RESUMEN
Transcription by RNA polymerase II (RNAPII) is a dynamic process with frequent variations in the elongation rate. However, the physiological relevance of variations in RNAPII elongation kinetics has remained unclear. Here we show in yeast that a RNAPII mutant that reduces the transcription elongation rate causes widespread changes in alternative polyadenylation (APA). We unveil two mechanisms by which APA affects gene expression in the slow mutant: 3' UTR shortening and gene derepression by premature transcription termination of upstream interfering noncoding RNAs. Strikingly, the genes affected by these mechanisms are enriched for functions involved in phosphate uptake and purine synthesis, processes essential for maintenance of the intracellular nucleotide pool. As nucleotide concentration regulates transcription elongation, our findings argue that RNAPII is a sensor of nucleotide availability and that genes important for nucleotide pool maintenance have adopted regulatory mechanisms responsive to reduced rates of transcription elongation.
Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , ARN Polimerasa II/genética , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Activación Enzimática/efectos de los fármacos , Genes Fúngicos/genética , Mutación , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Fosfatos/farmacología , Poliadenilación , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Factores de Transcripción/genéticaRESUMEN
During developmental and immune responses, cells move towards or away from some signals. Although much is known about chemoattraction, chemorepulsion (the movement of cells away from a stimulus) remains poorly understood. Proliferating Dictyostelium discoideum cells secrete a chemorepellent protein called AprA. Examining existing knockout strains, we previously identified proteins required for AprA-induced chemorepulsion, and a genetic screen suggested that the enzyme phosphatidylinositol phosphate kinase A (PIPkinA, also known as Pik6) might also be needed for chemorepulsion. Here, we show that cells lacking PIPkinA are not repelled by AprA, and that this phenotype is rescued by expression of PIPkinA. To bias cell movement, AprA inhibits Ras activation at the side of the cell closest to the source of AprA, and we find that PIPkinA is required for AprA to inhibit Ras activation. PIPkinA decreases levels of phosphatidylinositol 4-phosphate [PI(4)P] and phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3], and possibly because of these effects, potentiates phagocytosis and inhibits cell proliferation. Cells lacking PIPkinA show normal AprA binding, suggesting that PIPkinA regulates chemorepulsion at a step between the AprA receptor and AprA inhibition of Ras activation.
Asunto(s)
Dictyostelium , Dictyostelium/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proliferación Celular , Pruebas GenéticasRESUMEN
Pneumocystis cyst life forms contain abundant ß-glucan carbohydrates, synthesized using ß-1,3 and ß-1,6 glucan synthase enzymes and the donor uridine diphosphate (UDP)-glucose. In yeast, phosphoglucomutase (PGM) plays a crucial role in carbohydrate metabolism by interconverting glucose 1-phosphate and glucose 6-phosphate, a vital step in UDP pools for ß-glucan cell wall formation. This pathway has not yet been defined in Pneumocystis. Herein, we surveyed the Pneumocystis jirovecii and Pneumocystis murina genomes, which predicted a homolog of the Saccharomyces cerevisiae major PGM enzyme. Furthermore, we show that PjPgm2p and PmPgm2p function similarly to the yeast counterpart. When both Pneumocystis pgm2 homologs are heterologously expressed in S. cerevisiae pgm2Δ cells, both genes can restore growth and sedimentation rates to wild-type levels. Additionally, we demonstrate that yeast pgm2Δ cell lysates expressing the two Pneumocystis pgm2 transcripts individually can restore PGM activities significantly altered in the yeast pgm2Δ strain. The addition of lithium, a competitive inhibitor of yeast PGM activity, significantly reduces PGM activity. Next, we tested the effects of lithium on P. murina viability ex vivo and found the compound displays significant anti-Pneumocystis activity. Finally, we demonstrate that a para-aryl derivative (ISFP10) with known inhibitory activity against the Aspergillus fumigatus PGM protein and exhibiting 50-fold selectivity over the human PGM enzyme homolog can also significantly reduce Pmpgm2 activity in vitro. Collectively, our data genetically and functionally validate phosphoglucomutases in both P. jirovecii and P. murina and suggest the potential of this protein as a selective therapeutic target for individuals with Pneumocystis pneumonia.
Asunto(s)
Pneumocystis carinii , Pneumocystis , Neumonía por Pneumocystis , beta-Glucanos , Humanos , Pneumocystis carinii/genética , Neumonía por Pneumocystis/tratamiento farmacológico , Fosfoglucomutasa/genética , Fosfoglucomutasa/metabolismo , Fosfoglucomutasa/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Litio/metabolismo , Litio/farmacología , Pneumocystis/genética , beta-Glucanos/metabolismo , Fosfatos/farmacología , Glucosa/metabolismo , Uridina Difosfato/metabolismo , Uridina Difosfato/farmacologíaRESUMEN
Phosphorus (P) has crucial roles in plant growth and development. Hydrogen sulphide (H2S) has multiple functions in plants, particularly having the ability to promote tolerance to a variety of adversity stresses. However, it is unclear whether H2S has a function when plants suffer Pi-deficiency stress. DES1, encoding L-cysteine desulfhydrase1, is a crucial source of H2S in Arabidopsis thaliana by catalysing the substrate L-cysteine. Under phosphate starvation, the des1 mutant had a significantly shorter primary root length than the wild-type Col-0, and exogenous application of H2S donor NaHS could compensate for the root growth-sensitive phenotype. In contrast, the transgenic lines DES1ox overexpressing DES1 exhibited less sensitivity to phosphate starvation in terms of longer roots compared to the Col-0. These results demonstrate that H2S is involved in the regulation of Arabidopsis root growth under phosphate starvation. Moreover, using quantitative real-time polymerase chain reaction experiments to analyse the changes in genes induced by phosphate starvation in des1 mutant and Col-0, we screened to find that the expression of the Sulfoquinovosyl diacylglycerol 1 (SQD1) gene was significantly downregulated in the des1 mutant. Consistently, exogenous H2S significantly promoted SQD1 expression levels in roots of Col-0. Taken together, we demonstrate that DES1-mediated H2S participates in alleviating root growth inhibition by promoting the expression of SQD1 under Pi starvation.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Sulfuro de Hidrógeno , Fosfatos , Raíces de Plantas , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Fosfatos/deficiencia , Fosfatos/metabolismo , Fosfatos/farmacología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Mutación , Cistationina gamma-Liasa/metabolismo , Cistationina gamma-Liasa/genética , Sulfuros/farmacología , Sulfuros/metabolismoRESUMEN
Aluminum (Al) toxicity and inorganic phosphate (Pi) limitation are widespread chronic abiotic and mutually enhancing stresses that profoundly affect crop yield. Both stresses strongly inhibit root growth, resulting from a progressive exhaustion of the stem cell niche. Here, we report on a casein kinase 2 (CK2) inhibitor identified by its capability to maintain a functional root stem cell niche in Arabidopsis thaliana under Al toxic conditions. CK2 operates through phosphorylation of the cell cycle checkpoint activator SUPPRESSOR OF GAMMA RADIATION1 (SOG1), priming its activity under DNA-damaging conditions. In addition to yielding Al tolerance, CK2 and SOG1 inactivation prevents meristem exhaustion under Pi starvation, revealing the existence of a low Pi-induced cell cycle checkpoint that depends on the DNA damage activator ATAXIA-TELANGIECTASIA MUTATED (ATM). Overall, our data reveal an important physiological role for the plant DNA damage response pathway under agriculturally limiting growth conditions, opening new avenues to cope with Pi limitation.
Asunto(s)
Aluminio/toxicidad , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Quinasa de la Caseína II/metabolismo , Fosfatos/metabolismo , Aluminio/farmacocinética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa de la Caseína II/genética , Péptidos y Proteínas de Señalización Intercelular , Fosfatos/farmacología , Fosforilación , Células Vegetales/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
The epidermis, the most superficial layer of the human skin, serves a critical barrier function, protecting the body from external pathogens and allergens. Dysregulation of epidermal differentiation contributes to barrier dysfunction and has been implicated in the pathology of various dermatological diseases, including atopic dermatitis (AD). Mucopolysaccharide polysulphate (MPS) is a moisturising agent used to treat xerosis in patients with AD. However, its mechanism of action on keratinocytes, the main constituents of the epidermis, remains unclear. In this study, we investigated the effect of MPS on keratinocytes by subjecting adult human epidermal and three-dimensional cultured keratinocytes to MPS treatment, followed by transcriptome analysis. The analysis revealed that MPS treatment enhances keratinocyte differentiation and suppresses proliferation. We focused on amphiregulin (AREG), a membrane protein that belongs to the epidermal growth factor (EGF) family and possesses a heparin-binding domain, as a significant target among the genes altered by MPS. MPS exerted an inhibitory effect directly on AREG, rather than on EGF receptors or other members of the EGF family. Furthermore, AREG leads to a reduction in epidermal barrier function, whereas MPS contributes to barrier enhancement via AREG inhibition. Collectively, these findings suggest that MPS modulates barrier function through AREG inhibition, offering insights into potential therapeutic strategies for skin barrier restoration.
Asunto(s)
Anfirregulina , Queratinocitos , Fosfatos , Polisacáridos , Humanos , Anfirregulina/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Epidermis/metabolismo , Epidermis/efectos de los fármacos , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Transducción de Señal/efectos de los fármacos , Polisacáridos/farmacología , Fosfatos/farmacologíaRESUMEN
BACKGROUND: L-2-hydroxyglutarate (L2HG) couples mitochondrial and cytoplasmic energy metabolism to support cellular redox homeostasis. Under oxygen-limiting conditions, mammalian cells generate L2HG to counteract the adverse effects of reductive stress induced by hypoxia. Very little is known, however, about whether and how L2HG provides tissue protection from redox stress during low-flow ischemia (LFI) and ischemia-reperfusion injury. We examined the cardioprotective effects of L2HG accumulation against LFI and ischemia-reperfusion injury and its underlying mechanism using genetic mouse models. METHODS AND RESULTS: L2HG accumulation was induced by homozygous (L2HGDH [L-2-hydroxyglutarate dehydrogenase]-/-) or heterozygous (L2HGDH+/-) deletion of the L2HGDH gene in mice. Hearts isolated from these mice and their wild-type littermates (L2HGDH+/+) were subjected to baseline perfusion and 90-minute LFI or 30-minute no-flow ischemia followed by 60- or 120-minute reperfusion. Using [13C]- and [31P]-NMR (nuclear magnetic resonance) spectroscopy, high-performance liquid chromatography, reverse transcription quantitative reverse transcription polymerase chain reaction, ELISA, triphenyltetrazolium staining, colorimetric/fluorometric spectroscopy, and echocardiography, we found that L2HGDH deletion induces L2HG accumulation at baseline and under stress conditions with significant functional consequences. In response to LFI or ischemia-reperfusion, L2HG accumulation shifts glucose flux from glycolysis towards the pentose phosphate pathway. These key metabolic changes were accompanied by enhanced cellular reducing potential, increased elimination of reactive oxygen species, attenuated oxidative injury and myocardial infarction, preserved cellular energy state, and improved cardiac function in both L2HGDH-/- and L2HGDH+/- hearts compared with L2HGDH+/+ hearts under ischemic stress conditions. CONCLUSION: L2HGDH deletion-induced L2HG accumulation protects against myocardial injury during LFI and ischemia-reperfusion through a metabolic shift of glucose flux from glycolysis towards the pentose phosphate pathway. L2HG offers a novel mechanism for eliminating reactive oxygen species from myocardial tissue, mitigating redox stress, reducing myocardial infarct size, and preserving high-energy phosphates and cardiac function. Targeting L2HG levels through L2HGDH activity may serve as a new therapeutic strategy for cardiovascular diseases related to oxidative injury.
Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Animales , Glucosa/farmacología , Glutaratos , Mamíferos , Ratones , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Estrés Oxidativo , Oxígeno , Fosfatos/farmacología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
For cells to obtain inorganic phosphate, ectoenzymes in the plasma membrane, which contain a catalytic site facing the extracellular environment, hydrolyze phosphorylated molecules. In this study, we show that increased Pi levels in the extracellular environment promote a decrease in ecto-phosphatase activity, which is associated with Pi-induced oxidative stress. High levels of Pi inhibit ecto-phosphatase because Pi generates H2 O2 . Ecto-phosphatase activity is inhibited by H2 O2 , and this inhibition is selective for phospho-tyrosine hydrolysis. Additionally, it is shown that the mechanism of inhibition of ecto-phosphatase activity involves lipid peroxidation. In addition, the inhibition of ecto-phosphatase activity by H2 O2 is irreversible. These findings have new implications for understanding ecto-phosphatase regulation in the tumor microenvironment. H2 O2 stimulated by high Pi inhibits ecto-phosphatase activity to prevent excessive accumulation of extracellular Pi, functioning as a regulatory mechanism of Pi variations in the tumor microenvironment.
Asunto(s)
Neoplasias de la Mama , Peróxido de Hidrógeno , Humanos , Femenino , Peróxido de Hidrógeno/farmacología , Fosfatos/farmacología , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolasas , Hidrólisis , Microambiente TumoralRESUMEN
Spectinamides are a novel class of narrow-spectrum antitubercular agents with the potential to treat drug-resistant tuberculosis infections. Spectinamide 1810 has shown a good safety record following subcutaneous injection in mice or infusion in rats but exhibits transient acute toxicity following bolus administration in either species. To improve the therapeutic index of 1810, an injectable prodrug strategy was explored. The injectable phosphate prodrug 3408 has a superior maximum tolerated dose compared to 1810 or Gentamicin. Following intravenous administration in rodents, prodrug 3408 was quickly converted to 1810. The resulting 1810 exposure and pharmacokinetic profile after 3408 administration was identical to equivalent molar amounts of 1810 given directly by intravenous administration. 3408 and the parent 1810 exhibited similar overall efficacy in a BALB/c acute tuberculosis efficacy model. Delivery of 1810 in phosphate prodrug form, therefore, holds the potential to improve further the therapeutic index of an already promising tuberculosis antibiotic.
Asunto(s)
Antituberculosos , Ratones Endogámicos BALB C , Profármacos , Profármacos/síntesis química , Profármacos/farmacología , Profármacos/química , Animales , Antituberculosos/síntesis química , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/farmacocinética , Ratones , Ratas , Pruebas de Sensibilidad Microbiana , Espectinomicina/farmacología , Espectinomicina/síntesis química , Espectinomicina/química , Fosfatos/química , Fosfatos/farmacología , Fosfatos/síntesis química , Mycobacterium tuberculosis/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Relación Estructura-ActividadRESUMEN
The tobacco mosaic virus coat protein (TMV-CP) is indispensable for the virus's replication, movement and transmission, as well as for the host plant's immune system to recognize it. It constitutes the outermost layer of the virus particle, and serves as an essential component of the virus structure. TMV-CP is essential for initiating and extending viral assembly, playing a crucial role in the self-assembly process of Tobacco Mosaic Virus (TMV). This research employed TMV-CP as a primary target for virtual screening, from which a library of 43,417 compounds was sourced and SH-05 was chosen as the lead compound. Consequently, a series of α-amide phosphate derivatives were designed and synthesized, exhibiting remarkable anti-TMV efficacy. The synthesized compounds were found to be beneficial in treating TMV, with compound 3g displaying a slightly better curative effect than Ningnanmycin (NNM) (EC50 = 304.54 µg/mL) at an EC50 of 291.9 µg/mL. Additionally, 3g exhibited comparable inactivation activity (EC50 = 63.2 µg/mL) to NNM (EC50 = 67.5 µg/mL) and similar protective activity (EC50 = 228.9 µg/mL) to NNM (EC50 = 219.7 µg/mL). Microscale thermal analysis revealed that the binding of 3g (Kd = 4.5 ± 1.9 µM) to TMV-CP showed the same level with NNM (Kd = 5.5 ± 2.6 µM). Results from transmission electron microscopy indicated that 3g could disrupt the structure of TMV virus particles. The toxicity prediction indicated that 3g was low toxicity. Molecular docking showed that 3g interacted with TMV-CP through hydrogen bond, attractive charge interaction and π-Cation interaction. This research provided a novel α-amide phosphate structure target TMV-CP, which may help the discovery of new anti-TMV agents in the future.
Asunto(s)
Antivirales , Proteínas de la Cápside , Fosfatos , Virus del Mosaico del Tabaco , Virus del Mosaico del Tabaco/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Fosfatos/química , Fosfatos/farmacología , Relación Estructura-Actividad , Estructura Molecular , Proteínas de la Cápside/antagonistas & inhibidores , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Amidas/química , Amidas/farmacología , Amidas/síntesis química , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Simulación del Acoplamiento MolecularRESUMEN
Cerium oxide (CeO2) nanoparticles, as a metal oxide nanomaterial, are increasingly used for various industrial and biomedical applications. Although their cytotoxicity to bacteria and the associated mechanisms have attracted particular attention, the mechanisms behind their antifungal effects have remained unclear. This study investigated the antifungal properties of CeO2, focusing on Aspergillus oryzae. CeO2 inhibited fungal spore germination on solid substrates, and the effect was fungistatic rather than fungicidal. CeO2 inhibited fungal growth, especially under UV irradiation, and induced reactive oxygen species (ROS) production. Tocopherol reduced the intracellular ROS levels and the growth-inhibitory effects of CeO2, suggesting that ROS are involved in these growth-inhibitory effects. Transcriptomic analysis revealed upregulated expression of genes related to phospholipases and phosphate metabolism. CeO2 affected phosphate ion concentration in the medium, potentially influencing cellular responses. This research provided valuable insights into the antifungal effects of CeO2 application, which differ from those of conventional photocatalysts like TiO2.
Asunto(s)
Antifúngicos , Cerio , Especies Reactivas de Oxígeno , Cerio/farmacología , Cerio/química , Antifúngicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Aspergillus oryzae/efectos de los fármacos , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Esporas Fúngicas/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas/química , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Rayos Ultravioleta , Pruebas de Sensibilidad Microbiana , Fosfatos/farmacologíaRESUMEN
As phosphorus is one of the most limiting nutrients in many natural and agricultural ecosystems, plants have evolved strategies that cope with its scarcity. Genetic approaches have facilitated the identification of several molecular elements that regulate the phosphate (Pi) starvation response (PSR) of plants, including the master regulator of the transcriptional response to phosphate starvation PHOSPHATE STARVATION RESPONSE1 (PHR1). However, the chromatin modifications underlying the plant transcriptional response to phosphate scarcity remain largely unknown. Here, we present a detailed analysis of changes in chromatin accessibility during phosphate starvation in Arabidopsis thaliana root cells. Root cells undergo a genome-wide remodeling of chromatin accessibility in response to Pi starvation that is often associated with changes in the transcription of neighboring genes. Analysis of chromatin accessibility in the phr1 phl2 double mutant revealed that the transcription factors PHR1 and PHL2 play a key role in remodeling chromatin accessibility in response to Pi limitation. We also discovered that PHR1 and PHL2 play an important role in determining chromatin accessibility and the associated transcription of many genes under optimal Pi conditions, including genes involved in the PSR. We propose that a set of transcription factors directly activated by PHR1 in Pi-starved root cells trigger a second wave of epigenetic changes required for the transcriptional activation of the complete set of low-Pi-responsive genes.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genoma de Planta , Fosfatos/administración & dosificación , Fosfatos/farmacología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Fosfatos/metabolismo , Raíces de Plantas/citología , Factores de Transcripción/genéticaRESUMEN
Phosphate bioactive glass has been studied for its advanced biodegradability and active ion release capability. Our previous research found that phosphate glass containing (P2O5)-(Na2O)-(TiO2)-(CaO)-(SrO) or (ZnO) showed good biocompatibility with MG63 and hMSCs. This study further investigated the application of 5 mol% zinc oxide or 17.5 mol% strontium oxide in titanium-doped phosphate glass for bone tissue engineering. Ti-Ca-Na-Phosphate glasses, incorporating 5% zinc oxide or 17.5% strontium oxide, were made with melting quenching technology. The pre-osteoblast cell line MC3T3-E1 was cultured for indirect contact tests with graded diluted phosphate glass extractions and for direct contact tests by seeding cells on glass disks. The cell viability and cytotoxicity were analysed in vitro over 7 days. In vivo studies utilized the tibial defect model with or without glass implants. The micro-CT analysis was performed after surgery and then at 2, 6, and 12 weeks. Extractions from both zinc and strontium phosphate glasses showed no negative impact on MC3T3-E1 cell viability. Notably, non-diluted Zn-Ti-Ca-Na-phosphate glass extracts significantly increased cell viability by 116.8% (P < 0.01). Furthermore, MC3T3-E1 cells cultured with phosphate glass disks exhibited no increase in LDH release compared with the control group. Micro-CT images revealed that, over 12 weeks, both zinc-doped and strontium-doped phosphate glasses demonstrated good bone incorporation and longevity compared to the no-implant control. Titanium-doped phosphate glasses containing 5 mol% zinc oxide, or 17.5 mol% strontium oxide have promising application potential for bone regeneration research.
Asunto(s)
Regeneración Ósea , Supervivencia Celular , Vidrio , Fosfatos , Estroncio , Titanio , Estroncio/química , Estroncio/farmacología , Regeneración Ósea/efectos de los fármacos , Animales , Ratones , Fosfatos/química , Fosfatos/farmacología , Vidrio/química , Titanio/química , Supervivencia Celular/efectos de los fármacos , Ensayo de Materiales , Zinc/química , Línea Celular , Osteoblastos/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos/métodos , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Microtomografía por Rayos XRESUMEN
Cresyl Diphenyl Phosphate (CDP), as a novel organophosphate esters (OPEs), achieves widely used and exposed in multiple industries. However, its male reproductive toxicity and underlying mechanism remains unclear. In vivo, male mice were gavaged with CDP (0, 4, 20, or 100 mg/kg/d) for 8 weeks. And we treated TM3, TM4 and GC-2 cells with 0, 10, 25, and 50 µM CDP for 24 h to detect its reproductive toxicity effect in vitro. In our study, we revealed that CDP inhibited proliferation and induced apoptosis in mice testis and GC-2 cells, thereby leading to the decreased sperm quality. In mechanism, CDP trigger the oxidative stress and ROS production, thus partially causing DNA damage and cell apoptosis. Moreover, CDP exposure causes injury to Ledyig cells and Sertoli cells, thus disturbing the testicular microenvironment and inhibiting spermatogonia proliferation. In conclusion, this research reveals multiple adverse impacts of CDP on the male reproductive system and calls for further study of the toxicological effects of CDP on human health.
Asunto(s)
Compuestos de Bifenilo , Semen , Testículo , Humanos , Masculino , Animales , Ratones , Espermatozoides , Espermatogénesis , Fosfatos/farmacologíaRESUMEN
Symbiotic interactions play a vital role in maintaining the phosphate (Pi) nutrient status of host plants and providing resilience during biotic and abiotic stresses. Serendipita indica, a mycorrhiza-like fungus, supports plant growth by transporting Pi to the plant. Despite the competitive behaviour of arsenate (AsV) with Pi, the association with S. indica promotes plant growth under arsenic (As) stress by reducing As bioavailability through adsorption, accumulation, and precipitation within the fungus. However, the capacity of S. indica to enhance Pi accumulation and utilization under As stress remains unexplored. Axenic studies revealed that As supply significantly reduces intracellular ACPase activity in S. indica, while extracellular ACPase remains unaffected. Further investigations using Native PAGE and gene expression studies confirmed that intracellular ACPase (isoform2) is sensitive to As, whereas extracellular ACPase (isoform1) is As-insensitive. Biochemical analysis showed that ACPase (isoform1) has a Km of 0.5977 µM and Vmax of 0.1945 Unit/min. In hydroponically cultured tomato seedlings, simultaneous inoculation of S. indica with As on the 14thday after seed germination led to hyper-colonization, increased root/shoot length, biomass, and induction of ACPase expression and secretion under As stress. Arsenic-treated S. indica colonized groups (13.33 µM As+Si and 26.67 µM As+Si) exhibited 8.28-19.14 and 1.71-3.45-fold activation of ACPase in both rhizospheric media and root samples, respectively, thereby enhancing Pi availability in the surrounding medium under As stress. Moreover, S. indica (13.33 µM As+Si and 26.67 µM As+Si) significantly improved Pi accumulation in roots by 7.26 and 9.46 times and in shoots by 4.36 and 8.85 times compared to the control. Additionally, S. indica induced the expression of SiPT under As stress, further improving Pi mobilization. Notably, fungal colonization also restricted As mobilization from the hydroponic medium to the shoot, with a higher amount of As (191.01 ppm As in the 26.67 µM As+Si group) accumulating in the plant's roots. The study demonstrates the performance of S. indica under As stress in enhancing Pi mobilization while limiting As uptake in the host plant. These findings provide the first evidence of the As-Pi interaction in the AM-like fungus S. indica, indicating reduced As uptake and regulation of PHO genes (ACPase and SiPT genes) to increase Pi acquisition. These data also lay the foundation for the rational use of S. indica in agricultural practices.
Asunto(s)
Fosfatasa Ácida , Arsénico , Basidiomycota , Micorrizas , Arsénico/toxicidad , Arsénico/metabolismo , Basidiomycota/metabolismo , Micorrizas/fisiología , Fosfatos/farmacología , Fosfatos/metabolismo , Raíces de Plantas/metabolismo , Fosfatasa Ácida/metabolismo , Fosfatasa Ácida/farmacologíaRESUMEN
Diphenyl phosphate (DPhP) is one of the frequently used derivatives of aryl phosphate esters and is used as a plasticizer in industrial production. Like other plasticizers, DPhP is not chemically bound and can easily escape into the environment, thereby affecting human health. DPhP has been associated with developmental toxicity, reproductive toxicity, neurodevelopmental toxicity, and interference with thyroid homeostasis. However, understanding of the underlying mechanism of DPhP on the reproductive toxicity of GC-2spd(ts) cells remains limited. For the first time, we investigated the effect of DPhP on GC-2spd(ts) cell apoptosis. By decreasing nuclear factor erythroid-derived 2-related factor (Nrf2)/p53 signaling, DPhP inhibited autophagy and promoted apoptosis. DPhP reduced total antioxidant capacity and nuclear Nrf2 and its downstream target gene expression. In addition, we investigated the protective effects of Curcumin (Cur) against DPhP toxicity. Cur attenuated the DPhP-induced rise in p53 expression while increasing Nrf2 expression. Cur inhibited DPhP-induced apoptosis in GC-2spd(ts) cells by activating autophagy via Nrf2/p53 signaling. In conclusion, our study provides new insights into the reproductive toxicity hazards of DPhP and demonstrates that Cur is an important therapeutic agent for alleviating DPhP-induced reproductive toxicity by regulating Nrf2/p53 signaling.
Asunto(s)
Compuestos de Bifenilo , Curcumina , Humanos , Curcumina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacología , Apoptosis , Plastificantes , AutofagiaRESUMEN
Acrylic resins are widely used as the main components in removable orthodontic appliances. However, poor oral hygiene and maintenance of orthodontic appliances provide a suitable environment for the growth of pathogenic microorganisms. In this study, strontium-modified phosphate-based glass (Sr-PBG) was added to orthodontic acrylic resin at 0% (control), 3.75%, 7.5%, and 15% by weight to evaluate the surface and physicochemical properties of the novel material and its in vitro antifungal effect against Candida albicans (C. albicans). Surface microhardness and contact angle did not vary between the control and 3.75% Sr-PBG groups (p > 0.05), and the flexural strength was lower in the experimental groups than in the control group (p < 0.05), but no difference was found with Sr-PBG content (p > 0.05). All experimental groups showed an antifungal effect at 24 and 48 h compared to that in the control group (p < 0.05). This study demonstrated that 3.75% Sr-PBG exhibits antifungal effects against C. albicans along with suitable physicochemical properties, which may help to minimize the risk of adverse effects associated with harmful microbial living on removable orthodontic appliances and promote the use of various materials.
Asunto(s)
Resinas Acrílicas , Antifúngicos , Candida albicans , Vidrio , Ensayo de Materiales , Fosfatos , Estroncio , Propiedades de Superficie , Candida albicans/efectos de los fármacos , Resinas Acrílicas/química , Estroncio/farmacología , Estroncio/química , Antifúngicos/farmacología , Vidrio/química , Fosfatos/farmacología , Polimerizacion , Dureza , Resistencia Flexional , Humanos , Técnicas In VitroRESUMEN
OBJECTIVE: Here, we report a new method to increase the therapeutic potential of mesenchymal stem/stromal cells (MSCs) for ischemic wound healing. We tested biological effects of MSCs modified with E-selectin, a cell adhesion molecule capable of inducing postnatal neovascularization, on a translational murine model. BACKGROUND: Tissue loss significantly worsens the risk of extremity amputation for patients with chronic limb-threatening ischemia. MSC-based therapeutics hold major promise for wound healing and therapeutic angiogenesis, but unmodified MSCs demonstrate only modest benefits. METHODS: Bone marrow cells harvested from FVB/ROSA26Sor mTmG donor mice were transduced with E-selectin-green fluorescent protein (GFP)/AAV-DJ or GFP/AAV-DJ (control). Ischemic wounds were created via a 4 mm punch biopsy in the ipsilateral limb after femoral artery ligation in recipient FVB mice and subsequently injected with phosphate-buffered saline or 1×10 6 donor MSC GFP or MSC E-selectin-GFP . Wound closure was monitored daily for 7 postoperative days, and tissues were harvested for molecular and histologic analysis and immunofluorescence. Whole-body DiI perfusion and confocal microscopy were utilized to evaluate wound angiogenesis. RESULTS: Unmodified MSCs do not express E-selectin, and MSC E-selectin-GFP gain stronger MSC phenotype yet maintain trilineage differentiation and colony-forming capability. MSC E-selectin-GFP therapy accelerates wound healing compared with MSC GFP and phosphate-buffered saline treatment. Engrafted MSC E-selectin-GFP manifest stronger survival and viability in wounds at postoperative day 7. Ischemic wounds treated with MSC E-selectin-GFP exhibit more abundant collagen deposition and enhanced angiogenic response. CONCLUSIONS: We establish a novel method to potentiate regenerative and proangiogenic capability of MSCs by modification with E-selectin/adeno-associated virus. This innovative therapy carries the potential as a platform worthy of future clinical studies.
Asunto(s)
Selectina E , Trasplante de Células Madre Mesenquimatosas , Ratones , Animales , Cicatrización de Heridas/fisiología , Extremidades , Fosfatos/farmacologíaRESUMEN
Salinity severely affects crop yield by hindering nitrogen uptake and reducing plant growth. Plant growth-promoting bacteria (PGPB) are capable of providing cross-protection against biotic/abiotic stresses and facilitating plant growth. Genome-level knowledge of PGPB is necessary to translate the knowledge into a product as efficient biofertilizers and biocontrol agents. The current study aimed to isolate and characterize indigenous plant growth-promoting strains with the potential to promote plant growth under various stress conditions. In this regard, 72 bacterial strains were isolated from various saline-sodic soil/lakes; 19 exhibited multiple in vitro plant growth-promoting traits, including indole 3 acetic acid production, phosphate solubilization, siderophore synthesis, lytic enzymes production, biofilm formation, and antibacterial activities. To get an in-depth insight into genome composition and diversity, whole-genome sequence and genome mining of one promising Bacillus paralicheniformis strain ES-1 were performed. The strain ES-1 genome carries 12 biosynthetic gene clusters, at least six genomic islands, and four prophage regions. Genome mining identified plant growth-promoting conferring genes such as phosphate solubilization, nitrogen fixation, tryptophan production, siderophore, acetoin, butanediol, chitinase, hydrogen sulfate synthesis, chemotaxis, and motility. Comparative genome analysis indicates the region of genome plasticity which shapes the structure and function of B. paralicheniformis and plays a crucial role in habitat adaptation. The strain ES-1 has a relatively large accessory genome of 649 genes (~ 19%) and 180 unique genes. Overall, these results provide valuable insight into the bioactivity and genomic insight into B. paralicheniformis strain ES-1 with its potential use in sustainable agriculture.
Asunto(s)
Bacillus , Sideróforos , Sideróforos/genética , Bacillus/genética , Bacterias/genética , Cloruro de Sodio , Antibacterianos , Fosfatos/farmacologíaRESUMEN
BACKGROUND: Radiotherapy can cause kidney injury in patients with cervical cancer. This study aims to investigate the possible molecular mechanisms by which CpG-ODNs (Cytosine phosphate guanine-oligodeoxynucleotides) regulate the PARP1 (poly (ADP-ribose) polymerase 1)/XRCC1 (X-ray repair cross-complementing 1) signaling axis and its impact on radiation kidney injury (RKI) in cervical cancer radiotherapy. METHODS: The GSE90627 dataset related to cervical cancer RKI was obtained from the Gene Expression Omnibus (GEO) database. Bioinformatics databases and R software packages were used to analyze the target genes regulated by CpG-ODNs. A mouse model of RKI was established by subjecting C57BL/6JNifdc mice to X-ray irradiation. Serum blood urea nitrogen (BUN) and creatinine levels were measured using an automated biochemical analyzer. Renal tissue morphology was observed through HE staining, while TUNEL staining was performed to detect apoptosis in renal tubular cells. ELISA was conducted to measure levels of oxidative stress-related factors in mouse serum and cell supernatant. An in vitro cell model of RKI was established using X-ray irradiation on HK-2 cells for mechanism validation. RT-qPCR was performed to determine the relative expression of PARP1 mRNA. Cell proliferation activity was assessed using the CCK-8 assay, and Caspase 3 activity was measured in HK-2 cells. Immunofluorescence was used to determine γH2AX expression. RESULTS: Bioinformatics analysis revealed that the downstream targets regulated by CpG-ODNs in cervical cancer RKI were primarily PARP1 and XRCC1. CpG-ODNs may alleviate RKI by inhibiting DNA damage and oxidative stress levels. This resulted in significantly decreased levels of BUN and creatinine in RKI mice, as well as reduced renal tubular and glomerular damage, lower apoptosis rate, decreased DNA damage index (8-OHdG), and increased levels of antioxidant factors associated with oxidative stress (SOD, CAT, GSH, GPx). Among the CpG-ODNs, CpG-ODN2006 had a more pronounced effect. CpG-ODNs mediated the inhibition of PARP1, thereby suppressing DNA damage and oxidative stress response in vitro in HK-2 cells. Additionally, PARP1 promoted the formation of the PARP1 and XRCC1 complex by recruiting XRCC1, which in turn facilitated DNA damage and oxidative stress response in renal tubular cells. Overexpression of either PARP1 or XRCC1 reversed the inhibitory effects of CpG-ODN2006 on DNA damage and oxidative stress in the HK-2 cell model and RKI mouse model. CONCLUSION: CpG-ODNs may mitigate cervical cancer RKI by blocking the activation of the PARP1/XRCC1 signaling axis, inhibiting DNA damage and oxidative stress response in renal tubule epithelial cells.