Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 183(3): 717-729.e16, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33031746

RESUMEN

The respiratory and intestinal tracts are exposed to physical and biological hazards accompanying the intake of air and food. Likewise, the vasculature is threatened by inflammation and trauma. Mucin glycoproteins and the related von Willebrand factor guard the vulnerable cell layers in these diverse systems. Colon mucins additionally house and feed the gut microbiome. Here, we present an integrated structural analysis of the intestinal mucin MUC2. Our findings reveal the shared mechanism by which complex macromolecules responsible for blood clotting, mucociliary clearance, and the intestinal mucosal barrier form protective polymers and hydrogels. Specifically, cryo-electron microscopy and crystal structures show how disulfide-rich bridges and pH-tunable interfaces control successive assembly steps in the endoplasmic reticulum and Golgi apparatus. Remarkably, a densely O-glycosylated mucin domain performs an organizational role in MUC2. The mucin assembly mechanism and its adaptation for hemostasis provide the foundation for rational manipulation of barrier function and coagulation.


Asunto(s)
Biopolímeros/metabolismo , Mucinas/metabolismo , Factor de von Willebrand/metabolismo , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , Disulfuros/metabolismo , Femenino , Glicosilación , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL , Modelos Moleculares , Mucinas/química , Mucinas/ultraestructura , Péptidos/química , Dominios Proteicos , Multimerización de Proteína , Factor de von Willebrand/química , Factor de von Willebrand/ultraestructura
2.
Blood ; 126(8): 935-8, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26065652

RESUMEN

Association with the D'D3 domain of von Willebrand factor (VWF) stabilizes factor VIII (FVIII) in the circulation and maintains it at a level sufficient to prevent spontaneous bleeding. We used negative-stain electron microscopy (EM) to visualize complexes of FVIII with dimeric and monomeric forms of the D'D3 domain. The EM averages show that FVIII interacts with the D'D3 domain primarily through its C1 domain, with the C2 domain providing a secondary attachment site. Hydrogen-deuterium exchange mass spectrometry corroborated the importance of the C1 domain in D'D3 binding and implicates additional surface regions on FVIII in the interaction. Together, our results establish that the C1 domain is the major binding site on FVIII for VWF, reiterate the importance of the a3 acidic peptide in VWF binding, and suggest that the A3 and C2 domains play ancillary roles in this interaction.


Asunto(s)
Factor VIII/química , Factor VIII/metabolismo , Factor de von Willebrand/química , Factor de von Willebrand/metabolismo , Sitios de Unión , Factor VIII/ultraestructura , Células HEK293 , Humanos , Espectrometría de Masas , Microscopía Electrónica , Estructura Terciaria de Proteína , Factor de von Willebrand/ultraestructura
3.
Blood ; 123(12): 1785-93, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24394662

RESUMEN

The C-terminal cystine knot (CK) (CTCK) domain in von Willebrand factor (VWF) mediates dimerization of proVWF in the endoplasmic reticulum and is essential for long multimers required for hemostatic function. The CTCK dimer crystal structure reveals highly elongated monomers with 2 ß-ribbons and 4 intra-chain disulfides, including 3 in the CK. Dimerization buries an extensive interface of 1500 Å(2) corresponding to 32% of the surface of each monomer and forms a super ß-sheet and 3 inter-chain disulfides. The shape, dimensions, and N-terminal connections of the crystal structure agree perfectly with previous electron microscopic images of VWF dimeric bouquets with the CTCK dimer forming a down-curved base. The dimer interface is suited to resist hydrodynamic force and disulfide reduction. CKs in each monomer flank the 3 inter-chain disulfides, and their presence in ß-structures with dense backbone hydrogen bonds creates a rigid, highly crosslinked interface. The structure reveals the basis for von Willebrand disease phenotypes and the fold and disulfide linkages for CTCK domains in diverse protein families involved in barrier function, eye and inner ear development, insect coagulation and innate immunity, axon guidance, and signaling in extracellular matrices.


Asunto(s)
Factor de von Willebrand/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/ultraestructura , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido , Factor de von Willebrand/genética , Factor de von Willebrand/ultraestructura
4.
Anal Chem ; 87(20): 10299-305, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26369694

RESUMEN

Vital functions of mammals are only possible due to the behavior of blood to coagulate most efficiently in vessels with particularly high wall shear rates. This is caused by the functional changes of the von Willebrand Factor (VWF), which mediates coagulation of blood platelets (primary hemostasis) especially when it is stretched under shear stress. Our data show that shear stretching also affects other functions of VWF: Using a customized device to simulate shear conditions and to conserve the VWF molecules in their unstable, elongated conformation, we visualize at single molecule level by AFM that VWF is preferentially cleaved by the protease ADAMTS13 at higher shear rates. In contrast to this high shear-rate-selective behavior, VWF binds FVIII more effectively only below a critical shear rate of ∼30.000 s(-1), indicating that under harsh shear conditions FVIII is released from its carrier protein. This may be required to facilitate delivery of FVIII locally to promote secondary hemostasis.


Asunto(s)
Proteínas ADAM/química , Factor VIII/química , Microscopía de Fuerza Atómica , Factor de von Willebrand/química , Proteínas ADAM/metabolismo , Proteínas ADAM/ultraestructura , Proteína ADAMTS13 , Factor VIII/metabolismo , Factor VIII/ultraestructura , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Factor de von Willebrand/metabolismo , Factor de von Willebrand/ultraestructura
5.
Blood ; 120(2): 449-58, 2012 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-22490677

RESUMEN

In the present study, we re-annotated von Willebrand factor (VWF), assigned its entire sequence to specific modules, and related these modules to structure using electron microscopy (EM). The D domains are assemblies of smaller modules visible as lobes in EM. Modules in the D-domain assemblies include von Willebrand D, 8-cysteine, trypsin inhibitor-like, E or fibronectin type 1-like domains, and a unique D4N module in D4. The D1-D2 prodomain shows 2 large connected assemblies, each containing smaller lobes. The previous B and C regions of VWF are re-annotated as 6 tandem von Willebrand C (VWC) and VWC-like domains. These 6 VWC domains correspond to 6 elongated domains that associate in pairs at acidic pH in the stem region of VWF dimeric bouquets. This correspondence is demonstrated by binding of integrin α(IIb)ß(3) to the fourth module seen in EM, VWC4, which bears the VWF Arg-Gly-Asp motif. The C-terminal cystine knot domain dimerizes end-to-end in a manner predicted by homology to TGF-ß and orients approximately perpendicular to the VWC domains in dimeric bouquets. Homologies of domains in VWF to domains in other proteins allow many disulfide bonds to be tentatively assigned, which may have functional implications.


Asunto(s)
Factor de von Willebrand/química , Factor de von Willebrand/genética , Secuencia de Aminoácidos , Sitios de Unión , Dimerización , Humanos , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido , Factor de von Willebrand/ultraestructura
6.
Colorectal Dis ; 14(12): 1500-6, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22507880

RESUMEN

AIM: Elevated levels of von Willebrand factor (VWF) are often observed in many diseases including colorectal cancer, but this finding is not definite. The aim of our study was to examine the change in VWF multimer distribution in patients with colorectal cancer. METHOD: We randomly selected nine patients from each of the four Union for International Cancer Control (UICC) stages of colon cancer. VWF antigen (VWF:Ag), VWF-cleaving protease ADAMTS-13 level and factor VIII activity (FVIII:C) were determined. The multimer distribution of VWF was visualized using electrophoretic multimer analysis. RESULTS: The VWF multimer structure was normal with no difference between the four UICC stages. There was no significant increase in VWF:Ag and FVIII:C levels in the more advanced UICC stages. There was no significant difference in the ADAMTS-13 level according to the UICC stage. CONCLUSION: There was no change in the VWF multimer distribution to indicate acquired von Willebrand disease.


Asunto(s)
Carcinoma/sangre , Carcinoma/patología , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/patología , Factor de von Willebrand/metabolismo , Factor de von Willebrand/ultraestructura , Sistema del Grupo Sanguíneo ABO , Proteínas ADAM/sangre , Proteína ADAMTS13 , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Factor VIII/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Multimerización de Proteína , Factor de von Willebrand/inmunología
7.
J Mol Biol ; 432(2): 305-323, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31628947

RESUMEN

Von Willebrand factor (VWF), an exceptionally large multimeric plasma glycoprotein, functions to initiate coagulation by agglutinating platelets in the blood stream to sites of vascular injury. This primary hemostatic function is perturbed in type 2 dysfunctional subtypes of von Willebrand disease (VWD) by mutations that alter the structure and function of the platelet GPIbα adhesive VWF A1 domains. The resulting amino acid substitutions cause local disorder and misfold the native structure of the isolated platelet GPIbα-adhesive A1 domain of VWF in both gain-of-function (type 2B) and loss-of-function (type 2M) phenotypes. These structural effects have not been explicitly observed in A1 domains of VWF multimers native to blood plasma. New mass spectrometry strategies are applied to resolve the structural effects of 2B and 2M mutations in VWF to verify the presence of A1 domain structural disorder in multimeric VWF harboring type 2 VWD mutations. Limited trypsinolysis mass spectrometry (LTMS) and hydrogen-deuterium exchange mass spectrometry (HXMS) are applied to wild-type and VWD variants of the single A1, A2, and A3 domains, an A1A2A3 tridomain fragment of VWF, plasmin-cleaved dimers of VWF, multimeric recombinant VWF, and normal VWF plasma concentrates. Comparatively, these methods show that mutations known to misfold the isolated A1 domain increase the rate of trypsinolysis and the extent of hydrogen-deuterium exchange in local secondary structures of A1 within multimeric VWF. VWD mutation effects are localized to the A1 domain without appreciably affecting the structure and dynamics of other VWF domains. The intrinsic dynamics of A1 observed in recombinant fragments of VWF are conserved in plasma-derived VWF. These studies reveal that structural disorder does occur in VWD variants of the A1 domain within multimeric VWF and provides strong support for VWF misfolding as a result of some, but not all, type 2 VWD variants.


Asunto(s)
Estructura Secundaria de Proteína/genética , Deficiencias en la Proteostasis/genética , Enfermedad de von Willebrand Tipo 2/genética , Factor de von Willebrand/genética , Sustitución de Aminoácidos , Plaquetas/química , Plaquetas/metabolismo , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Mutación con Pérdida de Función/genética , Espectrometría de Masas , Dominios Proteicos/genética , Pliegue de Proteína , Multimerización de Proteína/genética , Deficiencias en la Proteostasis/sangre , Deficiencias en la Proteostasis/patología , Enfermedad de von Willebrand Tipo 2/sangre , Enfermedad de von Willebrand Tipo 2/patología , Factor de von Willebrand/química , Factor de von Willebrand/ultraestructura
8.
J Cell Biol ; 115(1): 209-21, 1991 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-1918137

RESUMEN

Extracellular matrix molecules are generally categorized as collagens, elastin, proteoglycans, or other noncollagenous structural/cell interaction proteins. Many of these extracellular proteins contain distinctive repetitive modules, which can sometimes be found in other proteins. We describe the complete primary structure of an alpha 1 chain of type XII collagen from chick embryonic fibroblasts. This large, structurally chimeric molecule identified by cDNA analysis combines previously unrelated molecular domains into a single large protein 3,124 residues long (approximately 340 kD). The deduced chicken type XII collagen sequence starts at the amino terminus with one unit of the type III motif of fibronectin, which is followed by one unit homologous to the von Willebrand factor A domain, then one more fibronectin type III module, a second A domain from von Willebrand factor, 6 units of type III motif and a third A domain, 10 consecutive units of type III motif and a fourth A domain, a domain homologous to the NC4 domain peptide of type IX collagen, and finally two short collagenous regions previously described as part of the partially sequenced collagen type XII molecule; an Arg-Gly-Asp potential cell adhesive recognition sequence is present in a hydrophilic region at the terminus of one collagenous domain. Antibodies raised to type XII collagen synthesized in a bacterial expression system recognized not only previously reported bands (220 kD et cetera) in tendons, but also bands with apparently different molecular sizes in fibroblasts and 4-d embryos. The antibodies stained a wide variety of extracellular matrices in embryos in patterns distinct from those of fibronectin or interstitial collagens. They prominently stained extracellular matrix associated with certain neuronal tissues, such as axons from dorsal root ganglia and neural tube. These studies identify a novel chimeric type of molecule that contains both adhesion molecule and collagen motifs in one protein. Its structure blurs current classification schemes for extracellular proteins and underscores the potentially large diversity possible in these molecules.


Asunto(s)
Colágeno/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Adhesión Celular , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/ultraestructura , Embrión de Pollo , Clonación Molecular , Colágeno/genética , Colágeno/metabolismo , Colágeno/ultraestructura , ADN/genética , Fibronectinas/química , Fibronectinas/ultraestructura , Datos de Secuencia Molecular , Oligonucleótidos/química , Oligopéptidos , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/inmunología , Alineación de Secuencia , Distribución Tisular , Factor de von Willebrand/química , Factor de von Willebrand/ultraestructura
9.
Nat Commun ; 10(1): 3781, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31439947

RESUMEN

Platelet recruitment to sites of blood vessel damage is highly dependent upon von Willebrand factor (VWF). VWF platelet-tethering function is proteolytically regulated by the metalloprotease ADAMTS13. Proteolysis depends upon shear-induced conformational changes in VWF that reveal the A2 domain cleavage site. Multiple ADAMTS13 exosite interactions are involved in recognition of the unfolded A2 domain. Here we report through kinetic analyses that, in binding VWF, the ADAMTS13 cysteine-rich and spacer domain exosites bring enzyme and substrate into proximity. Thereafter, binding of the ADAMTS13 disintegrin-like domain exosite to VWF allosterically activates the adjacent metalloprotease domain to facilitate proteolysis. The crystal structure of the ADAMTS13 metalloprotease to spacer domains reveals that the metalloprotease domain exhibits a latent conformation in which the active-site cleft is occluded supporting the requirement for an allosteric change to enable accommodation of the substrate. Our data demonstrate that VWF functions as both the activating cofactor and substrate for ADAMTS13.


Asunto(s)
Proteína ADAMTS13/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Factor de von Willebrand/metabolismo , Proteína ADAMTS13/ultraestructura , Regulación Alostérica/fisiología , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica/fisiología , Proteolisis , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Especificidad por Sustrato , Factor de von Willebrand/ultraestructura
10.
PLoS One ; 14(1): e0210963, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30645640

RESUMEN

The formation of hemostatic plugs at sites of vascular injury crucially involves the multimeric glycoprotein von Willebrand factor (VWF). VWF multimers are linear chains of N-terminally linked dimers. The latter are formed from monomers via formation of the C-terminal disulfide bonds Cys2771-Cys2773', Cys2773-Cys2771', and Cys2811-Cys2811'. Mutations in VWF that impair multimerization can lead to subtype 2A of the bleeding disorder von Willebrand Disease (VWD). Commonly, the multimer size distribution of VWF is assessed by electrophoretic multimer analysis. Here, we present atomic force microscopy (AFM) imaging as a method to determine the size distribution of VWF variants by direct visualization at the single-molecule level. We first validated our approach by investigating recombinant wildtype VWF and a previously studied mutant (p.Cys1099Tyr) that impairs N-terminal multimerization. We obtained excellent quantitative agreement with results from earlier studies and with electrophoretic multimer analysis. We then imaged specific mutants that are known to exhibit disturbed C-terminal dimerization. For the mutants p.Cys2771Arg and p.Cys2773Arg, we found the majority of monomers (87 ± 5% and 73 ± 4%, respectively) not to be C-terminally dimerized. While these results confirm that Cys2771 and Cys2773 are crucial for dimerization, they additionally provide quantitative information on the mutants' different abilities to form alternative C-terminal disulfides for residual dimerization. We further mutated Cys2811 to Ala and found that only 23 ± 3% of monomers are not C-terminally dimerized, indicating that Cys2811 is structurally less important for dimerization. Furthermore, for mutants p.Cys2771Arg, p.Cys2773Arg, and p.Cys2811Ala we found 'even-numbered' non-native multimers, i.e. multimers with monomers attached on both termini; a multimer species that cannot be distinguished from native multimers by conventional multimer analysis. Summarizing, we demonstrate that AFM imaging can provide unique insights into VWF processing defects at the single-molecule level that cannot be gained from established methods of multimer analysis.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Imagen Individual de Molécula/métodos , Factor de von Willebrand/química , Factor de von Willebrand/ultraestructura , Sustitución de Aminoácidos , Cisteína/química , Dimerización , Células HEK293 , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/ultraestructura , Mutación Missense , Tamaño de la Partícula , Multimerización de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestructura , Enfermedades de von Willebrand/sangre , Enfermedades de von Willebrand/genética , Factor de von Willebrand/genética
11.
Biochem Biophys Res Commun ; 369(2): 507-12, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18298947

RESUMEN

The crucial role of the biopolymer "Von Willebrand factor" (VWF) in blood platelet binding is tightly regulated by the shear forces to which the protein is exposed in the blood flow. Under high-shear conditions, VWFs ability to immobilize blood platelets is strongly increased due to a change in conformation which at sufficient concentration is accompanied by the formation of ultra large VWF bundles (ULVWF). However, little is known about the dynamic and mechanical properties of such bundles. Combining a surface acoustic wave (SAW) based microfluidic reactor with an atomic force microscope (AFM) we were able to study the relaxation of stretched VWF bundles formed by hydrodynamic stress. We found that the dynamical response of the network is well characterized by stretched exponentials, indicating that the relaxation process proceeds through hopping events between a multitude of minima. This finding is in accordance with current ideas of VWF self-association. The longest relaxation time does not show a clear dependence on the length of the bundle, and is dominated by the internal conformations and effective friction within the bundle.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Microscopía de Fuerza Atómica/métodos , Modelos Químicos , Modelos Moleculares , Factor de von Willebrand/química , Factor de von Willebrand/ultraestructura , Simulación por Computador , Elasticidad , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Conformación Proteica , Estrés Mecánico
12.
J Clin Invest ; 87(4): 1220-6, 1991 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-2010538

RESUMEN

Many variants of von Willebrand disease (vWD) with qualitatively abnormal von Willebrand factor (vWF) are recognized. In vWD type IIB, the abnormal protein displays enhanced affinity for a platelet vWF receptor, the glycoprotein Ib-IX complex. 14 patients from 7 unrelated families with vWD type IIB were studied to determine the molecular basis for this phenotype. Specific oligonucleotide primers were used to amplify portions of vWF exon 28 encoding a domain that interacts with the platelet glycoprotein Ib-IX complex. Candidate missense mutations were identified for all 14 patients by DNA sequencing, allele specific oligonucleotide hybridization, and restriction endonuclease digestion. These sequence changes occur in an 11 amino acid segment within a single disulfide loop bounded by Cys(509) and Cys(695). All of these sequence changes are C----T transitions within CG dinucleotides. Six patients from two unrelated families were heterozygous for the encoded sequence Arg(543)----Trp. Seven patients from four unrelated families were heterozygous for the encoded sequence Arg(545)----Cys; this sequence change appears to have occurred independently three times, once as a new spontaneous mutation. One patient with apparently sporadic vWD type IIB was heterozygous for the encoded sequence Val(553)----Met, and this appears to be a new mutation. None of these sequence changes was found in 100 normal alleles. These findings suggest that vWD type IIB may be caused by relatively few distinct mutations, that these mutations may cluster within a specific region of one disulfide loop in vWF domain A1, and that this region can modulate the affinity of vWF for the platelet glycoprotein Ib-IX complex.


Asunto(s)
Enfermedades de von Willebrand/genética , Factor de von Willebrand/genética , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Disulfuros , Genes Dominantes , Humanos , Datos de Secuencia Molecular , Mutación , Oligonucleótidos/química , Glicoproteínas de Membrana Plaquetaria/metabolismo , Reacción en Cadena de la Polimerasa , Unión Proteica , Factor de von Willebrand/química , Factor de von Willebrand/ultraestructura
13.
Thromb Res ; 119(6): 731-40, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17010412

RESUMEN

Adsorption of plasma proteins such as von Willebrand factor (vWF) on thrombogenic surfaces can induce conformational changes in tertiary structure so that the prothrombotic functional epitopes are exposed for interactions with platelets, resulting in platelet adhesion and thrombus formation. Thus, understanding platelet binding following changes in the structure of vWF is critical in understanding the mechanisms of thrombogenesis. The present study examined the accessibility of platelet binding epitopes within vWF adsorbed on two different thrombogenic surfaces, a hydrophobic synthetic surface and collagen VI coated substrates, under physiological buffer conditions using atomic force microscopy (AFM) in combination with immunogold labeling. Our results demonstrated that the glycoprotein Ib (GPIb) binding domain in vWF undergoes changes when adsorbed on collagen VI compared to vWF on a hydrophobic synthetic surface. This study provides a basis for a novel approach to understand the molecular mechanisms of surface-induced thrombosis by directly examining the structure-function relationships of plasma proteins involved in the thrombus formation.


Asunto(s)
Plaquetas/metabolismo , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo , Adsorción , Sitios de Unión , Colágeno Tipo VI/química , Epítopos , Humanos , Inmunohistoquímica , Microscopía de Fuerza Atómica , Estructura Terciaria de Proteína , Silanos/química , Relación Estructura-Actividad , Propiedades de Superficie , Trombosis/etiología , Factor de von Willebrand/inmunología , Factor de von Willebrand/ultraestructura
15.
J Atheroscler Thromb ; 22(10): 1091-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25972025

RESUMEN

AIM: von Willebrand factor (VWF) plays an important role in the regulation of hemostasis and thrombosis formation, particularly under a high shear rate. However, the adhesive force due to the molecular interaction between VWF and glycoprotein Ibα (GPIbα) has not been fully explored. Thus, we employed atomic force microscopy to directly measure the adhesive force between VWF and GPIbα. METHODS: We measured the adhesive force between VWF and GPIbα at the molecular level using an atomic force microscope (AFM). An AFM cantilever was coated with recombinant N-terminus VWF binding site of GPIbα, whereas a cover glass was coated with native VWF. RESULTS: The adhesive force at the molecular level was measured using an AFM. In the presence of 1 µg/mL VWF, the adhesion force was nearly 200 pN. As per the Gaussian fit analysis, the adhesive force of a single bond could have been 54 or 107 pN. CONCLUSION: Our consideration with the Gaussian fit analysis proposed that the adhesive force of a single bond could be 54 pN, which is very close to that obtained by optical tweezers (50 pN).


Asunto(s)
Plaquetas/metabolismo , Hemostasis/fisiología , Microscopía de Fuerza Atómica/métodos , Complejo GPIb-IX de Glicoproteína Plaquetaria/química , Trombosis/sangre , Factor de von Willebrand/química , Plaquetas/ultraestructura , Humanos , Estructura Molecular , Complejo GPIb-IX de Glicoproteína Plaquetaria/ultraestructura , Trombosis/diagnóstico , Factor de von Willebrand/ultraestructura
16.
J Thromb Haemost ; 13(9): 1699-708, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26178390

RESUMEN

BACKGROUND: Under severe stenotic conditions, von Willebrand factor (VWF) multimerizes into large insoluble fibers at pathological shear rates. OBJECTIVE: Evaluate the mechanics and biology of VWF fibers without the confounding effects of endothelium or collagen. METHODS: Within a micropost-impingement microfluidic device, > 100-µm long VWF fibers multimerized on the post within 10 min using EDTA-treated platelet-free plasma (PFP) perfused at wall shear rates > 5000 s(-1) . RESULTS: von Willebrand factor fiber thickness increased to > 10 µm as a result of increasing the shear rate to 10,000 s(-1) . In a stress-strain test, fibrous VWF had an elastic modulus of ~50 MPa. The insoluble VWF fibers were non-amyloid because they rapidly dissolved in trypsin, plasmin or 2% SDS, but were resistant to 50 nm ADAMTS13 or 100 nm tissue plasminogen activator in plasma. Following fiber formation, perfusion of low corn trypsin inhibitor (CTI)-treated (4 µg mL(-1) ), recalcified citrated plasma at 1500 s(-1) caused fibrin formation on the VWF fibers, a result not observed with purified type 1 collagen or a naked micropost. During VWF fiber formation, contact pathway factors accumulated on VWF because the use of EDTA/D-Phe-Pro-Arg chloromethylketone (PPACK)/apixaban/high CTI-treated PFP during VWF fiber formation prevented the subsequent fibrin production from low-CTI, recalcified citrated PFP. VWF fibers displayed FXIIa-immunostaining. When PPACK-inhibited whole blood was perfused over VWF fibers, platelets rolled and arrested on the surface of VWF, but only displayed P-selectin if prevailing shear rates were pathological. Platelet arrest on VWF fibers was blocked with αIIb ß3 antagonist GR144053. CONCLUSIONS: We report VWF fiber-contact pathway crosstalk and mechanisms of thrombolytic resistance in hemodynamic settings of myocardial infarction.


Asunto(s)
Proteínas ADAM/farmacología , Coagulación Sanguínea/efectos de los fármacos , Hemorreología , Activación Plaquetaria/efectos de los fármacos , Activador de Tejido Plasminógeno/farmacología , Factor de von Willebrand/química , Proteína ADAMTS13 , Biopolímeros , Módulo de Elasticidad , Fibrinolisina/farmacología , Humanos , Técnicas In Vitro , Dispositivos Laboratorio en un Chip , Selectina-P/sangre , Piperazinas/farmacología , Piperidinas/farmacología , Adhesividad Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/antagonistas & inhibidores , Subunidades de Proteína , Solubilidad , Factor de von Willebrand/fisiología , Factor de von Willebrand/ultraestructura
17.
Methods Enzymol ; 169: 326-35, 1989.
Artículo en Inglés | MEDLINE | ID: mdl-2785632

RESUMEN

Application of these methods to a number of macromolecular species shows, in general, that features which are only occasionally or marginally detected in bright field may be visualized clearly and consistently through the use of dark-field illumination. Given the minimal average thicknesses of contrasting metal required for dark-field examination (ca. less than 10(-7) g/cm2, or less than 0.4 nm thickness), distortions of molecular features by accumulation of coating metal, although not avoided altogether, are certainly minimized. Thus, application of minimal metal coating in conjunction with high-resolution dark-field electron microscopy should facilitate solution of structural problems in molecular biochemistry generally. The method is of particular current interest in the specific area of coagulation and adhesive protein conformation. The advantages of metal coating macromolecules for dark-field observation are summarized in Table I. In the case of macromolecules or macromolecular complexes which are of limited width (5 nm or less) even though extended lengthwise, contrast available for visibility tends to be limiting. It is for such structures that dark field offers a productive alternative. The dark-field method seems promising for study of certain macromolecular preparations of adhesive proteins vis-à-vis isolation of receptor loci. These include the complex between fibrinogen and GPIIb/IIIa; the complex between GPIb and von Willebrand protein, and the proposed complex between thrombospondin and fibrinogen. The use, for relating epitopic sites to topographical position, of Fab fragments directed against specific epitopes on coagulation macromolecules (and/or their complexes) of otherwise well-defined structure may also be extended by means of the dark-field approach.


Asunto(s)
Fibrinógeno/ultraestructura , Glicoproteínas/ultraestructura , Adhesividad Plaquetaria , Factor de von Willebrand/ultraestructura , Humanos , Indicadores y Reactivos , Sustancias Macromoleculares , Microscopía Electrónica/métodos , Trombospondinas , Tungsteno
18.
Braz J Med Biol Res ; 28(8): 853-7, 1995 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8555986

RESUMEN

We evaluated the correlation between decreased biological activity and abnormalities in the multimeric structure of plasma von Willebrand factor (vWF) in 27 pulmonary hypertensive patients (median age, 21 years). The biological activity of vWF was measured by the ristocetin cofactor assay and its multimeric structure was assessed by Western immunoblotting after SDS-agarose gel electrophoresis. In spite of high antigenic activity of vWF in plasma (139 +/- 65 vs 91 +/- 27% in controls, P = 0.003), the biological activity expressed as a percent of the control value was decreased in pulmonary hypertensive patients (60-88% activity, 95% CI for the mean). High molecular weight multimers (biologically active forms) were absent in patients and there was a significant increase in the concentration of low molecular weight polymers in comparison with normals (56 +/- 12 and 35 +/- 12% of total multimer density, respectively, P < 0.001). Multimeric abnormalities were positively correlated with plasma vWF levels (r = 0.51, P = 0.007) and negatively correlated with vWF biological activity (r = -0.54, P = 0.004). Thus, decreased biological function is related to abnormalities in the multimeric structure of vWF, possibly reflecting extensive endothelial dysfunction in pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar/inmunología , Factor de von Willebrand/fisiología , Adulto , Humanos , Factor de von Willebrand/ultraestructura
19.
Thromb Haemost ; 104(3): 523-30, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20589314

RESUMEN

Human plasma protein von Willebrand factor (VWF) is composed of a series of multimers with molecular weights ranging from 600 to 20,000 kDa or even more. Plasma-derived VWF (pdVWF) and recombinant VWF (rVWF) differ in that the ultra-large molecular weight multimer portion present in rVWF is usually missing in pdVWF due to partial cleavage of VWF by the plasma protease ADAMTS13. Here, tapping mode atomic force microscopy (TM-AFM) was used to visualise the shape and size of rVWF and pdVWF. The morphology of the variants of VWF was comparable, containing both globular and stretched domains. Mean chain lengths of the filaments and diameters of the core globular domains were determined and analysed on a statistical basis. About 72% of the pdVWF molecules and 70% of the rVWF molecules were 100-300 nm long. The portion of very long molecules (>300 nm) was only slightly greater in rVWF than in pdVWF (20% vs. 18%). The diameters of the globular core structures were in the range of 12 to 30 nm for both types of VWF. Inspection of a purified rVWF dimer revealed a similar range for the globular domain (14-32 nm). Finally, we demonstrate a dramatic conformational change for rVWF upon exposure to high shear stress, as has been reported for pdVWF. Our TM-AFM data show that the overall structure of rVWF is similar to that of pdVWF and that rVWF will extend its conformation under shear stress, which is required to exert its function in primary haemostasis.


Asunto(s)
Microscopía de Fuerza Atómica , Factor de von Willebrand/ultraestructura , Electroforesis en Gel de Agar , Humanos , Peso Molecular , Tamaño de la Partícula , Conformación Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/ultraestructura , Estrés Mecánico , Relación Estructura-Actividad , Factor de von Willebrand/aislamiento & purificación
20.
Blood ; 107(5): 1943-50, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16293606

RESUMEN

The metalloproteinase ADAMTS13 regulates the size of released von Willebrand factor (VWF) multimers bound to endothelial cells, but it is unknown whether it can cleave plasma VWF during thrombogenesis. To address this issue, we perfused blood over immobilized VWF and used videomicroscopy to visualize an activation-independent platelet aggregation process mediated by soluble VWF at shear rates greater than 10 000 s(-1). At normal Ca2+ concentration, platelets formed rolling as well as surface-attached clusters that grew larger during the first 5 minutes but then lost more than 70% of their mass by 10 minutes. In contrast, platelet clusters were stable in size when metal ions were chelated, anti-ADAMTS13 IgG were added, or washed blood cells were perfused with purified VWF but no plasma. In the latter case, addition of recombinant ADAMTS13 reduced platelet cluster size by more than 70%. Incubating ADAMTS13 with VWF before perfusion did not prevent the initial platelet clustering, indicating that the enzyme may act on platelet-bound VWF under shear stress. At the concentrations tested, ADAMTS13 had no effect on platelet aggregates formed upon blood perfusion over collagen fibrils. ADAMTS13, therefore, may regulate thrombus size preferentially when the cohesion between platelets depends on VWF binding induced by pathologically elevated shear stress.


Asunto(s)
Proteínas ADAM/metabolismo , Plaquetas/metabolismo , Agregación Plaquetaria , Trombosis/metabolismo , Factor de von Willebrand/metabolismo , Proteína ADAMTS13 , Calcio/metabolismo , Calcio/farmacología , Humanos , Inmunoglobulina G/farmacología , Agregación Plaquetaria/efectos de los fármacos , Estrés Mecánico , Factores de Tiempo , Factor de von Willebrand/ultraestructura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda