Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Nature ; 625(7994): 352-359, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992756

RESUMEN

It was recently shown that bacteria use, apart from CRISPR-Cas and restriction systems, a considerable diversity of phage resistance systems1-4, but it is largely unknown how phages cope with this multilayered bacterial immunity. Here we analysed groups of closely related Bacillus phages that showed differential sensitivity to bacterial defence systems, and discovered four distinct families of anti-defence proteins that inhibit the Gabija, Thoeris and Hachiman systems. We show that these proteins Gad1, Gad2, Tad2 and Had1 efficiently cancel the defensive activity when co-expressed with the respective defence system or introduced into phage genomes. Homologues of these anti-defence proteins are found in hundreds of phages that infect taxonomically diverse bacterial species. We show that the anti-Gabija protein Gad1 blocks the ability of the Gabija defence complex to cleave phage-derived DNA. Our data further reveal that the anti-Thoeris protein Tad2 is a 'sponge' that sequesters the immune signalling molecules produced by Thoeris TIR-domain proteins in response to phage infection. Our results demonstrate that phages encode an arsenal of anti-defence proteins that can disable a variety of bacterial defence mechanisms.


Asunto(s)
Fagos de Bacillus , Bacterias , Proteínas Virales , Fagos de Bacillus/clasificación , Fagos de Bacillus/genética , Fagos de Bacillus/inmunología , Fagos de Bacillus/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/inmunología , Bacterias/virología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
Mol Cell ; 74(1): 59-72.e3, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30745087

RESUMEN

Bacillus phages use a communication system, termed "arbitrium," to coordinate lysis-lysogeny decisions. Arbitrium communication is mediated by the production and secretion of a hexapeptide (AimP) during lytic cycle. Once internalized, AimP reduces the expression of the negative regulator of lysogeny, AimX, by binding to the transcription factor, AimR, promoting lysogeny. We have elucidated the crystal structures of AimR from the Bacillus subtilis SPbeta phage in its apo form, bound to its DNA operator and in complex with AimP. AimR presents intrinsic plasticity, sharing structural features with the RRNPP quorum-sensing family. Remarkably, AimR binds to an unusual operator with a long spacer that interacts nonspecifically with the receptor TPR domain, while the HTH domain canonically recognizes two inverted repeats. AimP stabilizes a compact conformation of AimR that approximates the DNA-recognition helices, preventing AimR binding to the aimX promoter region. Our results establish the molecular basis of the arbitrium communication system.


Asunto(s)
Fagos de Bacillus/metabolismo , Lisogenia , Proteínas Virales/metabolismo , Fagos de Bacillus/genética , Bacillus subtilis/virología , ADN/metabolismo , Regulación Viral de la Expresión Génica , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Transducción de Señal , Relación Estructura-Actividad , Proteínas Virales/química , Proteínas Virales/genética
4.
J Virol ; 98(9): e0074524, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39177355

RESUMEN

In tailed phages, the baseplate is the macromolecular structure located at the tail distal part, which is directly implicated in host recognition and cell wall penetration. In myophages (i.e., with contractile tails), the baseplate is complex and comprises a central puncturing device and baseplate wedges connecting the hub to the receptor-binding proteins (RBPs). In this work, we investigated the structures and functions of adsorption-associated tail proteins of Deep-Blue and Vp4, two Herelleviridae phages infecting members of the Bacillus cereus group. Their interest resides in their different host spectrum despite a high degree of similarity. Analysis of their tail module revealed that the gene order is similar to that of the Listeria phage A511. Among their tail proteins, Gp185 (Deep-Blue) and Gp112 (Vp4) had no structural homolog, but the C-terminal variable parts of these proteins were able to bind B. cereus strains, confirming their implication in the phage adsorption. Interestingly, Vp4 and Deep-Blue adsorption to their hosts was also shown to require polysaccharides, which are likely to be bound by the arsenal of carbohydrate-binding modules (CBMs) of these phages' baseplates, suggesting that the adsorption does not rely solely on the RBPs. In particular, the BW Gp119 (Vp4), harboring a CBM fold, was shown to effectively bind to bacterial cells. Finally, we also showed that the putative baseplate hub proteins (i.e., Deep-Blue Gp189 and Vp4 Gp110) have a bacteriolytic activity against B. cereus strains, which supports their role as ectolysins locally degrading the peptidoglycan to facilitate genome injection. IMPORTANCE: The Bacillus cereus group comprises closely related species, including some with pathogenic potential (e.g., Bacillus anthracis and Bacillus cytotoxicus). Their toxins represent the most frequently reported cause of food poisoning outbreaks at the European level. Bacteriophage research is undergoing a remarkable renaissance for its potential in the biocontrol and detection of such pathogens. As the primary site of phage-bacteria interactions and a prerequisite for successful phage infection, adsorption is a crucial process that needs further investigation. The current knowledge about B. cereus phage adsorption is currently limited to siphoviruses and tectiviruses. Here, we present the first insights into the adsorption process of Herelleviridae Vp4 and Deep-Blue myophages preying on B. cereus hosts, highlighting the importance of polysaccharide moieties in this process and confirming the binding to the host surface of Deep-Blue Gp185 and Vp4 Gp112 receptor-binding proteins and Gp119 baseplate wedge.


Asunto(s)
Fagos de Bacillus , Bacillus cereus , Bacillus cereus/virología , Bacillus cereus/metabolismo , Fagos de Bacillus/metabolismo , Fagos de Bacillus/genética , Myoviridae/genética , Myoviridae/metabolismo , Proteínas de la Cola de los Virus/metabolismo , Proteínas de la Cola de los Virus/química , Proteínas de la Cola de los Virus/genética , Acoplamiento Viral , Especificidad del Huésped , Polisacáridos/metabolismo
5.
Environ Microbiol ; 24(4): 2098-2118, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35293111

RESUMEN

The Bacillus phage SPß has been known for about 50 years, but only a few strains are available. We isolated four new wild-type strains of the SPbeta species. Phage vB_BsuS-Goe14 introduces its prophage into the spoVK locus, previously not observed to be used by SPß-like phages. Sequence data revealed the genome replication strategy and the genome packaging mode of SPß-like phages. We extracted 55 SPß-like prophages from public Bacillus genomes, thereby discovering three more integration loci and one additional type of integrase. The identified prophages resemble four new species clusters and three species orphans in the genus Spbetavirus. The determined core proteome of all SPß-like prophages consists of 38 proteins. The integration cassette proved to be not conserved, even though, present in all strains. It consists of distinct integrases. Analysis of SPß transcriptomes revealed three conserved genes, yopQ, yopR, and yokI, to be transcribed from a dormant prophage. While yopQ and yokI could be deleted from the prophage without activating the prophage, damaging of yopR led to a clear-plaque phenotype. Under the applied laboratory conditions, the yokI mutant showed an elevated virion release implying the YokI protein being a component of the arbitrium system.


Asunto(s)
Fagos de Bacillus , Siphoviridae , Fagos de Bacillus/genética , Fagos de Bacillus/metabolismo , Integrasas/genética , Lisogenia/genética , Profagos/genética , Integración Viral
6.
Nature ; 534(7608): 544-7, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27309813

RESUMEN

Most bacteriophages are tailed bacteriophages with an isometric or a prolate head attached to a long contractile, long non-contractile, or short non-contractile tail. The tail is a complex machine that plays a central role in host cell recognition and attachment, cell wall and membrane penetration, and viral genome ejection. The mechanisms involved in the penetration of the inner host cell membrane by bacteriophage tails are not well understood. Here we describe structural and functional studies of the bacteriophage ϕ29 tail knob protein gene product 9 (gp9). The 2.0 Šcrystal structure of gp9 shows that six gp9 molecules form a hexameric tube structure with six flexible hydrophobic loops blocking one end of the tube before DNA ejection. Sequence and structural analyses suggest that the loops in the tube could be membrane active. Further biochemical assays and electron microscopy structural analyses show that the six hydrophobic loops in the tube exit upon DNA ejection and form a channel that spans the lipid bilayer of the membrane and allows the release of the bacteriophage genomic DNA, suggesting that cell membrane penetration involves a pore-forming mechanism similar to that of certain non-enveloped eukaryotic viruses. A search of other phage tail proteins identified similar hydrophobic loops, which indicates that a common mechanism might be used for membrane penetration by prokaryotic viruses. These findings suggest that although prokaryotic and eukaryotic viruses use apparently very different mechanisms for infection, they have evolved similar mechanisms for breaching the cell membrane.


Asunto(s)
Fagos de Bacillus/química , Fagos de Bacillus/metabolismo , Membrana Celular/metabolismo , Proteínas de la Cola de los Virus/química , Proteínas de la Cola de los Virus/metabolismo , Secuencia de Aminoácidos , Fagos de Bacillus/genética , Fagos de Bacillus/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN Viral/metabolismo , Genoma Viral/fisiología , Proteínas del Virus de la Inmunodeficiencia Humana/química , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Porosidad , Estructura Cuaternaria de Proteína , Proteínas de la Cola de los Virus/ultraestructura , Virión/genética , Virión/ultraestructura
7.
Nucleic Acids Res ; 43(5): 2790-801, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25722367

RESUMEN

Phage ϕ29 DNA replication takes place by a protein-priming mechanism in which the viral DNA polymerase catalyses the covalent linkage of the initiating nucleotide to a specific serine residue of the terminal protein (TP). The N-terminal domain of the ϕ29 TP has been shown to bind to the host DNA in a sequence-independent manner and this binding is essential for the TP nucleoid localisation and for an efficient viral DNA replication in vivo. In the present work we have studied the involvement of the TP N-terminal domain residues responsible for DNA binding in the different stages of viral DNA replication by assaying the in vitro activity of purified TP N-terminal mutant proteins. The results show that mutation of TP residues involved in DNA binding affects the catalytic activity of the DNA polymerase in initiation, as the Km for the initiating nucleotide is increased when these mutant proteins are used as primers. Importantly, this initiation defect was relieved by using the ϕ29 double-stranded DNA binding protein p6 in the reaction, which decreased the Km of the DNA polymerase for dATP about 130-190 fold. Furthermore, the TP N-terminal domain was shown to be required both for a proper interaction with the DNA polymerase and for an efficient viral DNA amplification.


Asunto(s)
Fagos de Bacillus/metabolismo , Replicación del ADN , ADN Viral/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Virales/metabolismo , Fagos de Bacillus/genética , Sitios de Unión/genética , Biocatálisis , ADN Viral/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Electroforesis en Gel de Poliacrilamida , Cinética , Modelos Genéticos , Mutación , Unión Proteica , Proteínas Virales/genética , Replicación Viral
8.
Biophys J ; 111(1): 162-77, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27410744

RESUMEN

In the Phi29 bacteriophage, the DNA packaging nanomotor packs its double-stranded DNA genome into the virus capsid. At the late stage of DNA packaging, the negatively charged genome is increasingly compacted at a higher density in the capsid with a higher internal pressure. During the process, two Donnan effects, osmotic pressure and Donnan equilibrium potentials, are significantly amplified, which, in turn, affect the channel activity of the portal protein, GP10, embedded in the semipermeable capsid shell. In the research, planar lipid bilayer experiments were used to study the channel activities of the viral protein. The Donnan effect on the conformational changes of the viral protein was discovered, indicating GP10 may not be a static channel at the late stage of DNA packaging. Due to the conformational changes, GP10 may generate electrostatic forces that govern the DNA transport. For the section of the genome DNA that remains outside of the connector channel, a strong repulsive force from the viral protein would be generated against the DNA entry; however, for the section of the genome DNA within the channel, the portal protein would become a Brownian motor, which adopts the flash Brownian ratchet mechanism to pump the DNA against the increasingly built-up internal pressure (up to 20 atm) in the capsid. Therefore, the DNA transport in the nanoscale viral channel at the late stage of DNA packaging could be a consequence of Brownian movement of the genomic DNA, which would be rectified and harnessed by the forces from the interior wall of the viral channel under the influence of the Donnan effect.


Asunto(s)
Empaquetamiento del ADN , ADN Viral/metabolismo , Fenómenos Mecánicos , Nanoestructuras , Electricidad Estática , Fagos de Bacillus/genética , Fagos de Bacillus/metabolismo , Transporte Biológico , Fenómenos Biomecánicos , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Ósmosis , Procesos Estocásticos
9.
J Biol Chem ; 290(45): 27138-27145, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26400085

RESUMEN

Bacteriophage φ29 from Bacillus subtilis starts replication of its terminal protein (TP)-DNA by a protein-priming mechanism. To start replication, the DNA polymerase forms a heterodimer with a free TP that recognizes the replication origins, placed at both 5' ends of the linear chromosome, and initiates replication using as primer the OH-group of Ser-232 of the TP. The initiation of φ29 TP-DNA replication mainly occurs opposite the second nucleotide at the 3' end of the template. Earlier analyses of the template position that directs the initiation reaction were performed using single-stranded and double-stranded oligonucleotides containing the replication origin sequence without the parental TP. Here, we show that the parental TP has no influence in the determination of the nucleotide used as template in the initiation reaction. Previous studies showed that the priming domain of the primer TP determines the template position used for initiation. The results obtained here using mutant TPs at the priming loop where Ser-232 is located indicate that the aromatic residue Phe-230 is one of the determinants that allows the positioning of the penultimate nucleotide at the polymerization active site to direct insertion of the initiator dAMP during the initiation reaction. The role of Phe-230 in limiting the internalization of the template strand in the polymerization active site is discussed.


Asunto(s)
Fagos de Bacillus/genética , Fagos de Bacillus/metabolismo , Replicación del ADN/genética , ADN Viral/biosíntesis , ADN Viral/genética , Moldes Genéticos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Bacillus subtilis/virología , Secuencia de Bases , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fenilalanina/química , Origen de Réplica , Homología de Secuencia de Aminoácido , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
10.
Biophys J ; 108(2): 315-24, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25606680

RESUMEN

We report evidence for an unconventional type of allosteric regulation of a biomotor. We show that the genome-packaging motor of phage ϕ29 is regulated by a sensor that detects the density and conformation of the DNA packaged inside the viral capsid, and slows the motor by a mechanism distinct from the effect of a direct load force on the motor. Specifically, we show that motor-ATP interactions are regulated by a signal that is propagated allosterically from inside the viral shell to the motor mounted on the outside. This signal continuously regulates the motor speed and pausing in response to changes in either density or conformation of the packaged DNA, and slows the motor before the buildup of large forces resisting DNA confinement. Analysis of motor slipping reveals that the force resisting packaging remains low (<1 pN) until ∼ 70% and then rises sharply to ∼ 23 pN at high filling, which is a several-fold lower value than was previously estimated under the assumption that force alone slows the motor. These findings are consistent with recent studies of the stepping kinetics of the motor. The allosteric regulatory mechanism we report allows double-stranded DNA viruses to achieve rapid, high-density packing of their genomes by limiting the buildup of nonequilibrium load forces on the motor.


Asunto(s)
Empaquetamiento del ADN , ADN Viral/química , Proteínas Virales/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Fagos de Bacillus/química , Fagos de Bacillus/metabolismo , Fagos de Bacillus/fisiología , Unión Proteica , Proteínas Virales/metabolismo , Ensamble de Virus
11.
Biochemistry ; 54(27): 4259-66, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26103998

RESUMEN

Interstrand cross-links in cellular DNA are highly deleterious lesions that block transcription and replication. We recently characterized two new structural types of interstrand cross-links derived from the reaction of abasic (Ap) sites with either guanine or adenine residues in duplex DNA. Interestingly, these Ap-derived cross-links are forged by chemically reversible processes, in which the two strands of the duplex are joined by hemiaminal, imine, or aminoglycoside linkages. Therefore, understanding the stability of Ap-derived cross-links may be critical in defining the potential biological consequences of these lesions. Here we employed bacteriophage φ29 DNA polymerase, which can couple DNA synthesis and strand displacement, as a model system to examine whether dA-Ap cross-links can withstand DNA-processing enzymes. We first demonstrated that a chemically stable interstrand cross-link generated by hydride reduction of the dG-Ap cross-link completely blocked primer extension by φ29 DNA polymerase at the last unmodified nucleobase preceding cross-link. We then showed that the nominally reversible dA-Ap cross-link behaved, for all practical purposes, like an irreversible, covalent DNA-DNA cross-link. The dA-Ap cross-link completely blocked progress of the φ29 DNA polymerase at the last unmodified base before the cross-link. This suggests that Ap-derived cross-links have the power to block various DNA-processing enzymes in the cell. In addition, our results reveal φ29 DNA polymerase as a tool for detecting the presence and mapping the location of interstrand cross-links (and possibly other lesions) embedded within regions of duplex DNA.


Asunto(s)
Fagos de Bacillus/enzimología , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/química , ADN/metabolismo , Fagos de Bacillus/metabolismo , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Oxidación-Reducción , Especificidad por Sustrato
12.
J Biol Chem ; 289(39): 27169-27181, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25074929

RESUMEN

Icosahedral capsids of viruses are lattices of defined geometry and homogeneous size. The (quasi-)equivalent organization of their protein building blocks provides, in numerous systems, the binding sites to assemble arrays of viral polypeptides organized with nanometer precision that protrude from the capsid surface. The capsid of bacterial virus (bacteriophage) SPP1 exposes, at its surface, the 6.6-kDa viral polypeptide gp12 that binds to the center of hexamers of the major capsid protein. Gp12 forms an elongated trimer with collagen-like properties. This is consistent with the fold of eight internal GXY repeats of gp12 to build a stable intersubunit triple helix in a prokaryotic setting. The trimer dissociates and unfolds at near physiological temperatures, as reported for eukaryotic collagen. Its structural organization is reacquired within seconds upon cooling. Interaction with the SPP1 capsid hexamers strongly stabilizes gp12, increasing its Tm to 54 °C. Above this temperature, gp12 dissociates from its binding sites and unfolds reversibly. Multivalent binding of gp12 trimers to the capsid is highly cooperative. The capsid lattice also provides a platform to assist folding and association of unfolded gp12 polypeptides. The original physicochemical properties of gp12 offer a thermoswitchable system for multivalent binding of the polypeptide to the SPP1 capsid surface.


Asunto(s)
Fagos de Bacillus/química , Cápside/química , Proteínas Estructurales Virales/química , Fagos de Bacillus/genética , Fagos de Bacillus/metabolismo , Cápside/metabolismo , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo
13.
Mol Microbiol ; 91(2): 232-41, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24205926

RESUMEN

Protein-primed DNA replication constitutes a strategy to initiate viral DNA synthesis in a variety of prokaryotic and eukaryotic organisms. Although the main function of viral terminal proteins (TPs) is to provide a free hydroxyl group to start initiation of DNA replication, there are compelling evidences that TPs can also play other biological roles. In the case of Bacillus subtilis bacteriophage ϕ29, the N-terminal domain of the TP organizes viral DNA replication at the bacterial nucleoid being essential for an efficient phage DNA replication, and it contains a nuclear localization signal (NLS) that is functional in eukaryotes. Here we provide information about the structural properties of the ϕ29 TP N-terminal domain, which possesses sequence-independent DNA-binding capacity, and dissect the amino acid residues important for its biological function. By mutating all the basic residues of the TP N-terminal domain we identify the amino acids responsible for its interaction with the B. subtilis genome, establishing a correlation between the capacity of DNA-binding and nucleoid localization of the protein. Significantly, these residues are important to recruit the DNA polymerase at the bacterial nucleoid and, subsequently, for an efficient phage DNA replication.


Asunto(s)
Fagos de Bacillus/metabolismo , Bacillus subtilis/virología , Replicación del ADN , ADN Bacteriano/metabolismo , ADN Viral/metabolismo , Señales de Localización Nuclear/metabolismo , Proteínas Virales/metabolismo , Fagos de Bacillus/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Sitios de Unión , Núcleo Celular/metabolismo , Dicroismo Circular , ADN Viral/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Modelos Moleculares , Conformación Proteica , Estructura Secundaria de Proteína , Alineación de Secuencia , Proteínas Virales/química , Proteínas Virales/genética
14.
J Virol ; 88(20): 11846-60, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25100842

RESUMEN

This article reports the results of studying three novel bacteriophages, JL, Shanette, and Basilisk, which infect the pathogen Bacillus cereus and carry genes that may contribute to its pathogenesis. We analyzed host range and superinfection ability, mapped their genomes, and characterized phage structure by mass spectrometry and transmission electron microscopy (TEM). The JL and Shanette genomes were 96% similar and contained 217 open reading frames (ORFs) and 220 ORFs, respectively, while Basilisk has an unrelated genome containing 138 ORFs. Mass spectrometry revealed 23 phage particle proteins for JL and 15 for Basilisk, while only 11 and 4, respectively, were predicted to be present by sequence analysis. Structural protein homology to well-characterized phages suggested that JL and Shanette were members of the family Myoviridae, which was confirmed by TEM. The third phage, Basilisk, was similar only to uncharacterized phages and is an unrelated siphovirus. Cryogenic electron microscopy of this novel phage revealed a T=9 icosahedral capsid structure with the major capsid protein (MCP) likely having the same fold as bacteriophage HK97 MCP despite the lack of sequence similarity. Several putative virulence factors were encoded by these phage genomes, including TerC and TerD involved in tellurium resistance. Host range analysis of all three phages supports genetic transfer of such factors within the B. cereus group, including B. cereus, B. anthracis, and B. thuringiensis. This study provides a basis for understanding these three phages and other related phages as well as their contributions to the pathogenicity of B. cereus group bacteria. Importance: The Bacillus cereus group of bacteria contains several human and plant pathogens, including B. cereus, B. anthracis, and B. thuringiensis. Phages are intimately linked to the evolution of their bacterial hosts and often provide virulence factors, making the study of B. cereus phages important to understanding the evolution of pathogenic strains. Herein we provide the results of detailed study of three novel B. cereus phages, two highly related myoviruses (JL and Shanette) and an unrelated siphovirus (Basilisk). The detailed characterization of host range and superinfection, together with results of genomic, proteomic, and structural analyses, reveal several putative virulence factors as well as the ability of these phages to infect different pathogenic species.


Asunto(s)
Fagos de Bacillus/genética , Fagos de Bacillus/metabolismo , Bacillus cereus/virología , Genoma Bacteriano , Proteoma , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Sistemas de Lectura Abierta , Virulencia
15.
Nature ; 461(7264): 669-73, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19794496

RESUMEN

The ASCE (additional strand, conserved E) superfamily of proteins consists of structurally similar ATPases associated with diverse cellular activities involving metabolism and transport of proteins and nucleic acids in all forms of life. A subset of these enzymes consists of multimeric ringed pumps responsible for DNA transport in processes including genome packaging in adenoviruses, herpesviruses, poxviruses and tailed bacteriophages. Although their mechanism of mechanochemical conversion is beginning to be understood, little is known about how these motors engage their nucleic acid substrates. Questions remain as to whether the motors contact a single DNA element, such as a phosphate or a base, or whether contacts are distributed over several parts of the DNA. Furthermore, the role of these contacts in the mechanochemical cycle is unknown. Here we use the genome packaging motor of the Bacillus subtilis bacteriophage varphi29 (ref. 4) to address these questions. The full mechanochemical cycle of the motor, in which the ATPase is a pentameric-ring of gene product 16 (gp16), involves two phases-an ATP-loading dwell followed by a translocation burst of four 2.5-base-pair (bp) steps triggered by hydrolysis product release. By challenging the motor with a variety of modified DNA substrates, we show that during the dwell phase important contacts are made with adjacent phosphates every 10-bp on the 5'-3' strand in the direction of packaging. As well as providing stable, long-lived contacts, these phosphate interactions also regulate the chemical cycle. In contrast, during the burst phase, we find that DNA translocation is driven against large forces by extensive contacts, some of which are not specific to the chemical moieties of DNA. Such promiscuous, nonspecific contacts may reflect common translocase-substrate interactions for both the nucleic acid and protein translocases of the ASCE superfamily.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Fagos de Bacillus/metabolismo , Bacillus subtilis/virología , ADN Viral/metabolismo , Proteínas Motoras Moleculares/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus/fisiología , Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Fagos de Bacillus/enzimología , Fagos de Bacillus/genética , Transporte Biológico , ADN Viral/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Genoma Viral , Hidrólisis , Proteínas Motoras Moleculares/química , Fosfatos/metabolismo , Unión Proteica , Especificidad por Sustrato , Proteínas Virales/química
16.
Proc Natl Acad Sci U S A ; 109(15): 5723-8, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22451942

RESUMEN

Organization of replicating prokaryotic genomes requires architectural elements that, similarly to eukaryotic systems, induce topological changes such as DNA supercoiling. Bacteriophage 29 protein p6 has been described as a histone-like protein that compacts the viral genome by forming a nucleoprotein complex and plays a key role in the initiation of protein-primed DNA replication. In this work, we analyze the subcellular localization of protein p6 by immunofluorescence microscopy and show that, at early infection stages, it localizes in a peripheral helix-like configuration. Later, at middle infection stages, protein p6 is recruited to the bacterial nucleoid. This migrating process is shown to depend on the synthesis of components of the 29 DNA replication machinery (i.e., terminal protein and DNA polymerase) needed for the replication of viral DNA, which is required to recruit the bulk of protein p6. Importantly, the double-stranded DNA-binding capacity of protein p6 is essential for its relocalization at the nucleoid. Altogether, the results disclose the in vivo organization of a viral histone-like protein in bacteria.


Asunto(s)
Fagos de Bacillus/genética , Fagos de Bacillus/metabolismo , Bacillus subtilis/virología , Genoma Viral/genética , Histonas/metabolismo , Proteínas Virales/metabolismo , Bacillus subtilis/citología , ADN/metabolismo , Replicación del ADN/genética , Modelos Biológicos , Proteínas Mutantes/metabolismo , Unión Proteica , Transporte de Proteínas
17.
Proc Natl Acad Sci U S A ; 109(45): 18482-7, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23091024

RESUMEN

A number of prokaryotic proteins have been shown to contain nuclear localization signals (NLSs), although its biological role remains sometimes unclear. Terminal proteins (TPs) of bacteriophages prime DNA replication and become covalently linked to the genome ends. We predicted NLSs within the TPs of bacteriophages from diverse families and hosts and, indeed, the TPs of Φ29, Nf, PRD1, Bam35, and Cp-1, out of seven TPs tested, were found to localize to the nucleus when expressed in mammalian cells. Detailed analysis of Φ29 TP led us to identify a bona fide NLS within residues 1-37. Importantly, gene delivery into the eukaryotic nucleus is enhanced by the presence of Φ29 TP attached to the 5' DNA ends. These findings show a common feature of TPs from diverse bacteriophages targeting the eukaryotic nucleus and suggest a possible common function by facilitating the horizontal transfer of genes between prokaryotes and eukaryotes.


Asunto(s)
Bacteriófagos/metabolismo , Eucariontes/metabolismo , Señales de Localización Nuclear/metabolismo , Proteínas Virales/química , Secuencia de Aminoácidos , Animales , Fagos de Bacillus/metabolismo , Células COS , Núcleo Celular/metabolismo , Núcleo Celular/virología , Chlorocebus aethiops , ADN Viral/metabolismo , Transferencia de Gen Horizontal , Modelos Biológicos , Datos de Secuencia Molecular , Señales de Localización Nuclear/química , Células Procariotas/virología , Estructura Terciaria de Proteína , Proteínas Virales/metabolismo
18.
J Am Chem Soc ; 136(19): 7117-31, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24761828

RESUMEN

Exonucleolytic editing of incorrectly incorporated nucleotides by replicative DNA polymerases (DNAPs) plays an essential role in the fidelity of DNA replication. Editing requires that the primer strand of the DNA substrate be transferred between the DNAP polymerase and exonuclease sites, separated by a distance that is typically on the order of ~30 Å. Dynamic transitions between functional states can be quantified with single-nucleotide spatial precision and submillisecond temporal resolution from ionic current time traces recorded when individual DNAP complexes are held atop a nanoscale pore in an electric field. In this study, we have exploited this capability to determine the kinetic relationship between the translocation step and primer strand transfer between the polymerase and exonuclease sites in complexes formed between the replicative DNAP from bacteriophage Φ29 and DNA. We demonstrate that the pathway for primer strand transfer from the polymerase to exonuclease site initiates prior to the translocation step, while complexes are in the pre-translocation state. We developed a mathematical method to determine simultaneously the forward and reverse translocation rates and the rates of primer strand transfer in both directions between the polymerase and the exonuclease sites, and we have applied it to determine these rates for Φ29 DNAP complexes formed with a DNA substrate bearing a fully complementary primer-template duplex. This work provides a framework that will be extended to determine the kinetic mechanisms by which incorporation of noncomplementary nucleotides promotes primer strand transfer from the polymerase site to the exonuclease site.


Asunto(s)
Fagos de Bacillus/enzimología , ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Fagos de Bacillus/química , Fagos de Bacillus/genética , Fagos de Bacillus/metabolismo , Secuencia de Bases , Dominio Catalítico , Replicación del ADN , ADN Viral/química , ADN Viral/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Cinética , Mutación Puntual , Termodinámica
19.
Mol Microbiol ; 90(4): 858-68, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24102828

RESUMEN

Bacteriophage terminal proteins (TPs) prime DNA replication and become covalently linked to the DNA 5'-ends. In addition, they are DNA-binding proteins that direct early organization of phage DNA replication at the bacterial nucleoid and, unexpectedly, contain nuclear localization signals (NLSs), which localize them to the nucleus when expressed in mammalian cells. In spite of the lack of sequence homology among the phage TPs, these three properties share some common features, suggesting a possible evolutionary common origin of TPs. We show here that NLSs of three different phage TPs, Φ29, PRD1 and Cp-1, are mapped within the protein region required for nucleoid targeting in bacteria, in agreement with a previously proposed common origin of DNA-binding domains and NLSs. Furthermore, previously reported point mutants of Φ29 TP with no nuclear localization still can target the bacterial nucleoid, and Cp-1 TP contains two independent NLSs, only one of them required for nucleoid localization. Altogether, our results show that nucleoid and nucleus localization sequence requirements partially overlap, but they can be uncoupled, suggesting that conservation of both features could have a common origin but, at the same time, they have been independently conserved during evolution.


Asunto(s)
Bacteriófagos/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/fisiología , Señales de Localización Nuclear , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Animales , Fagos de Bacillus/metabolismo , Bacteriófago PRD1/genética , Bacteriófago PRD1/metabolismo , Bacteriófagos/genética , Células COS , Núcleo Celular/genética , Chlorocebus aethiops , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Evolución Molecular , Mutación Puntual , Proteínas Virales/genética
20.
J Am Chem Soc ; 135(24): 9149-55, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23705688

RESUMEN

Complexes formed between phi29 DNA polymerase (DNAP) and DNA fluctuate discretely between the pre-translocation and post-translocation states on the millisecond time scale. The translocation fluctuations can be observed in ionic current traces when individual complexes are captured atop the α-hemolysin nanopore in an electric field. The presence of complementary 2'-deoxynucleoside triphosphate (dNTP) shifts the equilibrium across the translocation step toward the post-translocation state. Here we have determined quantitatively the kinetic relationship between the phi29 DNAP translocation step and dNTP binding. We demonstrate that dNTP binds to phi29 DNAP-DNA complexes only after the transition from the pre-translocation state to the post-translocation state; dNTP binding rectifies the translocation but it does not directly drive the translocation. Based on the measured time traces of current amplitude, we developed a method for determining the forward and reverse translocation rates and the dNTP association and dissociation rates, individually at each dNTP concentration and each voltage. The translocation rates, and their response to force, match those determined for phi29 DNAP-DNA binary complexes and are unaffected by dNTP. The dNTP association and dissociation rates do not vary as a function of voltage, indicating that force does not distort the polymerase active site and that dNTP binding does not directly involve a displacement in the translocation direction. This combined experimental and theoretical approach and the results obtained provide a framework for separately evaluating the effects of biological variables on the translocation transitions and their effects on dNTP binding.


Asunto(s)
Fagos de Bacillus/enzimología , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos/metabolismo , Fagos de Bacillus/metabolismo , Secuencia de Bases , ADN/metabolismo , Cinética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda