -1PRF and its timing during translation elongation are unclear. Here, we identified the steps that govern -1PRF by following the stepwise movement of the ribosome through the frameshifting site of a model mRNA derived from the IBV 1a/1b gene in a reconstituted in vitro translation system from Escherichia coli. Frameshifting occurs at a late stage of translocation when the two tRNAs are bound to adjacent slippery sequence codons of the mRNA. The downstream pseudoknot in the mRNA impairs the closing movement of the 30S subunit head, the dissociation of EF-G, and the release of tRNA from the ribosome. The slippage of the ribosome into the -1 frame accelerates the completion of translocation, thereby further favoring translation in the new reading frame.


Asunto(s)
Escherichia coli/metabolismo , Sistema de Lectura Ribosómico , Regulación de la Expresión Génica , Biosíntesis de Proteínas , Secuencia de Bases , Escherichia coli/genética , Virus de la Bronquitis Infecciosa/genética , Cinética , Datos de Secuencia Molecular , Factor G de Elongación Peptídica/metabolismo , ARN de Transferencia/metabolismo , Sistemas de Lectura , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/metabolismo
5.
Mol Cell ; 81(12): 2566-2582.e6, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33878294

RESUMEN

The mitochondrial translation system originates from a bacterial ancestor but has substantially diverged in the course of evolution. Here, we use single-particle cryo-electron microscopy (cryo-EM) as a screening tool to identify mitochondrial translation termination mechanisms and to describe them in molecular detail. We show how mitochondrial release factor 1a releases the nascent chain from the ribosome when it encounters the canonical stop codons UAA and UAG. Furthermore, we define how the peptidyl-tRNA hydrolase ICT1 acts as a rescue factor on mitoribosomes that have stalled on truncated messages to recover them for protein synthesis. Finally, we present structural models detailing the process of mitochondrial ribosome recycling to explain how a dedicated elongation factor, mitochondrial EFG2 (mtEFG2), has specialized for cooperation with the mitochondrial ribosome recycling factor to dissociate the mitoribosomal subunits at the end of the translation process.


Asunto(s)
Mitocondrias/fisiología , Ribosomas Mitocondriales/metabolismo , Terminación de la Cadena Péptídica Traduccional/fisiología , Animales , Hidrolasas de Éster Carboxílico , Codón de Terminación , Microscopía por Crioelectrón/métodos , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Terminación de la Cadena Péptídica Traduccional/genética , Factor G de Elongación Peptídica/metabolismo , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/fisiología , Ribosomas/metabolismo
6.
EMBO J ; 42(2): e112372, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36472247

RESUMEN

Protein synthesis is crucial for cell growth and survival yet one of the most energy-consuming cellular processes. How, then, do cells sustain protein synthesis under starvation conditions when energy is limited? To accelerate the translocation of mRNA-tRNAs through the ribosome, bacterial elongation factor G (EF-G) hydrolyzes energy-rich guanosine triphosphate (GTP) for every amino acid incorporated into a protein. Here, we identify an EF-G paralog-EF-G2-that supports translocation without hydrolyzing GTP in the gut commensal bacterium Bacteroides thetaiotaomicron. EF-G2's singular ability to sustain protein synthesis, albeit at slow rates, is crucial for bacterial gut colonization. EF-G2 is ~10-fold more abundant than canonical EF-G1 in bacteria harvested from murine ceca and, unlike EF-G1, specifically accumulates during carbon starvation. Moreover, we uncover a 26-residue region unique to EF-G2 that is essential for protein synthesis, EF-G2 dissociation from the ribosome, and responsible for the absence of GTPase activity. Our findings reveal how cells curb energy consumption while maintaining protein synthesis to advance fitness in nutrient-fluctuating environments.


Asunto(s)
Bacteroides , Factor G de Elongación Peptídica , Animales , Ratones , Bacteroides/genética , Bacteroides/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/química , Ribosomas/metabolismo , ARN de Transferencia/metabolismo
7.
Nature ; 595(7869): 741-745, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234344

RESUMEN

Peptide-chain elongation during protein synthesis entails sequential aminoacyl-tRNA selection and translocation reactions that proceed rapidly (2-20 per second) and with a low error rate (around 10-3 to 10-5 at each step) over thousands of cycles1. The cadence and fidelity of ribosome transit through mRNA templates in discrete codon increments is a paradigm for movement in biological systems that must hold for diverse mRNA and tRNA substrates across domains of life. Here we use single-molecule fluorescence methods to guide the capture of structures of early translocation events on the bacterial ribosome. Our findings reveal that the bacterial GTPase elongation factor G specifically engages spontaneously achieved ribosome conformations while in an active, GTP-bound conformation to unlock and initiate peptidyl-tRNA translocation. These findings suggest that processes intrinsic to the pre-translocation ribosome complex can regulate the rate of protein synthesis, and that energy expenditure is used later in the translocation mechanism than previously proposed.


Asunto(s)
Factor G de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , Aminoacil-ARN de Transferencia/genética , Ribosomas/metabolismo , Codón , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , ARN Mensajero/genética
8.
Mol Cell ; 74(2): 310-319.e7, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30852061

RESUMEN

Multi-domain proteins, containing several structural units within a single polypeptide, constitute a large fraction of all proteomes. Co-translational folding is assumed to simplify the conformational search problem for large proteins, but the events leading to correctly folded, functional structures remain poorly characterized. Similarly, how the ribosome and molecular chaperones promote efficient folding remains obscure. Using optical tweezers, we have dissected early folding events of nascent elongation factor G, a multi-domain protein that requires chaperones for folding. The ribosome and the chaperone trigger factor reduce inter-domain misfolding, permitting folding of the N-terminal G-domain. Successful completion of this step is a crucial prerequisite for folding of the next domain. Unexpectedly, co-translational folding does not proceed unidirectionally; emerging unfolded polypeptide can denature an already-folded domain. Trigger factor, but not the ribosome, protects against denaturation. The chaperone thus serves a previously unappreciated function, helping multi-domain proteins overcome inherent challenges during co-translational folding.


Asunto(s)
Factor G de Elongación Peptídica/química , Biosíntesis de Proteínas , Conformación Proteica , Pliegue de Proteína , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Pinzas Ópticas , Factor G de Elongación Peptídica/genética , Péptidos/química , Péptidos/genética , Dominios Proteicos/genética , Proteoma/química , Proteoma/genética , Ribosomas/química , Ribosomas/genética
9.
Nucleic Acids Res ; 52(7): 4053-4066, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38407413

RESUMEN

During stress conditions such as heat shock and antibiotic exposure, ribosomes stall on messenger RNAs, leading to inhibition of protein synthesis. To remobilize ribosomes, bacteria use rescue factors such as HflXr, a homolog of the conserved housekeeping GTPase HflX that catalyzes the dissociation of translationally inactive ribosomes into individual subunits. Here we use time-resolved cryo-electron microscopy to elucidate the mechanism of ribosome recycling by Listeria monocytogenes HflXr. Within the 70S ribosome, HflXr displaces helix H69 of the 50S subunit and induces long-range movements of the platform domain of the 30S subunit, disrupting inter-subunit bridges B2b, B2c, B4, B7a and B7b. Our findings unveil a unique ribosome recycling strategy by HflXr which is distinct from that mediated by RRF and EF-G. The resemblance between HflXr and housekeeping HflX suggests that the alternative ribosome recycling mechanism reported here is universal in the prokaryotic kingdom.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Listeria monocytogenes , Ribosomas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Ribosomas/metabolismo , Listeria monocytogenes/metabolismo , Listeria monocytogenes/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/química , Biosíntesis de Proteínas , Modelos Moleculares , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Factor G de Elongación Peptídica/metabolismo , Factor G de Elongación Peptídica/química
10.
Proc Natl Acad Sci U S A ; 120(41): e2114979120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37801472

RESUMEN

The two main steps of translation, peptidyl transfer, and translocation are accompanied by counterclockwise and clockwise rotations of the large and small ribosomal subunits with respect to each other. Upon peptidyl transfer, the small ribosomal subunit rotates counterclockwise relative to the large subunit, placing the ribosome into the rotated conformation. Simultaneously, tRNAs move into the hybrid conformation, and the L1 stalk moves inward toward the P-site tRNA. The conformational dynamics of pretranslocation ribosomes were extensively studied by ensemble and single-molecule methods. Different experimental modalities tracking ribosomal subunits, tRNAs, and the L1 stalk showed that pretranslocation ribosomes undergo spontaneous conformational transitions. Thus, peptidyl transfer unlocks the ribosome and decreases an energy barrier for the reverse ribosome rotation during translocation. However, the tracking of translation with ribosomes labeled at rRNA helices h44 and H101 showed a lack of spontaneous rotations in pretranslocation complexes. Therefore, reverse intersubunit rotations occur during EF-G catalyzed translocation. To reconcile these views, we used high-speed single-molecule microscopy to follow translation in real time. We showed spontaneous rotations in puromycin-released h44-H101 dye-labeled ribosomes. During elongation, the h44-H101 ribosomes undergo partial spontaneous rotations. Spontaneous rotations in h44-H101-labeled ribosomes are restricted prior to aminoacyl-tRNA binding. The pretranslocation h44-H101 ribosomes spontaneously exchanged between three different rotational states. This demonstrates that peptidyl transfer unlocks spontaneous rotations and pretranslocation ribosomes can adopt several thermally accessible conformations, thus supporting the Brownian model of translocation.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Ribosomas , Ribosomas/metabolismo , ARN de Transferencia/metabolismo , Conformación de Ácido Nucleico , Factor G de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas
11.
RNA ; 29(5): 663-674, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36754577

RESUMEN

In translation initiation in prokaryotes, IF3 recognizes the interaction between the initiator codon of mRNA and the anticodon of fMet-tRNAini and then relocates the fMet-tRNAini to an active position. Here, we have surveyed 328 codon-anticodon combinations for the preference of IF3. At the first and second base of the codon, only Watson-Crick base pairs are tolerated. At the third base, stronger base pairs, for example, Watson-Crick, are more preferred, but other types of base pairs, for example, G/U wobble, are also tolerated; weaker base pairs are excluded by IF3. When the codon-anticodon combinations are unfavorable for IF3 or the concentration of IF3 is too low to recognize any codon-anticodon combinations, IF3 fails to set the P-site fMet-tRNAini at the active position and causes its drop-off from the ribosome. Thereby, translation reinitiation occurs from the second aminoacyl-tRNA at the A site to yield a truncated peptide lacking the amino-terminal fMet. We refer to this event as the amino-terminal drop-off-reinitiation. We also showed that EF-G and RRF are involved in disassembling such an aberrant ribosome complex bearing inactive fMet-tRNAini Thereby EF-G and RRF are able to exclude unfavorable codon-anticodon combinations with weaker base pairs and alleviate the amino-terminal drop-off-reinitiation.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , Factor G de Elongación Peptídica , Anticodón/genética , Codón/genética , Escherichia coli/genética , Factor G de Elongación Peptídica/genética , Péptidos , ARN de Transferencia/genética , Perforina/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(19): e2114214119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35500116

RESUMEN

Argyrins are a family of naturally produced octapeptides that display promising antimicrobial activity against Pseudomonas aeruginosa. Argyrin B (ArgB) has been shown to interact with an elongated form of the translation elongation factor G (EF-G), leading to the suggestion that argyrins inhibit protein synthesis by interfering with EF-G binding to the ribosome. Here, using a combination of cryo-electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET), we demonstrate that rather than interfering with ribosome binding, ArgB rapidly and specifically binds EF-G on the ribosome to inhibit intermediate steps of the translocation mechanism. Our data support that ArgB inhibits conformational changes within EF-G after GTP hydrolysis required for translocation and factor dissociation, analogous to the mechanism of fusidic acid, a chemically distinct antibiotic that binds a different region of EF-G. These findings shed light on the mechanism of action of the argyrin-class antibiotics on protein synthesis as well as the nature and importance of rate-limiting, intramolecular conformational events within the EF-G-bound ribosome during late-steps of translocation.


Asunto(s)
Antibacterianos , Factor G de Elongación Peptídica , Antibacterianos/metabolismo , Ácido Fusídico/farmacología , Humanos , Oligopéptidos , Factor G de Elongación Peptídica/metabolismo , Ribosomas/metabolismo , Translocación Genética
13.
Proc Natl Acad Sci U S A ; 119(44): e2212502119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36282914

RESUMEN

Translocation of transfer RNA (tRNA) and messenger RNA (mRNA) through the ribosome is catalyzed by the GTPase elongation factor G (EF-G) in bacteria. Although guanosine-5'-triphosphate (GTP) hydrolysis accelerates translocation and is required for dissociation of EF-G, its fundamental role remains unclear. Here, we used ensemble Förster resonance energy transfer (FRET) to monitor how inhibition of GTP hydrolysis impacts the structural dynamics of the ribosome. We used FRET pairs S12-S19 and S11-S13, which unambiguously report on rotation of the 30S head domain, and the S6-L9 pair, which measures intersubunit rotation. Our results show that, in addition to slowing reverse intersubunit rotation, as shown previously, blocking GTP hydrolysis slows forward head rotation. Surprisingly, blocking GTP hydrolysis completely abolishes reverse head rotation. We find that the S13-L33 FRET pair, which has been used in previous studies to monitor head rotation, appears to report almost exclusively on intersubunit rotation. Furthermore, we find that the signal from quenching of 3'-terminal pyrene-labeled mRNA, which is used extensively to follow mRNA translocation, correlates most closely with reverse intersubunit rotation. To account for our finding that blocking GTP hydrolysis abolishes a rotational event that occurs after the movements of mRNA and tRNAs are essentially complete, we propose that the primary role of GTP hydrolysis is to create an irreversible step in a mechanism that prevents release of EF-G until both the tRNAs and mRNA have moved by one full codon, ensuring productive translocation and maintenance of the translational reading frame.


Asunto(s)
Factor G de Elongación Peptídica , Ribosomas , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/química , Guanosina Trifosfato/química , Hidrólisis , Ribosomas/metabolismo , ARN de Transferencia/química , ARN Mensajero/química , GTP Fosfohidrolasas/genética , Pirenos/análisis , Guanosina
14.
EMBO J ; 39(15): e104820, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32602580

RESUMEN

Mitochondria are eukaryotic organelles of bacterial origin where respiration takes place to produce cellular chemical energy. These reactions are catalyzed by the respiratory chain complexes located in the inner mitochondrial membrane. Notably, key components of the respiratory chain complexes are encoded on the mitochondrial chromosome and their expression relies on a dedicated mitochondrial translation machinery. Defects in the mitochondrial gene expression machinery lead to a variety of diseases in humans mostly affecting tissues with high energy demand such as the nervous system, the heart, or the muscles. The mitochondrial translation system has substantially diverged from its bacterial ancestor, including alterations in the mitoribosomal architecture, multiple changes to the set of translation factors and striking reductions in otherwise conserved tRNA elements. Although a number of structures of mitochondrial ribosomes from different species have been determined, our mechanistic understanding of the mitochondrial translation cycle remains largely unexplored. Here, we present two cryo-EM reconstructions of human mitochondrial elongation factor G1 bound to the mammalian mitochondrial ribosome at two different steps of the tRNA translocation reaction during translation elongation. Our structures explain the mechanism of tRNA and mRNA translocation on the mitoribosome, the regulation of mtEFG1 activity by the ribosomal GTPase-associated center, and the basis of decreased susceptibility of mtEFG1 to the commonly used antibiotic fusidic acid.


Asunto(s)
Proteínas Mitocondriales/química , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/ultraestructura , Factor G de Elongación Peptídica/química , Biosíntesis de Proteínas , ARN Mitocondrial/química , ARN de Transferencia/química , Animales , Microscopía por Crioelectrón , Humanos , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Porcinos
15.
Nucleic Acids Res ; 50(14): 8302-8320, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35808938

RESUMEN

Translocation of messenger RNA (mRNA) and transfer RNA (tRNA) substrates through the ribosome during protein synthesis, an exemplar of directional molecular movement in biology, entails a complex interplay of conformational, compositional, and chemical changes. The molecular determinants of early translocation steps have been investigated rigorously. However, the elements enabling the ribosome to complete translocation and reset for subsequent protein synthesis reactions remain poorly understood. Here, we have combined molecular simulations with single-molecule fluorescence resonance energy transfer imaging to gain insights into the rate-limiting events of the translocation mechanism. We find that diffusive motions of the ribosomal small subunit head domain to hyper-swivelled positions, governed by universally conserved rRNA, can maneuver the mRNA and tRNAs to their fully translocated positions. Subsequent engagement of peptidyl-tRNA and disengagement of deacyl-tRNA from mRNA, within their respective small subunit binding sites, facilitate the ribosome resetting mechanism after translocation has occurred to enable protein synthesis to resume.


Asunto(s)
Factor G de Elongación Peptídica , Ribosomas , Factor G de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/química , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
16.
Nucleic Acids Res ; 50(5): 2736-2753, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188576

RESUMEN

In ribosomal translation, peptidyl transfer occurs between P-site peptidyl-tRNA and A-site aminoacyl-tRNA, followed by translocation of the resulting P-site deacylated-tRNA and A-site peptidyl-tRNA to E and P site, respectively, mediated by EF-G. Here, we report that mistranslocation of P-site peptidyl-tRNA and A-site aminoacyl-tRNA toward E and A site occurs when high concentration of EF-G triggers the migration of two tRNAs prior to completion of peptidyl transfer. Consecutive incorporation of less reactive amino acids, such as Pro and d-Ala, makes peptidyl transfer inefficient and thus induces the mistranslocation event. Consequently, the E-site peptidyl-tRNA drops off from ribosome to give a truncated peptide lacking the C-terminal region. The P-site aminoacyl-tRNA allows for reinitiation of translation upon accommodation of a new aminoacyl-tRNA at A site, leading to synthesis of a truncated peptide lacking the N-terminal region, which we call the 'reinitiated peptide'. We also revealed that such a drop-off-reinitiation event can be alleviated by EF-P that promotes peptidyl transfer of Pro. Moreover, this event takes place both in vitro and in cell, showing that reinitiated peptides during protein synthesis could be accumulated in this pathway in cells.


Asunto(s)
Factor G de Elongación Peptídica , Factores de Elongación de Péptidos , Factor G de Elongación Peptídica/metabolismo , Péptidos/química , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo
17.
Biol Chem ; 404(8-9): 755-767, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37077160

RESUMEN

In each round of translation elongation, the ribosome translocates along the mRNA by precisely one codon. Translocation is promoted by elongation factor G (EF-G) in bacteria (eEF2 in eukaryotes) and entails a number of precisely-timed large-scale structural rearrangements. As a rule, the movements of the ribosome, tRNAs, mRNA and EF-G are orchestrated to maintain the exact codon-wise step size. However, signals in the mRNA, as well as environmental cues, can change the timing and dynamics of the key rearrangements leading to recoding of the mRNA into production of trans-frame peptides from the same mRNA. In this review, we discuss recent advances on the mechanics of translocation and reading frame maintenance. Furthermore, we describe the mechanisms and biological relevance of non-canonical translocation pathways, such as hungry and programmed frameshifting and translational bypassing, and their link to disease and infection.


Asunto(s)
Factor G de Elongación Peptídica , Ribosomas , ARN Mensajero/metabolismo , Factor G de Elongación Peptídica/genética , Ribosomas/genética , Ribosomas/metabolismo , Biosíntesis de Proteínas/genética , Codón/análisis , Codón/metabolismo , Sistemas de Lectura , ARN de Transferencia/genética
18.
RNA ; 27(1): 40-53, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33008838

RESUMEN

A recent crystal structure of a ribosome complex undergoing partial translocation in the absence of elongation factor EF-G showed disruption of codon-anticodon pairing and slippage of the reading frame by -1, directly implicating EF-G in preservation of the translational reading frame. Among mutations identified in a random screen for dominant-lethal mutations of EF-G were a cluster of six that map to the tip of domain IV, which has been shown to contact the codon-anticodon duplex in trapped translocation intermediates. In vitro synthesis of a full-length protein using these mutant EF-Gs revealed dramatically increased -1 frameshifting, providing new evidence for a role for domain IV of EF-G in maintaining the reading frame. These mutations also caused decreased rates of mRNA translocation and rotational movement of the head and body domains of the 30S ribosomal subunit during translocation. Our results are in general agreement with recent findings from Rodnina and coworkers based on in vitro translation of an oligopeptide using EF-Gs containing mutations at two positions in domain IV, who found an inverse correlation between the degree of frameshifting and rates of translocation. Four of our six mutations are substitutions at positions that interact with the translocating tRNA, in each case contacting the RNA backbone of the anticodon loop. We suggest that EF-G helps to preserve the translational reading frame by preventing uncoupled movement of the tRNA through these contacts; a further possibility is that these interactions may stabilize a conformation of the anticodon that favors base-pairing with its codon.


Asunto(s)
Escherichia coli/genética , Sistema de Lectura Ribosómico , Mutación , Extensión de la Cadena Peptídica de Translación , Factor G de Elongación Peptídica/genética , Ribosomas/genética , Anticodón/química , Anticodón/metabolismo , Sitios de Unión , Codón/química , Codón/metabolismo , Escherichia coli/metabolismo , Histidina/genética , Histidina/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , ARN Mensajero , ARN de Transferencia , Sistemas de Lectura , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo
19.
RNA ; 27(9): 981-990, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34117118

RESUMEN

Many antibiotics that bind to the ribosome inhibit translation by blocking the movement of tRNAs and mRNA or interfering with ribosome dynamics, which impairs the formation of essential translocation intermediates. Here we show how translocation inhibitors viomycin (Vio), neomycin (Neo), paromomycin (Par), kanamycin (Kan), spectinomycin (Spc), hygromycin B (HygB), and streptomycin (Str, an antibiotic that does not inhibit tRNA movement), affect principal motions of the small ribosomal subunits (SSU) during EF-G-promoted translocation. Using ensemble kinetics, we studied the SSU body domain rotation and SSU head domain swiveling in real time. We show that although antibiotics binding to the ribosome can favor a particular ribosome conformation in the absence of EF-G, their kinetic effect on the EF-G-induced transition to the rotated/swiveled state of the SSU is moderate. The antibiotics mostly inhibit backward movements of the SSU body and/or the head domains. Vio, Spc, and high concentrations of Neo completely inhibit the backward movements of the SSU body and head domain. Kan, Par, HygB, and low concentrations of Neo slow down both movements, but their sequence and coordination are retained. Finally, Str has very little effect on the backward rotation of the SSU body domain, but retards the SSU head movement. The data underscore the importance of ribosome dynamics for tRNA-mRNA translocation and provide new insights into the mechanism of antibiotic action.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Subunidades Ribosómicas/efectos de los fármacos , Transporte Biológico , Cinamatos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Higromicina B/análogos & derivados , Higromicina B/farmacología , Kanamicina/farmacología , Cinética , Neomicina/farmacología , Paromomicina/farmacología , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN de Transferencia/antagonistas & inhibidores , ARN de Transferencia/química , ARN de Transferencia/genética , Subunidades Ribosómicas/genética , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Espectinomicina/farmacología , Estreptomicina/farmacología , Viomicina/farmacología
20.
J Antimicrob Chemother ; 78(7): 1769-1778, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37253051

RESUMEN

OBJECTIVES: Gentamicin is used in several alternative treatments for gonorrhoea. Verified clinical Neisseria gonorrhoeae isolates with gentamicin resistance are mainly lacking and understanding the mechanisms for gonococcal gentamicin resistance is imperative. We selected gentamicin resistance in gonococci in vitro, identified the novel gentamicin-resistance mutations, and examined the biofitness of a high-level gentamicin-resistant mutant. METHODS: Low- and high-level gentamicin resistance was selected in WHO X (gentamicin MIC = 4 mg/L) on gentamicin-gradient agar plates. Selected mutants were whole-genome sequenced. Potential gentamicin-resistance fusA mutations were transformed into WT strains to verify their impact on gentamicin MICs. The biofitness of high-level gentamicin-resistant mutants was examined using a competitive assay in a hollow-fibre infection model. RESULTS: WHO X mutants with gentamicin MICs of up to 128 mg/L were selected. Primarily selected fusA mutations were further investigated, and fusAR635L and fusAM520I + R635L were particularly interesting. Different mutations in fusA and ubiM were found in low-level gentamicin-resistant mutants, while fusAM520I was associated with high-level gentamicin resistance. Protein structure predictions showed that fusAM520I is located in domain IV of the elongation factor-G (EF-G). The high-level gentamicin-resistant WHO X mutant was outcompeted by the gentamicin-susceptible WHO X parental strain, suggesting lower biofitness. CONCLUSIONS: We describe the first high-level gentamicin-resistant gonococcal isolate (MIC = 128 mg/L), which was selected in vitro through experimental evolution. The most substantial increases of the gentamicin MICs were caused by mutations in fusA (G1560A and G1904T encoding EF-G M520I and R635L, respectively) and ubiM (D186N). The high-level gentamicin-resistant N. gonorrhoeae mutant showed impaired biofitness.


Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Gentamicinas/farmacología , Factor G de Elongación Peptídica , Gonorrea/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda