Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Nature ; 566(7743): 254-258, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30728500

RESUMEN

Osteoarthritis-the most common form of age-related degenerative whole-joint disease1-is primarily characterized by cartilage destruction, as well as by synovial inflammation, osteophyte formation and subchondral bone remodelling2,3. However, the molecular mechanisms that underlie the pathogenesis of osteoarthritis are largely unknown. Although osteoarthritis is currently considered to be associated with metabolic disorders, direct evidence for this is lacking, and the role of cholesterol metabolism in the pathogenesis of osteoarthritis has not been fully investigated4-6. Various types of cholesterol hydroxylases contribute to cholesterol metabolism in extrahepatic tissues by converting cellular cholesterol to circulating oxysterols, which regulate diverse biological processes7,8. Here we show that the CH25H-CYP7B1-RORα axis of cholesterol metabolism in chondrocytes is a crucial catabolic regulator of the pathogenesis of osteoarthritis. Osteoarthritic chondrocytes had increased levels of cholesterol because of enhanced uptake, upregulation of cholesterol hydroxylases (CH25H and CYP7B1) and increased production of oxysterol metabolites. Adenoviral overexpression of CH25H or CYP7B1 in mouse joint tissues caused experimental osteoarthritis, whereas knockout or knockdown of these hydroxylases abrogated the pathogenesis of osteoarthritis. Moreover, retinoic acid-related orphan receptor alpha (RORα) was found to mediate the induction of osteoarthritis by alterations in cholesterol metabolism. These results indicate that osteoarthritis is a disease associated with metabolic disorders and suggest that targeting the CH25H-CYP7B1-RORα axis of cholesterol metabolism may provide a therapeutic avenue for treating osteoarthritis.


Asunto(s)
Colesterol/metabolismo , Familia 7 del Citocromo P450/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Osteoartritis/metabolismo , Esteroide Hidroxilasas/metabolismo , Animales , Transporte Biológico , Condrocitos/enzimología , Condrocitos/metabolismo , Masculino , Ratones , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Osteoartritis/enzimología , Osteoartritis/patología , Oxiesteroles/metabolismo , Esteroide Hidroxilasas/deficiencia , Regulación hacia Arriba
2.
World J Surg Oncol ; 22(1): 251, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289693

RESUMEN

BACKGROUND: Endometrial cancer (EC) tissues express CYP7B1, but its association with prognosis needs to be investigated. METHODS: Immunohistochemistry and image analysis software were used to assess CYP7B1 protein expression in paraffin-embedded endometrial tumor sections. Associations between CYP7B1 and clinical factors were tested with the Wilcoxon rank-sum test. Kaplan-Meier curves were employed to describe survival, and differences were assessed using the log-rank test. Cox regression analysis was used to assess the association between CYP7B1 expression and the prognosis of patients with EC. RESULTS: A total of 307 patients were enrolled with an average age of 52.6 ± 8.0 years at diagnosis. During the period of follow-up, 46 patients (15.0%) died, and 29 (9.4%) suffered recurrence. The expression of CYP7B1 protein is significantly higher in the cytoplasm than in the nucleus (P < 0.001). Patients aged < 55 years (P = 0.040), ER-positive patients (P = 0.028) and PR-positive patients (P < 0.001) report higher levels of CYP7B1 protein. Both univariate (HR = 0.41, 95% CI: 0.18-0.90, P = 0.025) and multivariate (HR = 0.35, 95%CI:0.16-0.79, P = 0.011) Cox regression analyses demonstrate that high CYP7B1 protein expression predicts longer overall survival (OS). When considering only ER-positive patients (n = 265), CYP7B1 protein expression is more strongly associated with OS (HR = 0.20,95%CI:0.08-0.52, P = 0.001). The 3-year OS and 5-year OS in the low-CYP7B1 subgroup are 81.6% and 76.8%, respectively; while in the high-CYP7B1 subgroup are 93.0% and 92.0%, respectively (P = 0.021). CONCLUSIONS: High CYP7B1 protein expression predicted longer OS, suggesting that it may serve as an important molecular marker for EC prognosis.


Asunto(s)
Biomarcadores de Tumor , Familia 7 del Citocromo P450 , Neoplasias Endometriales , Humanos , Femenino , Neoplasias Endometriales/patología , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/mortalidad , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Biomarcadores de Tumor/metabolismo , Estudios de Seguimiento , Tasa de Supervivencia , Familia 7 del Citocromo P450/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Adulto , Estadificación de Neoplasias , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Anciano , Esteroide Hidroxilasas
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731981

RESUMEN

We aimed to analyze the association between CYP7B1 and prostate cancer, along with its association with proteins involved in cancer and metabolic processes. A retrospective analysis was performed on 390 patients with prostate cancer (PC) or benign prostatic hyperplasia (BPH). We investigated the interactions between CYP7B1 expression and proteins associated with PC and metabolic processes, followed by an analysis of the risk of biochemical recurrence based on CYP7B1 expression. Of the 139 patients with elevated CYP7B1 expression, 92.8% had prostate cancer. Overall, no increased risk of biochemical recurrence was associated with CYP7B1 expression. However, in a non-diabetic subgroup analysis, higher CYP7B1 expression indicated a higher risk of biochemical recurrence, with an HR of 1.78 (CI: 1.0-3.2, p = 0.05). PC is associated with elevated CYP7B1 expression. In a subgroup analysis of non-diabetic patients, elevated CYP7B1 expression was associated with an increased risk of biochemical recurrence, suggesting increased cancer aggressiveness.


Asunto(s)
Biomarcadores de Tumor , Familia 7 del Citocromo P450 , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Biomarcadores de Tumor/metabolismo , Anciano , Familia 7 del Citocromo P450/metabolismo , Familia 7 del Citocromo P450/genética , Persona de Mediana Edad , Progresión de la Enfermedad , Estudios Retrospectivos , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Inmunohistoquímica , Análisis de Matrices Tisulares , Recurrencia Local de Neoplasia/metabolismo , Esteroide Hidroxilasas
4.
Exp Cell Res ; 410(1): 112952, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34848206

RESUMEN

Septic arthritis induced by Staphylococcus aureus (S. aureus) causes irreversible cartilage degradation and subsequent permanent joint dysfunction. Recently, cartilage degradation in osteoarthritis is recognized to be associated with metabolic disorders. However, whether cholesterol metabolism is linked to septic arthritis pathology remains largely unknown. Here, we found that exposure to fermentation supernatant (FS) of S. aureus in chondrocytes resulted in a significant increase in expression of key modulators involved in cholesterol metabolism, including lectin-type oxidized low density lipoprotein receptor 1 (LOX1), cholesterol 25-hydroxylase (CH25H), 25- hydroxycholesterol 7α-hydroxylase (CYP7B1) as well as retinoic acid-related orphan receptor alpha (RORα), a binding receptor for cholesterol metabolites. We further demonstrated that enhancement of CH25H/CYP7B1/RORα axis resulted from FS exposure was mediated by activation of NF-κB signaling, along with upregulation in catabolic factors including matrix metallopeptidases (MMP3 and MMP13), aggrecanase-2 (ADAMTS5), and nitric oxide synthase-2 (NOS2) in chondrocytes. Exogenous cholesterol acts synergistically with FS in activating NF-κB pathway and increases cholesterol metabolism. While, the addition of tauroursodeoxycholic acid (TUDCA) which promotes cholesterol efflux, resulted in remarkable reduction of intracellular cholesterol level and restoration of balance between anabolism and catabolism in FS treated chondrocytes. Collectively, our data indicated that, in response to FS of S. aureus, NF-κB signaling activation coupled with increased cholesterol metabolism to stimulate catabolic factors in chondrocytes, highlighting cholesterol metabolism as a potential therapeutic target for treating septic arthritis.


Asunto(s)
Artritis Infecciosa/genética , Cartílago/crecimiento & desarrollo , Osteoartritis/genética , Staphylococcus aureus/patogenicidad , Proteína ADAMTS5/genética , Artritis Infecciosa/microbiología , Artritis Infecciosa/patología , Cartílago/metabolismo , Cartílago/microbiología , Cartílago/patología , Células Cultivadas , Colesterol/genética , Condrocitos/metabolismo , Condrocitos/microbiología , Condrocitos/patología , Familia 7 del Citocromo P450/genética , Regulación de la Expresión Génica/genética , Humanos , Metaloproteinasa 13 de la Matriz/genética , Metabolismo/genética , FN-kappa B/genética , Óxido Nítrico Sintasa de Tipo II/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Osteoartritis/microbiología , Osteoartritis/patología , Receptores Depuradores de Clase E/genética , Transducción de Señal/genética , Esteroide Hidroxilasas/genética , Ácido Tauroquenodesoxicólico/genética , Factor de Transcripción ReIA/genética
5.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G488-G500, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36193897

RESUMEN

Oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the "acidic pathway" of cholesterol metabolism. Previously, we demonstrated that an inability to upregulate CYP7B1 in the setting of insulin resistance leads to the accumulation of cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) that initiate and promote hepatocyte injury; followed by an inflammatory response. The current study demonstrates that dietary coffee improves insulin resistance and restores Cyp7b1 levels in a well-characterized Western diet (WD)-induced nonalcoholic fatty liver disease (NAFLD) mouse model. Ingestion of a WD containing caffeinated (regular) coffee or decaffeinated coffee markedly reduced the serum ALT level and improved insulin resistance. Cyp7b1 mRNA and protein levels were preserved at normal levels in mice fed the coffee containing WD. Additionally, coffee led to upregulated steroid sulfotransferase 2b1 (Sult2b1) mRNA expression. In accordance with the response in these oxysterol metabolic genes, hepatocellular 26HC levels were maintained at physiologically low levels. Moreover, the current study provided evidence that hepatic Cyp7b1 and Sult2b1 responses to insulin signaling can be mediated through a transcriptional factor, hepatocyte nuclear factor (HNF)-4α. We conclude coffee achieves its beneficial effects through the modulation of insulin resistance. Both decaffeinated and caffeinated coffee had beneficial effects, demonstrating caffeine is not fundamental to this effect. The effects of coffee feeding on the insulin-HNF4α-Cyp7b1 signaling pathway, whose dysregulation initiates and contributes to the onset and progression of NASH as triggered by insulin resistance, offer mechanistic insight into approaches for the treatment of NAFLD.NEW & NOTEWORTHY This study demonstrated dietary coffee prevented the accumulation of hepatic oxysterols by maintaining Cyp7b1/Sult2b1 expression in a diet-induced NAFLD mice model. Lowering liver oxysterols markedly reduced inflammation in the coffee-ingested mice. Caffeine is not fundamental to this effect. In addition, this study showed Cyp7b1/Sult2b1 responses to insulin signaling can be mediated through a transcriptional factor, HNF4α. The insulin-HNF4α-Cyp7b1/Sult2b1 signaling pathway, which directly correlates to the onset of NASH triggered by insulin resistance, offers insight into approaches for NAFLD treatment.


Asunto(s)
Hepatitis , Resistencia a la Insulina , Insulinas , Enfermedad del Hígado Graso no Alcohólico , Oxiesteroles , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oxiesteroles/metabolismo , Café/metabolismo , Cafeína/farmacología , Cafeína/metabolismo , Hígado/metabolismo , Modelos Animales de Enfermedad , Colesterol/metabolismo , Hepatitis/metabolismo , Factores Nucleares del Hepatocito/metabolismo , ARN Mensajero/metabolismo , Insulinas/metabolismo , Familia 7 del Citocromo P450/metabolismo , Esteroide Hidroxilasas/metabolismo
6.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269552

RESUMEN

(1) Background: Synovial fluid (SF) from knee joints with osteoarthritis (OA) has increased levels of phospholipids (PL). We have reported earlier that TGF-ß and IGF-1 stimulate fibroblast-like synoviocytes (FLS) to synthesize increased amounts of PLs. The current study examined whether IL-1ß induces the release of PLs in FLS and the underlying mechanism. (2) Methods: Cultured human OA FLS were treated with IL-1ß alone and with pathway inhibitors or with synthetic liver X receptor (LXR) agonists. Cholesterol hydroxylases, ABC transporters, apolipoproteins (APO), LXR, sterol regulatory binding proteins (SREBPs), and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) were analyzed by RT-PCR, Western blot, and ELISA. The release of radiolabeled PLs from FLS was determined, and statistical analysis was performed using R (N = 5-9). (3) Results: Like synthetic LXR agonists, IL-1ß induced a 1.4-fold greater release of PLs from FLS. Simultaneously, IL-1ß upregulated the level of the PL transporter ABCA1 and of cholesterol hydroxylases CH25H and CYP7B1. IL-1ß and T0901317 stimulated the expression of SREBP1c, whereas only T0901317 enhanced SREBP2, HMGCR, APOE, LXRα, and ABCG1 additionally. (4) Conclusions: IL-1ß partially controls PL levels in OA-SF by affecting the release of PLs from FLS. Our data show that IL-1ß upregulates cholesterol hydroxylases and thus the formation of oxysterols, which, as natural agonists of LXR, increase the level of active ABCA1, in turn enhancing the release of PLs.


Asunto(s)
Benzoatos/farmacología , Bencilaminas/farmacología , Interleucina-1beta/farmacología , Osteoartritis/metabolismo , Fosfolípidos/metabolismo , Sinoviocitos/citología , Transportador 1 de Casete de Unión a ATP/genética , Células Cultivadas , Familia 7 del Citocromo P450/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Receptores X del Hígado/genética , Osteoartritis/genética , Esteroide Hidroxilasas/genética , Líquido Sinovial/citología , Líquido Sinovial/efectos de los fármacos , Líquido Sinovial/metabolismo , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo
7.
J Neurogenet ; 35(2): 84-94, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33771085

RESUMEN

Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous neurodegenerative disorder, characterized by lower-limb spasticity and weakness. To date, more than 82 loci/genes (SPG1-SPG82) have been identified that contribute to the cause of HSP. Despite the use of next-generation sequencing-based methods, genetic-analysis has failed in the finding of causative genes in more than 50% of HSP patients, indicating a more significant heterogeneity and absence of a given phenotype-genotype correlation. Here, we performed whole-exome sequencing (WES) to identify HSP-causing genes in three unrelated-Iranian probands. Candidate variants were detected and confirmed in the probands and co-segregated in the family members. The phenotypic data gathered and compared with earlier cases with the same sub-types of disease. Three novel homozygous variants, c.978delT; p.Q327Kfs*39, c.A1208G; p.D403G and c.3811delT; p.S1271Lfs*44, in known HSP-causing genes including ENTPD1, CYP7B1, and ZFYVE26 were identified, respectively. Intra and interfamilial clinical variability were observed among affected individuals. Mutations in CYP7B1 and ZFYVE26 are relatively common causes of HSP and associated with SPG5A and SPG15, respectively. However, mutations in ENTPD1 are related to SPG64 which is an ultra-rare form of HSP. The research affirmed more complexities of phenotypic manifestations and allelic heterogeneity in HSP. Due to these complexities, it is not feasible to show a clear phenotype-genotype correlation in HSP cases. Identification of more families with mutations in HSP-causing genes may help the establishment of this correlation, further understanding of the molecular basis of the disease, and would provide an opportunity for genetic-counseling in these families.


Asunto(s)
Apirasa/genética , Proteínas Portadoras/genética , Familia 7 del Citocromo P450/genética , Paraplejía Espástica Hereditaria/genética , Esteroide Hidroxilasas/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Mutación , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/fisiopatología , Secuenciación del Exoma , Adulto Joven
8.
Immunity ; 37(3): 535-48, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22999953

RESUMEN

7α,25-dihydroxycholesterol (7α,25-OHC) is a ligand for the G protein-coupled receptor EBI2; however, the cellular sources of this oxysterol are undefined. 7α,25-OHC is synthesized from cholesterol by the stepwise actions of two enzymes, CH25H and CYP7B1, and is metabolized to a 3-oxo derivative by HSD3B7. We showed that all three enzymes control EBI2 ligand concentration in lymphoid tissues. Lymphoid stromal cells were the main CH25H- and CYP7B1-expressing cells required for positioning of B cells, and they also mediated 7α,25-OHC inactivation. CH25H and CYP7B1 were abundant at the follicle perimeter, whereas CH25H expression by follicular dendritic cells was repressed. CYP7B1, CH25H, and HSD3B7 deficiencies each resulted in defective T cell-dependent plasma cell responses. These findings establish that CYP7B1 and HSD3B7, as well as CH25H, have essential roles in controlling oxysterol production in lymphoid tissues, and they suggest that differential enzyme expression in stromal cell subsets establishes 7α,25-OHC gradients required for B cell responses.


Asunto(s)
Linfocitos B/inmunología , Movimiento Celular/inmunología , Hidroxicolesteroles/inmunología , Inmunidad Humoral/inmunología , Células del Estroma/inmunología , 3-Hidroxiesteroide Deshidrogenasas/genética , 3-Hidroxiesteroide Deshidrogenasas/inmunología , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células Cultivadas , Familia 7 del Citocromo P450 , Femenino , Citometría de Flujo , Expresión Génica , Células HEK293 , Humanos , Hidroxicolesteroles/metabolismo , Activación de Linfocitos/inmunología , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/inmunología , Esteroide Hidroxilasas/metabolismo , Células del Estroma/metabolismo
9.
Dig Dis Sci ; 66(11): 3885-3892, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33385262

RESUMEN

BACKGROUND: We encountered 7 Japanese patients with bile acid synthesis disorders (BASD) including 3ß-hydroxy-Δ5-C27-steroid dehydrogenase/isomerase (3ß-HSD) deficiency (n = 3), Δ4-3-oxosteroid 5ß-reductase (5ß-reductase) deficiency (n = 3), and oxysterol 7α-hydroxylase deficiency (n = 1) over 21 years between 1996 and 2017. AIM: We aimed to clarify long-term outcome in the 7 patients with BASD as well as long-term efficacy of chenodeoxycholic acid (CDCA) treatment in the 5 patients with 3ß-HSD deficiency or 5ß-reductase deficiency. METHODS: Diagnoses were made from bile acid and genetic analyses. Bile acid analysis in serum and urine was performed using gas chromatography-mass spectrometry. Clinical and laboratory findings and bile acid profiles at diagnosis and most recent visit were retrospectively obtained from medical records. Long-term outcome included follow-up duration, treatments, growth, education/employment, complications of treatment, and other problems. RESULTS: Medians with ranges of current patient ages and duration of CDCA treatment are 10 years (8 to 43) and 10 years (8 to 21), respectively. All 7 patients, who had homozygous or compound heterozygous mutations in the HSD3B7, SRD5B1, or CYP7B1 gene, are currently in good health without liver dysfunction. In the 5 patients with CDCA treatment, hepatic function gradually improved following initiation. No adverse effects were noted. CONCLUSIONS: We concluded that CDCA treatment is effective in 3ß-HSD deficiency and 5ß-reductase deficiency, as cholic acid has been in other countries. BASD carry a good prognosis following early diagnosis and initiation of long-term CDCA treatment.


Asunto(s)
Hiperplasia Suprarrenal Congénita/tratamiento farmacológico , Hiperplasia Suprarrenal Congénita/genética , Ácidos y Sales Biliares/biosíntesis , Ácido Quenodesoxicólico/uso terapéutico , Familia 7 del Citocromo P450/metabolismo , Oxidorreductasas/genética , Esteroide Hidroxilasas/metabolismo , Adolescente , Adulto , Niño , Familia 7 del Citocromo P450/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Predisposición Genética a la Enfermedad , Humanos , Japón , Mutación , Esteroide Hidroxilasas/genética , Adulto Joven
10.
J Lipid Res ; 61(12): 1629-1644, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33008924

RESUMEN

NAFLD is an important public health issue closely associated with the pervasive epidemics of diabetes and obesity. Yet, despite NAFLD being among the most common of chronic liver diseases, the biological factors responsible for its transition from benign nonalcoholic fatty liver (NAFL) to NASH remain unclear. This lack of knowledge leads to a decreased ability to find relevant animal models, predict disease progression, or develop clinical treatments. In the current study, we used multiple mouse models of NAFLD, human correlation data, and selective gene overexpression of steroidogenic acute regulatory protein (StarD1) in mice to elucidate a plausible mechanistic pathway for promoting the transition from NAFL to NASH. We show that oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the "acidic/alternative" pathway of cholesterol metabolism. Specifically, we report data showing that an inability to upregulate CYP7B1, in the setting of insulin resistance, results in the accumulation of toxic intracellular cholesterol metabolites that promote inflammation and hepatocyte injury. This metabolic pathway, initiated and exacerbated by insulin resistance, offers insight into approaches for the treatment of NAFLD.


Asunto(s)
Familia 7 del Citocromo P450/metabolismo , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Esteroide Hidroxilasas/metabolismo , Animales , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Oxiesteroles/metabolismo
11.
Breast Cancer Res ; 22(1): 23, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075687

RESUMEN

BACKGROUND: Experimental and epidemiological studies demonstrate a role for 27-hydroxycholesterol (27HC) in breast cancer development, though results are conflicting. Cholesterol 27-hydroxylase (CYP27A1) and oxysterol 7-alpha-hydroxylase (CYP7B1) regulate 27HC concentrations, while differential expression of the liver X receptor (LXR) and estrogen receptor beta (ERß) may impact the association between 27HC and breast cancer risk. METHODS: We evaluated correlates of tumor tissue expression of CYP27A1, CYP7B1, LXR-ß, and ERß and the association between circulating prediagnostic 27HC concentrations and breast cancer risk by marker expression in a nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg cohort including 287 breast cancer cases with tumor tissue available. Tumor protein expression was evaluated using immunohistochemistry, and serum 27HC concentrations quantified using liquid chromatography-mass spectrometry. Conditional logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: A higher proportion of CYP7B1-positive cases were progesterone receptor (PR)-positive, relative to CYP7B1-negative cases, whereas a higher proportion of ERß-positive cases were Bcl-2 low, relative to ERß-negative cases. No differences in tumor tissue marker positivity were observed by reproductive and lifestyle factors. We observed limited evidence of heterogeneity in associations between circulating 27HC and breast cancer risk by tumor tissue expression of CYP27A1, CYP7B1, LXR-ß, and ERß, with the exception of statistically significant heterogeneity by LXR-ß status in the subgroup of women perimenopausal at blood collection (p = 0.02). CONCLUSION: This exploratory study suggests limited associations between tumor marker status and epidemiologic or breast cancer characteristics. Furthermore, the association between circulating 27HC and breast cancer risk may not vary by tumor expression of CYP27A1, CYP7B1, LXR-ß, or ERß.


Asunto(s)
Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/epidemiología , Hidroxicolesteroles/sangre , Neoplasias de la Mama/metabolismo , Estudios de Casos y Controles , Colestanotriol 26-Monooxigenasa/metabolismo , Familia 7 del Citocromo P450/metabolismo , Receptor beta de Estrógeno/metabolismo , Femenino , Alemania/epidemiología , Humanos , Receptores X del Hígado/metabolismo , Persona de Mediana Edad , Tipificación Molecular/métodos , Clasificación del Tumor , Evaluación Nutricional , Estudios Prospectivos , Factores de Riesgo , Esteroide Hidroxilasas/metabolismo
12.
Brain ; 141(1): 72-84, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29228183

RESUMEN

The hereditary spastic paraplegias are an expanding and heterogeneous group of disorders characterized by spasticity in the lower limbs. Plasma biomarkers are needed to guide the genetic testing of spastic paraplegia. Spastic paraplegia type 5 (SPG5) is an autosomal recessive spastic paraplegia due to mutations in CYP7B1, which encodes a cytochrome P450 7α-hydroxylase implicated in cholesterol and bile acids metabolism. We developed a method based on ultra-performance liquid chromatography electrospray tandem mass spectrometry to validate two plasma 25-hydroxycholesterol (25-OHC) and 27-hydroxycholesterol (27-OHC) as diagnostic biomarkers in a cohort of 21 patients with SPG5. For 14 patients, SPG5 was initially suspected on the basis of genetic analysis, and then confirmed by increased plasma 25-OHC, 27-OHC and their ratio to total cholesterol. For seven patients, the diagnosis was initially based on elevated plasma oxysterol levels and confirmed by the identification of two causal CYP7B1 mutations. The receiver operating characteristic curves analysis showed that 25-OHC, 27-OHC and their ratio to total cholesterol discriminated between SPG5 patients and healthy controls with 100% sensitivity and specificity. Taking advantage of the robustness of these plasma oxysterols, we then conducted a phase II therapeutic trial in 12 patients and tested whether candidate molecules (atorvastatin, chenodeoxycholic acid and resveratrol) can lower plasma oxysterols and improve bile acids profile. The trial consisted of a three-period, three-treatment crossover study and the six different sequences of three treatments were randomized. Using a linear mixed effect regression model with a random intercept, we observed that atorvastatin decreased moderately plasma 27-OHC (∼30%, P < 0.001) but did not change 27-OHC to total cholesterol ratio or 25-OHC levels. We also found an abnormal bile acids profile in SPG5 patients, with significantly decreased total serum bile acids associated with a relative decrease of ursodeoxycholic and lithocholic acids compared to deoxycholic acid. Treatment with chenodeoxycholic acid restored bile acids profile in SPG5 patients. Therefore, the combination of atorvastatin and chenodeoxycholic acid may be worth considering for the treatment of SPG5 patients but the neurological benefit of these metabolic interventions remains to be evaluated in phase III therapeutic trials using clinical, imaging and/or electrophysiological outcome measures with sufficient effect sizes. Overall, our study indicates that plasma 25-OHC and 27-OHC are robust diagnostic biomarkers of SPG5 and shall be used as first-line investigations in any patient with unexplained spastic paraplegia.


Asunto(s)
Anticolesterolemiantes/uso terapéutico , Mutación/genética , Oxiesteroles/sangre , Paraplejía Espástica Hereditaria/sangre , Paraplejía Espástica Hereditaria/tratamiento farmacológico , Paraplejía Espástica Hereditaria/genética , Adolescente , Adulto , Atorvastatina/uso terapéutico , Ácidos y Sales Biliares/sangre , Niño , Colesterol/sangre , Estudios de Cohortes , Familia 7 del Citocromo P450/genética , Ácido Desoxicólico/uso terapéutico , Femenino , Humanos , Hidroxicolesteroles/sangre , Lactante , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Examen Neurológico , Curva ROC , Resveratrol/uso terapéutico , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Esteroide Hidroxilasas/genética , Adulto Joven
13.
Chembiochem ; 19(17): 1827-1833, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-29931794

RESUMEN

Steroids can be difficult to modify through traditional organic synthesis methods, but many enzymes regio- and stereoselectively process a wide variety of steroid substrates. We tested whether steroid-modifying enzymes could make novel steroids from non-native substrates. Numerous genes encoding steroid-modifying enzymes, including some bacterial enzymes, were expressed in mammalian cells by transient transfection and found to be active. We made three unusual steroids by stable expression, in HEK293 cells, of the 7α-hydroxylase CYP7B1, which was selected because of its high native product yield. These cells made 7α,17α-dihydroxypregnenolone and 7ß,17α-dihydroxypregnenolone from 17α-hydroxypregnenolone and produced 11α,16α-dihydroxyprogesterone from 16α-hydroxyprogesterone. The last two products were the result of CYP7B1-catalyzed hydroxylation at previously unobserved sites. A Rosetta docking model of CYP7B1 suggested that these substrates' D-ring hydroxy groups might prevent them from binding in the same way as the native substrates, bringing different carbon atoms close to the active ferryl oxygen atom. This new approach could potentially use other enzymes and substrates to produce many novel steroids for drug candidate testing.


Asunto(s)
Familia 7 del Citocromo P450/metabolismo , Esteroide Hidroxilasas/metabolismo , Esteroides/biosíntesis , Dominio Catalítico , Ingeniería Celular/métodos , Familia 7 del Citocromo P450/química , Células HEK293 , Humanos , Hidroxilación , Simulación del Acoplamiento Molecular , Unión Proteica , Esteroide Hidroxilasas/química , Esteroides/química , Esteroides/metabolismo , Especificidad por Sustrato
14.
Brain ; 140(12): 3112-3127, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126212

RESUMEN

Spastic paraplegia type 5 (SPG5) is a rare subtype of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative disorders defined by progressive neurodegeneration of the corticospinal tract motor neurons. SPG5 is caused by recessive mutations in the gene CYP7B1 encoding oxysterol-7α-hydroxylase. This enzyme is involved in the degradation of cholesterol into primary bile acids. CYP7B1 deficiency has been shown to lead to accumulation of neurotoxic oxysterols. In this multicentre study, we have performed detailed clinical and biochemical analysis in 34 genetically confirmed SPG5 cases from 28 families, studied dose-dependent neurotoxicity of oxysterols in human cortical neurons and performed a randomized placebo-controlled double blind interventional trial targeting oxysterol accumulation in serum of SPG5 patients. Clinically, SPG5 manifested in childhood or adolescence (median 13 years). Gait ataxia was a common feature. SPG5 patients lost the ability to walk independently after a median disease duration of 23 years and became wheelchair dependent after a median 33 years. The overall cross-sectional progression rate of 0.56 points on the Spastic Paraplegia Rating Scale per year was slightly lower than the longitudinal progression rate of 0.80 points per year. Biochemically, marked accumulation of CYP7B1 substrates including 27-hydroxycholesterol was confirmed in serum (n = 19) and cerebrospinal fluid (n = 17) of SPG5 patients. Moreover, 27-hydroxycholesterol levels in serum correlated with disease severity and disease duration. Oxysterols were found to impair metabolic activity and viability of human cortical neurons at concentrations found in SPG5 patients, indicating that elevated levels of oxysterols might be key pathogenic factors in SPG5. We thus performed a randomized placebo-controlled trial (EudraCT 2015-000978-35) with atorvastatin 40 mg/day for 9 weeks in 14 SPG5 patients with 27-hydroxycholesterol levels in serum as the primary outcome measure. Atorvastatin, but not placebo, reduced serum 27-hydroxycholesterol from 853 ng/ml [interquartile range (IQR) 683-1113] to 641 (IQR 507-694) (-31.5%, P = 0.001, Mann-Whitney U-test). Similarly, 25-hydroxycholesterol levels in serum were reduced. In cerebrospinal fluid 27-hydroxycholesterol was reduced by 8.4% but this did not significantly differ from placebo. As expected, no effects were seen on clinical outcome parameters in this short-term trial. In this study, we define the mutational and phenotypic spectrum of SPG5, examine the correlation of disease severity and progression with oxysterol concentrations, and demonstrate in a randomized controlled trial that atorvastatin treatment can effectively lower 27-hydroxycholesterol levels in serum of SPG5 patients. We thus demonstrate the first causal treatment strategy in hereditary spastic paraplegia.


Asunto(s)
Atorvastatina/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Paraplejía Espástica Hereditaria/tratamiento farmacológico , Adolescente , Adulto , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Estudios de Casos y Controles , Proliferación Celular , Estudios Transversales , Familia 7 del Citocromo P450/genética , Progresión de la Enfermedad , Método Doble Ciego , Familia , Femenino , Humanos , Hidroxicolesteroles/metabolismo , Células Madre Pluripotentes Inducidas , Masculino , Persona de Mediana Edad , Mutación , Neuritas , Oxiesteroles/sangre , Oxiesteroles/líquido cefalorraquídeo , Linaje , Índice de Severidad de la Enfermedad , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Esteroide Hidroxilasas/genética , Adulto Joven
15.
J Korean Med Sci ; 33(51): e324, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30546280

RESUMEN

Oxysterol 7α-hydroxylase deficiency is a very rare liver disease categorized as inborn errors of bile acid synthesis, caused by CYP7B1 mutations. As it may cause rapid progression to end-stage liver disease even in early infancy, a high index of suspicion is required to prevent fatal outcomes. We describe the case of a 3-month-old boy with progressive cholestatic hepatitis and severe hepatic fibrosis. After excluding other etiologies for his early liver failure, we found that he had profuse urinary excretion of 3ß-monohydroxy-Δ5-bile acid derivatives by gas chromatography/mass spectrometry analysis with dried urine spots on filter paper. He was confirmed to have a compound heterozygous mutation (p.Arg388Ter and p.Tyr469IlefsX5) of the CYP7B1 gene. After undergoing liver transplantation (LT) from his mother at 4 months of age, his deteriorated liver function completely normalized, and he had normal growth and development until the current follow-up at 33 months of age. We report the first Korean case of oxysterol 7α-hydroxylase deficiency in the youngest infant reported to undergo successful living donor LT to date.


Asunto(s)
Familia 7 del Citocromo P450/genética , Fallo Hepático/terapia , Trasplante de Hígado , Esteroide Hidroxilasas/genética , Ácidos y Sales Biliares/análisis , Análisis Mutacional de ADN , Cromatografía de Gases y Espectrometría de Masas , Humanos , Lactante , Fallo Hepático/diagnóstico , Fallo Hepático/genética , Fallo Hepático/patología , Donadores Vivos , Masculino , Polimorfismo de Nucleótido Simple , República de Corea , Errores Congénitos del Metabolismo Esteroideo/diagnóstico , Errores Congénitos del Metabolismo Esteroideo/terapia
16.
Zhongguo Zhong Yao Za Zhi ; 42(20): 3901-3905, 2017 Oct.
Artículo en Zh | MEDLINE | ID: mdl-29243425

RESUMEN

Protein complexes are involved in the synthesis of multiple secondary metabolites in plants, and their separation is essential to elucidate plant secondary metabolism and improve in vitro catalytic efficiency. In this study, the transgenic hairy roots of CYP76AH1, a key enzyme of tanshinone synthesis pathway, was constructed and the transgenic hairy roots of Danshen overexpressing CYP76AH1 protein were screened by Western blotting and used as a tissue culture material for the subsequent extraction of protein complex in tanshinone synthesis pathway. By optimizing the type and concentration of the detergent in the protein extraction buffer, the buffer containing 0.5% Triton X-100 was selected as the best extraction buffer, and a relatively large amount of soluble CYP76AH1 protein was isolated. This study lays the foundation for the further separation and purification of protein complexes interacting with CYP76AH1, and provides the idea for deep analysis of tanshinone metabolic pathway.


Asunto(s)
Familia 7 del Citocromo P450/genética , Raíces de Plantas/enzimología , Salvia miltiorrhiza/enzimología , Abietanos/biosíntesis , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Salvia miltiorrhiza/genética
17.
Mol Cell Probes ; 30(1): 53-5, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26714052

RESUMEN

The hereditary spastic paraplegias (HSPs) comprise a group of genetically heterogeneous neurodegenerative diseases. Here, we evaluated the spectrum and frequency of mutations in the CYP7B1, PNPLA6 and C19orf12 genes (causative for the subtypes SPG5A, SPG39 and SPG43, respectively) in a cohort of 63 unrelated HSP patients with suspected autosomal recessive inheritance. Two novel homozygous mutations (one frameshift and one missense mutation) were detected in CYP7B1 (SPG5A), while no disease-causing mutation was identified for SPG39 or SPG43.


Asunto(s)
Proteínas Mitocondriales/genética , Mutación , Fosfolipasas/genética , Paraplejía Espástica Hereditaria/genética , Esteroide Hidroxilasas/genética , Adolescente , Adulto , Secuencia de Bases , Estudios de Cohortes , Familia 7 del Citocromo P450 , Análisis Mutacional de ADN/métodos , Salud de la Familia , Femenino , Mutación del Sistema de Lectura , Homocigoto , Humanos , Masculino , Mutación Missense , Linaje
18.
Acta Neurol Scand ; 133(6): 410-4, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26370385

RESUMEN

BACKGROUND: Autosomal recessive (AR) spastic paraplegia type 5 (SPG5) is due to mutations in the CYP7B1 gene, encoding for the cytochrome P450-7B1, responsible for oxysterols 7α-hydroxylation. Oxysterol/cholestenoic acids pool plays a role in motor neuron survival and immune response. SPG5 is characterized by white matter abnormalities at brain resonance imaging (MRI). In view of clinical presentation and MRI findings, multiple sclerosis (MS) is a possible differential diagnosis of SPG5. This study aimed to evaluate the frequency of CYP7B1 mutations in patients with MS. METHODS: One hundred and seventeen MS patients with clinical spastic paraplegia or possible AR transmission were selected for the mutational screening. RESULTS: Forty-three patients had primary progressive, 26 relapsing remitting, 26 secondary progressive, and 22 relapsing progressive MS clinical course. No CYP7B1 homozygous mutations were identified. Two novel variants and one pathogenic mutation were found at heterozygous state. CONCLUSIONS: The two novel variants cosegregated with pyramidal signs and autoimmune diseases suggesting that they might be susceptibility factors. Reduced cytochrome P450-7B1 enzymatic activity could alter the balance among neurotoxic and neuroprotective oxysterols promoting motor neuron degeneration and/or immune response.


Asunto(s)
Familia 7 del Citocromo P450/genética , Esclerosis Múltiple/genética , Paraplejía Espástica Hereditaria/genética , Esteroide Hidroxilasas/genética , Adolescente , Adulto , Encéfalo/patología , Niño , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico , Mutación , Paraplejía Espástica Hereditaria/complicaciones , Paraplejía Espástica Hereditaria/diagnóstico
19.
Retrovirology ; 12: 80, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26399852

RESUMEN

BACKGROUND: The genetic bases of natural resistance to HIV-1 infection remain largely unknown. Recently, two genome-wide association studies suggested a role for variants within or in the vicinity of the CYP7B1 gene in modulating HIV susceptibility. CYP7B1 is an appealing candidate for this due to its contribution to antiviral immune responses. We analyzed the frequency of two previously described CYP7B1 variants (rs6996198 and rs10808739) in three independent cohorts of HIV-1 infected subjects and HIV-1 exposed seronegative individuals (HESN). FINDINGS: rs6996198 and rs10808739 were genotyped in three case/control cohorts of sexually-exposed HESN and HIV-1-infected individuals from Italy, Peru and Colombia. Comparison of the allele and genotype frequencies of the two SNPs under different models showed that the only significant difference was seen for rs6996198 in the Peruvian sample (nominal p = 0.048, dominant model). For this variant, a random-effect meta-analysis yielded non-significant results (dominant model, p = 0.78) and revealed substantial heterogeneity among cohorts. No significant effect of the rs10808739 allelic status on HIV-1 infection susceptibility (additive model, p = 0.30) emerged from the meta-analysis. CONCLUSIONS: Although our study had limited power to detect association due to the small sample size, comparisons among the three cohorts revealed very similar allelic and genotypic frequencies in HESN and HIV-1 positive subjects. Overall, these data indicate that the two GWAS-defined variants in the CYP7B1 region do not strongly influence HIV-1 infection susceptibility.


Asunto(s)
Predisposición Genética a la Enfermedad , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Inmunidad Innata/genética , Esteroide Hidroxilasas/genética , Adulto , Alelos , Familia 7 del Citocromo P450 , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Infecciones por VIH/virología , VIH-1/fisiología , Humanos , Masculino , Polimorfismo de Nucleótido Simple
20.
FASEB J ; 28(2): 966-77, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24161885

RESUMEN

Sexual differences are only partially attributable to hormones. Cultured male or female cells, even from embryos before sexual differentiation, differ in gene expression and sensitivity to toxins, and these differences persist in isolated primary cells. Male and female cells from Swiss Webster CWF mice manifest sex-distinct patterns of DNA methylation for X-ist and for cytochrome P450 (CYP; family members 1a1, 2e1m, and 7b1. Dnmt3l is differentially expressed but not differentially methylated, and Gapdh is neither differentially methylated nor expressed. CYP family genes differ in expression in whole tissue homogenates and cell cultures, with female Cyp expression 2- to 355-fold higher and Dnmt3l 12- to 32-fold higher in males. DNA methylation in the promoters of these genes is sex dimorphic; reducing methylation differences reduces to 1- to 6-fold differences in the expression of these genes. Stress or estradiol alters both methylation and gene expression. We conclude that different methylation patterns partially explain the sex-based differences in expression of CYP family members and X-ist, which potentially leads to inborn differences between males and females and their different responses to chronic and acute changes. Sex-differential methylation may have medical effects.


Asunto(s)
Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP2E1/genética , Metilación de ADN/genética , Esteroide Hidroxilasas/genética , Animales , Azacitidina/análogos & derivados , Azacitidina/farmacología , Supervivencia Celular/efectos de los fármacos , Familia 7 del Citocromo P450 , ADN (Citosina-5-)-Metiltransferasas/genética , Decitabina , Estradiol/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Sulfitos/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda