Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Transl Med ; 21(1): 261, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069596

RESUMEN

BACKGROUND: Acute gouty arthritis is inflammatory joint arthritis. Gouty arthritis (GA) involves multiple pathological processes. Deposition of joints by monosodium urate (MSU) crystals has been shown to play a critical role in the injury process. Due to the different effects of MSU stimulation on the joints, the exact changes in the synovial fluid are unknown. We want to explore the changes in proteins and metabolites in the joints of gouty arthritis. Regulating various functional substances in the joint can reduce inflammation and pain symptoms. METHODS: 10 patients with gouty knee arthritis and 10 normal controls were selected from clinical, surgical cases. The biological function of the metabolome was assessed by co-expression network analysis. A molecular network based on metabolomic and proteomic data was constructed to study critical molecules. The fundamental molecular changes in the relevant pathways were then verified by western blot. RESULTS: Proteomic analysis showed that the expressions of proteases Cathepsin B, Cathepsin D, Cathepsin G, and Cathepsin S in synovial fluid patients with gouty arthritis were significantly increased. Enrichment analysis showed a positive correlation between lysosomal and clinical inflammatory cell shape changes. Untargeted metabolomic analysis revealed that lipids and lipoids accumulate, inhibit autophagic flux, and modulate inflammation and immunity in gouty arthritis patients. It was determined that the accumulation of lipid substances such as phospholipase A2 led to the imbalanced state of the autophagy-lysosome complex, and the differentially expressed metabolites of Stearoylcarnitine, Tetradecanoylcarnitine, Palmitoylcarnitine were identified (|log2 fold change|> 1.5, adjusted P value < 0.05 and variable importance in prediction (VIP) > 1.5). The autophagy-lysosomal pathway was found to be associated with gouty knee arthritis. Essential molecular alterations of multi-omics networks in gouty knee arthritis patients compared with normal controls involve acute inflammatory response, exosomes, immune responses, lysosomes, linoleic acid metabolism, and synthesis. CONCLUSIONS: Comprehensive analysis of proteomic and untargeted metabolomics revealed protein and characteristic metabolite alterations in gouty arthritis, it mainly involves lipids and lipid like molecules, phospholipase A2 and autophagic lysosomes. This study describes the pathological characteristics, pathways, potential predictors and treatment goals of gouty knee arthritis.


Asunto(s)
Artritis Gotosa , Humanos , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Artritis Gotosa/patología , Proteómica , Ácido Úrico , Inflamación/metabolismo , Metabolómica , Fosfolipasas A2/uso terapéutico , Lípidos
2.
BMC Pulm Med ; 23(1): 494, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057837

RESUMEN

BACKGROUND: Ventilator-induced lung injury (VILI) is a clinical complication of mechanical ventilation observed in patients with acute respiratory distress syndrome. It is characterized by inflammation mediated by inflammatory cells and their secreted mediators. METHODS: To investigate the mechanisms underlying VILI, a C57BL/6J mouse model was induced using high tidal volume (HTV) mechanical ventilation. Mice were pretreated with Clodronate liposomes to deplete alveolar macrophages or administered normal bone marrow-derived macrophages or Group V phospholipase A2 (gVPLA2) intratracheally to inhibit bone marrow-derived macrophages. Lung tissue and bronchoalveolar lavage fluid (BALF) were collected to assess lung injury and measure Ca2 + concentration, gVPLA2, downstream phosphorylated cytoplasmic phospholipase A2 (p-cPLA2), prostaglandin E2 (PGE2), protein expression related to mitochondrial dynamics and mitochondrial damage. Cellular experiments were performed to complement the animal studies. RESULTS: Depletion of alveolar macrophages attenuated HTV-induced lung injury and reduced gVPLA2 levels in alveolar lavage fluid. Similarly, inhibition of alveolar macrophage-derived gVPLA2 had a similar effect. Activation of the cPLA2/PGE2/Ca2 + pathway in alveolar epithelial cells by gVPLA2 derived from alveolar macrophages led to disturbances in mitochondrial dynamics and mitochondrial dysfunction. The findings from cellular experiments were consistent with those of animal experiments. CONCLUSIONS: HTV mechanical ventilation induces the secretion of gVPLA2 by alveolar macrophages, which activates the cPLA2/PGE2/Ca2 + pathway, resulting in mitochondrial dysfunction. These findings provide insights into the pathogenesis of VILI and may contribute to the development of therapeutic strategies for preventing or treating VILI.


Asunto(s)
Enfermedades Mitocondriales , Lesión Pulmonar Inducida por Ventilación Mecánica , Humanos , Ratones , Animales , Macrófagos Alveolares/metabolismo , Dinoprostona/metabolismo , Dinoprostona/uso terapéutico , Ratones Endogámicos C57BL , Pulmón , Líquido del Lavado Bronquioalveolar , Fosfolipasas A2/metabolismo , Fosfolipasas A2/uso terapéutico , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Fosfolipasas A2 Citosólicas/metabolismo
3.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37373367

RESUMEN

Bee venom is a traditional drug used to treat the nervous system, musculoskeletal system, and autoimmune diseases. A previous study found that bee venom and one of its components, phospholipase A2, can protect the brain by suppressing neuroinflammation and can also be used to treat Alzheimer's disease. Thus, new composition bee venom (NCBV), which has an increased phospholipase A2 content of up to 76.2%, was developed as a treatment agent for Alzheimer's disease by INISTst (Republic of Korea). The aim of this study was to characterize the pharmacokinetic profiles of phospholipase A2 contained in NCBV in rats. Single subcutaneous administration of NCBV at doses ranging from 0.2 mg/kg to 5 mg/kg was conducted, and pharmacokinetic parameters of bee venom-derived phospholipase A2 (bvPLA2) increased in a dose-dependent manner. Additionally, no accumulation was observed following multiple dosings (0.5 mg/kg/week), and other constituents of NCBV did not affect the pharmacokinetic profile of bvPLA2. After subcutaneous injection of NCBV, the tissue-to-plasma ratios of bvPLA2 for the tested nine tissues were all <1.0, indicating a limited distribution of the bvPLA2 within the tissues. The findings of this study may help understand the pharmacokinetic characteristics of bvPLA2 and provide useful information for the clinical application of NCBV.


Asunto(s)
Enfermedad de Alzheimer , Venenos de Abeja , Fosfolipasas A2 , Animales , Ratas , Enfermedad de Alzheimer/tratamiento farmacológico , Venenos de Abeja/enzimología , Inyecciones Subcutáneas , Fosfolipasas A2/uso terapéutico , Distribución Tisular
4.
J Neuroinflammation ; 13: 10, 2016 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-26772975

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a severe neuroinflammatory disease. CD4(+)Foxp3(+) regulatory T cells (Tregs) modulate various inflammatory diseases via suppressing Th cell activation. There are increasing evidences that Tregs have beneficial roles in neurodegenerative diseases. Previously, we found the population of Treg cells was significantly increased by bee venom phospholipase A2 (bvPLA2) treatment in vivo and in vitro. METHODS: To examine the effects of bvPLA2 on AD, bvPLA2 was administered to 3xTg-AD mice, mouse model of Alzheimer's disease. The levels of amyloid beta (Aß) deposits in the hippocampus, glucose metabolism in the brain, microglia activation, and CD4(+) T cell infiltration were analyzed to evaluate the neuroprotective effect of bvPLA2. RESULTS: bvPLA2 treatment significantly enhanced the cognitive function of the 3xTg-AD mice and increased glucose metabolism, as assessed with 18F-2 fluoro-2-deoxy-D-glucose ([F-18] FDG) positron emission tomography (PET). The levels of Aß deposits in the hippocampus were dramatically decreased by bvPLA2 treatment. This neuroprotective effect of bvPLA2 was associated with microglial deactivation and reduction in CD4(+) T cell infiltration. Interestingly, the neuroprotective effects of bvPLA2 were abolished in Treg-depleted mice. CONCLUSIONS: The present studies strongly suggest that the increase of Treg population by bvPLA2 treatment might inhibit progression of AD in the 3xTg AD mice.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Fosfolipasas A2/uso terapéutico , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Antígenos CD/metabolismo , Venenos de Abeja/química , Peso Corporal/efectos de los fármacos , Peso Corporal/genética , Modelos Animales de Enfermedad , Reacción de Fuga/efectos de los fármacos , Fluorodesoxiglucosa F18/farmacocinética , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Discapacidades para el Aprendizaje/tratamiento farmacológico , Discapacidades para el Aprendizaje/etiología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Mutación/genética , Presenilina-1/genética , Cintigrafía , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/fisiología , Proteínas tau/genética
5.
Cell Mol Life Sci ; 70(24): 4645-58, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23657358

RESUMEN

Gram-positive and -negative bacteria are dangerous pathogens that may cause human infection diseases, especially due to the increasingly high prevalence of antibiotic resistance, which is becoming one of the most alarming clinical problems. In the search for novel antimicrobial compounds, snake venoms represent a rich source for such compounds, which are produced by specialized glands in the snake's jawbone. Several venom compounds have been used for antimicrobial effects. Among them are phospholipases A2, which hydrolyze phospholipids and could act on bacterial cell surfaces. Moreover, metalloproteinases and L-amino acid oxidases, which represent important enzyme classes with antimicrobial properties, are investigated in this study. Finally, antimicrobial peptides from multiple classes are also found in snake venoms and will be mentioned. All these molecules have demonstrated an interesting alternative for controlling microorganisms that are resistant to conventional antibiotics, contributing in medicine due to their differential mechanisms of action and versatility. In this review, snake venom antimicrobial compounds will be focused on, including their enormous biotechnological applications for drug development.


Asunto(s)
Antiinfecciosos/uso terapéutico , Venenos de Serpiente/uso terapéutico , Animales , Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Humanos , L-Aminoácido Oxidasa/química , L-Aminoácido Oxidasa/uso terapéutico , Metaloproteasas/química , Metaloproteasas/uso terapéutico , Fosfolipasas A2/química , Fosfolipasas A2/uso terapéutico , Conformación Proteica , Venenos de Serpiente/química
6.
Pharmacol Rep ; 75(6): 1454-1473, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926795

RESUMEN

Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.


Asunto(s)
Mordeduras de Serpientes , Venenos de Serpiente , Animales , Ovinos , Humanos , Caballos , Venenos de Serpiente/uso terapéutico , Acetatos/uso terapéutico , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/metabolismo , Fosfolipasas A2/metabolismo , Fosfolipasas A2/uso terapéutico , Inflamación
7.
Neuro Oncol ; 24(11): 1871-1883, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35312010

RESUMEN

BACKGROUND: Targeting glioblastoma (GBM) energy metabolism through multiple metabolic pathways has emerged as an effective therapeutic approach. Dual inhibition of phospholipid and mitochondrial metabolism with cytoplasmic phospholipase A2 (cPLA2) knockdown and metformin treatment could be a potential strategy. However, the strategic prerequisite is to explore a carrier capable of co-delivering the therapeutic combination to cross the blood-brain barrier (BBB) and preferentially accumulate at the GBM site. METHODS: Blood exosomes (Exos) were selected as the combination delivery carriers. The cellular uptake of Exos and the therapeutic effects of the combination strategy were evaluated in primary GBM cells. In vivo GBM-targeted delivery efficiency and anti-GBM efficacy were tested in a patient-derived xenograft (PDX) model. RESULTS: Here, we showed that the Exos-mediated cPLA2 siRNA/metformin combined strategy could regulate GBM energy metabolism for personalized treatment. Genomic analysis and experiments showed that polymerase 1 and transcript release factor (PTRF, a biomarker of GBM) positively regulated the uptake of Exos by GBM cells, confirming the feasibility of the delivery strategy. Further, Exos could co-load cPLA2 siRNA (sicPLA2) and metformin and co-deliver them across the BBB and into GBM tissue. The mitochondrial energy metabolism of GBM was impaired with this combination treatment (Exos-Met/sicPLA2). In the PDX GBM model, systemic administration of Exos-Met/sicPLA2 reduced tumor growth and prolonged survival. CONCLUSIONS: Our findings demonstrated that Exos-based combined delivery of sicPLA2 and metformin selectively targeted the GBM energy metabolism to achieve antitumor effects, showing its potential as a personalized therapy for GBM patients.


Asunto(s)
Exosomas , Glioblastoma , Metformina , Humanos , Línea Celular Tumoral , Metabolismo Energético , Exosomas/metabolismo , Glioblastoma/patología , Fosfolipasas A2/metabolismo , Fosfolipasas A2/uso terapéutico , Fosfolipasas A2 Citosólicas/metabolismo , ARN Interferente Pequeño , Ensayos Antitumor por Modelo de Xenoinjerto , Animales
8.
Toxins (Basel) ; 14(7)2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35878219

RESUMEN

In India, polyvalent antivenom is the mainstay treatment for snakebite envenoming. Due to batch-to-batch variation in antivenom production, manufacturers have to estimate its efficacy at each stage of IgG purification using the median effective dose which involves 100-120 mice for each batch. There is an urgent need to replace the excessive use of animals in snake antivenom production using in vitro alternatives. We tested the efficacy of a single batch of polyvalent antivenom from VINS bioproducts limited on Echis carinatus venom collected from three different locations-Tamil Nadu (ECVTN), Goa (ECVGO) and Rajasthan (ECVRAJ)-using different in vitro assays. Firstly, size-exclusion chromatography (SEC-HPLC) was used to quantify antivenom-venom complexes to assess the binding efficiency of the antivenom. Secondly, clotting, proteolytic and PLA2 activity assays were performed to quantify the ability of the antivenom to neutralize venom effects. The use of both binding and functional assays allowed us to measure the efficacy of the antivenom, as they represent multiple impacts of snake envenomation. The response from the assays was recorded for different antivenom-venom ratios and the dose-response curves were plotted. Based on the parameters that explained the curves, the efficacy scores (ES) of antivenom were computed. The binding assay revealed that ECVTN had more antivenom-venom complexes formed compared to the other venoms. The capacity of antivenom to neutralize proteolytic and PLA2 effects was lowest against ECVRAJ. The mean efficacy score of antivenom against ECVTN was the greatest, which was expected, as ECVTN is mainly used by antivenom manufacturers. These findings pave a way for the development of in vitro alternatives in antivenom efficacy assessment.


Asunto(s)
Mordeduras de Serpientes , Viperidae , Animales , Antivenenos/farmacología , Antivenenos/uso terapéutico , India , Ratones , Fosfolipasas A2/uso terapéutico , Mordeduras de Serpientes/metabolismo , Ponzoñas/uso terapéutico
9.
Iran J Med Sci ; 47(4): 300-313, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35919080

RESUMEN

Venomous arthropods such as scorpions and bees form one of the important groups with an essential role in medical entomology. Their venom possesses a mixture of diverse compounds, such as peptides, some of which have toxic effects, and enzymatic peptide Phospholipase A2 (PLA2) with a pharmacological potential in the treatment of a wide range of diseases. Bee and scorpion venom PLA2 group III has been used in immunotherapy, the treatment of neurodegenerative and inflammatory diseases. They were assessed for antinociceptive, wound healing, anti-cancer, anti-viral, anti-bacterial, anti-parasitic, and anti-angiogenesis effects. PLA2 has been identified in different species of scorpions and bees. The anti-leishmania, anti-bacterial, anti-viral, and anti-malarial activities of scorpion PLA2 still need further investigation. Many pieces of research have been stopped in the laboratory stage, and several studies need vast investigation in the clinical phase to show the pharmacological potential of PLA2. In this review, the medical significance of PLA2 from the venom of two arthropods, namely bees and scorpions, is discussed.


Asunto(s)
Venenos de Abeja , Venenos de Escorpión , Animales , Venenos de Abeja/química , Venenos de Abeja/farmacología , Venenos de Abeja/uso terapéutico , Abejas , Péptidos , Fosfolipasas A2/química , Fosfolipasas A2/farmacología , Fosfolipasas A2/uso terapéutico , Venenos de Escorpión/farmacología , Venenos de Escorpión/uso terapéutico , Escorpiones
11.
Chem Biol Interact ; 347: 109622, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34375656

RESUMEN

Glioblastoma multiforme (GBM) is a frequent form of malignant glioma. Strategic therapeutic approaches to treat this type of brain tumor currently involves a combination of surgery, radiotherapy and chemotherapy. Nevertheless, survival of GBM patients remains in the 12-15 months range following diagnosis. Development of novel therapeutic approaches for this malignancy is therefore of utmost importance. Interestingly, bee venom and its components have shown promising anti-cancer activities in various types of cancer even though information pertaining to GBMs have been limited. The current work was thus undertaken to better characterize the anti-cancer properties of bee venom and its components in Hs683, T98G and U373 human glioma cells. MTT-based cell viability assays revealed IC50 values of 7.12, 15.35 and 7.60 µg/mL for cell lines Hs683, T98G and U373 treated with bee venom, respectively. Furthermore, melittin treatment of these cell lines resulted in IC50 values of 7.77, 31.53 and 12.34 µg/mL, respectively. Cell viability assessment by flow cytometry analysis confirmed signs of late apoptosis and necrosis after only 1 h of treatment with either bee venom or melittin in all three cell lines. Immunoblotting-based quantification of apoptotic markers demonstrated increased expression of Bak and Bax, while Caspsase-3 levels were significantly lower when compared to control cells. Quantification by qRT-PCR showed increased expression levels of long non-coding RNAs RP11-838N2.4 and XIST in glioma cells treated with either bee venom or melittin. Overall, this study provides preliminary insight on molecular mechanisms via which bee venom and its main components can impact viability of glioma cells and warrants further investigation of its anticancer potential in gliomas.


Asunto(s)
Antineoplásicos/uso terapéutico , Glioblastoma/tratamiento farmacológico , Meliteno/uso terapéutico , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/metabolismo , Humanos , Linfocitos/efectos de los fármacos , Meliteno/toxicidad , Monocitos/efectos de los fármacos , Necrosis/tratamiento farmacológico , Fosfolipasas A2/uso terapéutico , ARN Largo no Codificante/metabolismo , Temozolomida/uso terapéutico
12.
Mol Pharm ; 7(2): 510-21, 2010 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-20163158

RESUMEN

The bioresponsive conjugate dextrin-phospholipase A2 (PLA2) is a novel anticancer polymer therapeutic. Dextrin conjugation decreases PLA2 bioactivity, but this can be restored following triggered degradation by alpha-amylase. The conjugate displays reduced hemolytic activity but retains, or shows enhanced, cytotoxicity in vitro that partially correlates with epidermal growth factor receptor (EGFR) expression. Here, we investigate further the mechanism of action of dextrin-PLA2 with the aim of judging its potential for combination with tyrosine kinase inhibitors (TKI) and/or chemotherapy and selecting the first models for in vivo evaluation. The endocytic fate of Oregon Green (OG)-labeled probes was assessed in MCF-7 cells. Whereas PLA2-OG showed greatest membrane binding, the dextrin-PLA2-OG conjugate displayed higher internalization. Moreover, cells incubated with PLA(2)-OG and dextrin-PLA2-OG showed an altered pattern of intracellular vesicle distribution compared to dextrin-OG. When cell lines known to express different levels of EGFR were used to assess cytotoxicity, free PLA2 activity was enhanced by addition of EGF whereas the conjugate was less cytotoxic, perhaps due to differences in their PK/PD profile. Co-incubation of cells with the TKI inhibitor, gefitinib, led to reduced cytotoxicity of both PLA2 and dextrin-PLA2 suggesting a TK-mediated PLA2 mechanism of action. However, the enhanced cytotoxicity seen in the presence of doxorubicin suggested potential for development of a dextrin-PLA2/doxorubicin combination therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Dextrinas/química , Quimioterapia Combinada/métodos , Fosfolipasas A2/química , Fosfolipasas A2/uso terapéutico , Antineoplásicos/química , Línea Celular Tumoral , Receptores ErbB/metabolismo , Citometría de Flujo , Gefitinib , Células HT29 , Humanos , Microscopía Confocal , Modelos Biológicos , Estructura Molecular , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinazolinas/uso terapéutico
13.
BMC Neurosci ; 10: 120, 2009 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-19775433

RESUMEN

BACKGROUND: Phospholipase A2 liberates free fatty acids and lysophospholipids upon hydrolysis of phospholipids and these products are often associated with detrimental effects such as inflammation and cerebral ischemia. The neuroprotective effect of neutral phospholipase from snake venom has been investigated. RESULTS: A neutral anticoagulant secretory phospholipase A2 (nPLA) from the venom of Naja sputatrix (Malayan spitting cobra) has been found to reduce infarct volume in rats subjected to focal transient cerebral ischemia and to alleviate the neuronal damage in organotypic hippocampal slices subjected to oxygen-glucose deprivation (OGD). Real-time PCR based gene expression analysis showed that anti-apoptotic and pro-survival genes have been up-regulated in both in vivo and in vitro models. Staurosporine or OGD mediated apoptotic cell death in astrocytoma cells has also been found to be reduced by nPLA with a corresponding reduction in caspase 3 activity. CONCLUSION: We have found that a secretory phospholipase (nPLA) purified from snake venom could reduce infarct volume in rodent stroke model. nPLA, has also been found to reduce neuronal cell death, apoptosis and promote cell survival in vitro ischemic conditions. In all conditions, the protective effects could be seen at sub-lethal concentrations of the protein.


Asunto(s)
Apoptosis/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Encéfalo/patología , Hipocampo/efectos de los fármacos , Fosfolipasas A2/uso terapéutico , Análisis de Varianza , Animales , Encéfalo/efectos de los fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Venenos Elapídicos/química , Glucosa/deficiencia , Hipocampo/metabolismo , Hipocampo/patología , Hipoxia , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Masculino , Análisis por Micromatrices , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Técnicas de Cultivo de Órganos , Fosfolipasas A2/aislamiento & purificación , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Activador de Tejido Plasminógeno/metabolismo , Células Tumorales Cultivadas
14.
Yao Xue Xue Bao ; 44(3): 231-41, 2009 Mar.
Artículo en Zh | MEDLINE | ID: mdl-19449519

RESUMEN

Inflammatory diseases are common medical conditions seen in disorders of human immune system. There is a great demand for anti-inflammatory drugs. There are major inflammatory mediators in arachidonic acid metabolic network. Several enzymes in this network have been used as key targets for the development of anti-inflammatory drugs. However, specific single-target inhibitors can not sufficiently control the network balance and may cause side effects at the same time. Most inflammation induced diseases come from the complicated coupling of inflammatory cascades involving multiple targets. In order to treat these complicated diseases, drugs that can intervene multi-targets at the same time attracted much attention. The goal of this review is mainly focused on the key enzymes in arachidonic acid metabolic network, such as phospholipase A2, cyclooxygenase, 5-lipoxygenase and eukotriene A4 hydrolase. Advance in single target and multi-targe inhibitors is summarized.


Asunto(s)
Antiinflamatorios/uso terapéutico , Ácido Araquidónico/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Inflamación/tratamiento farmacológico , Animales , Araquidonato 5-Lipooxigenasa/metabolismo , Araquidonato 5-Lipooxigenasa/uso terapéutico , Inhibidores de la Ciclooxigenasa/uso terapéutico , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Epóxido Hidrolasas/uso terapéutico , Humanos , Inhibidores de la Lipooxigenasa , Redes y Vías Metabólicas/efectos de los fármacos , Inhibidores de Fosfolipasa A2 , Fosfolipasas A2/metabolismo , Fosfolipasas A2/uso terapéutico , Prostaglandina-Endoperóxido Sintasas/metabolismo
15.
Int J Biol Macromol ; 140: 49-58, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31421173

RESUMEN

Naja spp. venom is a natural source of active compounds with therapeutic application potential. Phospholipase A2 (PLA2) is abundant in the venom of Naja spp. and can perform neurotoxicity, cytotoxicity, cardiotoxicity, and hematological disorders. The PLA2s from Naja spp. venoms are Asp 49 isoenzymes with the exception of PLA2 Cys 49 from Naja sagittifera. When looking at the functional aspects, the neurotoxicity occurs by PLA2 called ß-toxins that have affinity for phosphatidylcholine in nerve endings and synaptosomes membranes, and by α-toxins that block the nicotinic acetylcholine receptors in the neuromuscular junctions. In addition, these neurotoxins may inhibit K+ and Ca++ channels or even interfere with the Na+/K+/ATPase enzyme. The disturbance in the membrane fluidity also results in inhibition of the release of acetylcholine. The PLA2 can act as anticoagulants or procoagulant. The cytotoxicity exerted by PLA2s result from changes in the cardiomyocyte membranes, triggering cardiac failure and hemolysis. The antibacterial activity, however, is the result of alterations that decrease the stability of the lipid bilayer. Thus, the understanding of the structural and functional aspects of PLA2s can contribute to studies on the toxic and therapeutic mechanisms involved in the envenomation by Naja spp. and in the treatment of pathologies.


Asunto(s)
Proteínas Neurotóxicas de Elápidos , Naja , Unión Neuromuscular/metabolismo , Fosfolipasas A2 , Sinaptosomas/metabolismo , Animales , Proteínas Neurotóxicas de Elápidos/química , Proteínas Neurotóxicas de Elápidos/uso terapéutico , Unión Neuromuscular/patología , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfolipasas A2/química , Fosfolipasas A2/uso terapéutico , Relación Estructura-Actividad , Sinaptosomas/patología
16.
Toxins (Basel) ; 11(6)2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31248167

RESUMEN

Bee venom contains a number of pharmacologically active components, including enzymes and polypeptides such as phospholipase A2 (PLA2) and melittin, which have been shown to exhibit therapeutic benefits, mainly via attenuation of inflammation, neurotoxicity, and nociception. The individual components of bee venom may manifest distinct biological actions and therapeutic potential. In this study, the potential mechanisms of action of PLA2 and melittin, among different compounds purified from honey bee venom, were evaluated against Parkinson's disease (PD). Notably, bee venom PLA2 (bvPLA2), but not melittin, exhibited neuroprotective activity against PD in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP-induced behavioral deficits were also abolished after bvPLA2 treatment, depending on the PLA2 content. Further, bvPLA2 administration activated regulatory T cells (Tregs) while inhibiting inflammatory T helper (Th) 1 and Th17 cells in the MPTP mouse model of PD. These results indicate that bvPLA2, but not melittin, protected against MPTP and alleviated inflammation in PD. Thus, bvPLA2 is a promising and effective therapeutic agent in Parkinson's disease.


Asunto(s)
Venenos de Abeja/química , Fármacos Neuroprotectores/uso terapéutico , Trastornos Parkinsonianos/tratamiento farmacológico , Fosfolipasas A2/uso terapéutico , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Masculino , Meliteno/aislamiento & purificación , Meliteno/uso terapéutico , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/aislamiento & purificación , Fosfolipasas A2/aislamiento & purificación , Linfocitos T Reguladores/efectos de los fármacos
17.
Toxins (Basel) ; 11(7)2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31336883

RESUMEN

Spontaneous abortion represents a common form of embryonic loss caused by early pregnancy failure. In the present study, we investigated the prophylactic effects of bee venom phospholipase A2 (bvPLA2), a regulatory T cell (Treg) inducer, on a lipopolysaccharide (LPS)-induced abortion mouse model. Fetal loss, including viable implants, the fetal resorption rate, and the fetal weight, were measured after LPS and bvPLA2 treatment. The levels of serum and tissue inflammatory cytokines were determined. To investigate the involvement of the Treg population in bvPLA2-mediated protection against fetal loss, the effect of Treg depletion was evaluated following bvPLA2 and LPS treatment. The results clearly revealed that bvPLA2 can prevent fetal loss accompanied by growth restriction in the remaining viable fetus. When the LPS-induced abortion mice were treated with bvPLA2, Treg cells were significantly increased compared with those in the non-pregnant, PBS, and LPS groups. After LPS injection, the levels of proinflammatory cytokines were markedly increased compared with those in the PBS mouse group, while bvPLA2 treatment showed significantly decreased TNF-α and IFN-γ expression compared with that in the LPS group. The protective effects of bvPLA2 treatment were not detected in Treg-depleted abortion-prone mice. These findings suggest that bvPLA2 has protective effects in the LPS-induced abortion mouse model by regulating Treg populations.


Asunto(s)
Aborto Espontáneo/tratamiento farmacológico , Venenos de Abeja/enzimología , Lipopolisacáridos/toxicidad , Fosfolipasas A2/uso terapéutico , Aborto Espontáneo/sangre , Aborto Espontáneo/inducido químicamente , Aborto Espontáneo/inmunología , Animales , Citocinas/sangre , Citocinas/genética , Femenino , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Ratones Endogámicos C57BL , Fosfolipasas A2/farmacología , Embarazo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Útero/efectos de los fármacos , Útero/inmunología
18.
Toxins (Basel) ; 10(4)2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29614845

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by highly pruritic, erythematous, and eczematous skin plaques. We previously reported that phospholipase A2 (PLA2) derived from bee venom alleviates AD-like skin lesions induced by 2,4-dinitrochlorobenzene (DNCB) and house dust mite extract (Dermatophagoides farinae extract, DFE) in a murine model. However, the underlying mechanisms of PLA2 action in actopic dermatitis remain unclear. In this study, we showed that PLA2 treatment inhibited epidermal thickness, serum immunoglobulin E (IgE) and cytokine levels, macrophage and mast cell infiltration in the ear of an AD model induced by DFE and DNCB. In contrast, these effects were abrogated in CD206 mannose receptor-deficient mice exposed to DFE and DNCB in the ear. These data suggest that bvPLA2 alleviates atopic skin inflammation via interaction with CD206.


Asunto(s)
Antiinflamatorios/uso terapéutico , Venenos de Abeja/enzimología , Dermatitis Atópica/tratamiento farmacológico , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Fosfolipasas A2/uso terapéutico , Receptores de Superficie Celular/metabolismo , Animales , Antiinflamatorios/farmacología , Citocinas/sangre , Dermatitis Atópica/metabolismo , Dinitroclorobenceno , Inmunoglobulina E/sangre , Lectinas Tipo C/genética , Masculino , Receptor de Manosa , Lectinas de Unión a Manosa/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolipasas A2/farmacología , Pyroglyphidae , Receptores de Superficie Celular/genética
19.
Int Immunopharmacol ; 55: 128-132, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29253818

RESUMEN

This study aimed to evaluate the in vivo anti-Leishmania amazonensis activity of a Phospholipase A2 (Asp49-PLA2), isolated from Bothrops jararacussu venom, encapsulated in liposomes as a modified toxin release system. The activity of the liposomes was evaluated in BALB/c mice, previously infected with 1×105 of the parasite's promastigotes. The size of the paw lesion in Asp49-PLA2-liposomal-treated animals, after 21days, was observed as decreasing by 16% relative to the untreated control group and 12% by the Glucantime®-treated animals, which was used as a reference drug. At the end of the treatment, the animals were sacrificed and the paw and lymph node tissues were collected. Part of the collection was used to recover amastigotes and another to quantify cytokines and nitrites. In the group treated with Asp49-PLA2-liposomes the parasitic load was observed to be reduced by 73.5% in the macerated lymph node, compared to the control group. Comparatively, in the paw tissue was observed a reduction of 57.1%. The infected groups treated with Asp49-PLA2-liposomes showed significant production in TNF-α measured in lymph nodes and paw (43.73pg/mL±2.25 and 81.03pg/mL±5.52, respectively) and nitrite levels (31.28µM±0.58 and 35.64µM±5.08) also measured in lymph nodes and paw tissues, respectively, compared to untreated groups. These results indicate that the Asp49-PLA2-loaded liposomes were able to activate the production of some cellular components of the protective TH1 response during the infection, constituting a promising tool for inducing the microbicidal activity of the Leishmania-infected macrophages.


Asunto(s)
Venenos de Crotálidos/metabolismo , Leishmania/fisiología , Leishmaniasis Cutánea/terapia , Liposomas/metabolismo , Ganglios Linfáticos/inmunología , Macrófagos/inmunología , Fosfolipasas A2/metabolismo , Proteínas de Reptiles/metabolismo , Animales , Antiinfecciosos/metabolismo , Bothrops , Modelos Animales de Enfermedad , Humanos , Liposomas/uso terapéutico , Ganglios Linfáticos/parasitología , Macrófagos/parasitología , Masculino , Ratones , Ratones Endogámicos BALB C , Nitritos/metabolismo , Carga de Parásitos , Fosfolipasas A2/uso terapéutico , Proteínas de Reptiles/uso terapéutico , Células TH1/inmunología , Terapias en Investigación , Factor de Necrosis Tumoral alfa/metabolismo
20.
Toxins (Basel) ; 9(11)2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29088102

RESUMEN

Paclitaxel, a chemotherapy drug for solid tumors, induces peripheral painful neuropathy. Bee venom acupuncture (BVA) has been reported to have potent analgesic effects, which are known to be mediated by activation of spinal α-adrenergic receptor. Here, we investigated the effect of BVA on mechanical hyperalgesia and spinal neuronal hyperexcitation induced by paclitaxel. The role of spinal α-adrenergic receptor subtypes in the analgesic effect of BVA was also observed. Administration of paclitaxel (total 8 mg/kg, intraperitoneal) on four alternate days (days 0, 2, 4, and 6) induced significant mechanical hyperalgesic signs, measured using a von Frey filament. BVA (1 mg/kg, ST36) relieved this mechanical hyperalgesia for at least two hours, and suppressed the hyperexcitation in spinal wide dynamic range neurons evoked by press or pinch stimulation. Both melittin (0.5 mg/kg, ST36) and phospholipase A2 (0.12 mg/kg, ST36) were shown to play an important part in this analgesic effect of the BVA, as they significantly attenuated the pain. Intrathecal pretreatment with the α2-adrenergic receptor antagonist (idazoxan, 50 µg), but not α1-adrenergic receptor antagonist (prazosin, 30 µg), blocked the analgesic effect of BVA. These results suggest that BVA has potent suppressive effects against paclitaxel-induced neuropathic pain, which were mediated by spinal α2-adrenergic receptor.


Asunto(s)
Terapia por Acupuntura , Venenos de Abeja/uso terapéutico , Hiperalgesia/terapia , Neuralgia/terapia , Receptores Adrenérgicos alfa 2/fisiología , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Antineoplásicos Fitogénicos , Venenos de Abeja/farmacología , Hiperalgesia/inducido químicamente , Hiperalgesia/fisiopatología , Idazoxan/farmacología , Masculino , Meliteno/farmacología , Meliteno/uso terapéutico , Neuralgia/inducido químicamente , Neuralgia/fisiopatología , Paclitaxel , Fosfolipasas A2/farmacología , Fosfolipasas A2/uso terapéutico , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda