Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 15.054
Filtrar
Más filtros

Publication year range
1.
Cell ; 184(23): 5824-5837.e15, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34672953

RESUMEN

The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mechanisms of mitochondrial gene expression remain poorly understood due to a lack of experimental approaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression.


Asunto(s)
Regulación de la Expresión Génica , Silenciador del Gen , Genes Mitocondriales , Transporte de Electrón , Complejo IV de Transporte de Electrones/genética , Células HEK293 , Humanos , Proteínas Mitocondriales/metabolismo , Oligonucleótidos/química , Fosforilación Oxidativa , Biosíntesis de Proteínas , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Cell ; 182(6): 1490-1507.e19, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32916131

RESUMEN

Metabolic reprogramming is a key feature of many cancers, but how and when it contributes to tumorigenesis remains unclear. Here we demonstrate that metabolic reprogramming induced by mitochondrial fusion can be rate-limiting for immortalization of tumor-initiating cells (TICs) and trigger their irreversible dedication to tumorigenesis. Using single-cell transcriptomics, we find that Drosophila brain tumors contain a rapidly dividing stem cell population defined by upregulation of oxidative phosphorylation (OxPhos). We combine targeted metabolomics and in vivo genetic screening to demonstrate that OxPhos is required for tumor cell immortalization but dispensable in neural stem cells (NSCs) giving rise to tumors. Employing an in vivo NADH/NAD+ sensor, we show that NSCs precisely increase OxPhos during immortalization. Blocking OxPhos or mitochondrial fusion stalls TICs in quiescence and prevents tumorigenesis through impaired NAD+ regeneration. Our work establishes a unique connection between cellular metabolism and immortalization of tumor-initiating cells.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Dinámicas Mitocondriales , NAD/metabolismo , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/metabolismo , Fosforilación Oxidativa , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Carcinogénesis/genética , Carcinogénesis/patología , Transformación Celular Neoplásica/patología , Ciclo del Ácido Cítrico/genética , Biología Computacional , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glucólisis/genética , Espectrometría de Masas , Metabolómica , Microscopía Electrónica de Transmisión , Familia de Multigenes , Células-Madre Neurales/patología , Consumo de Oxígeno/genética , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Análisis de la Célula Individual , Transcriptoma/genética
3.
Cell ; 182(3): 641-654.e20, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32615085

RESUMEN

Targeting glycolysis has been considered therapeutically intractable owing to its essential housekeeping role. However, the context-dependent requirement for individual glycolytic steps has not been fully explored. We show that CRISPR-mediated targeting of glycolysis in T cells in mice results in global loss of Th17 cells, whereas deficiency of the glycolytic enzyme glucose phosphate isomerase (Gpi1) selectively eliminates inflammatory encephalitogenic and colitogenic Th17 cells, without substantially affecting homeostatic microbiota-specific Th17 cells. In homeostatic Th17 cells, partial blockade of glycolysis upon Gpi1 inactivation was compensated by pentose phosphate pathway flux and increased mitochondrial respiration. In contrast, inflammatory Th17 cells experience a hypoxic microenvironment known to limit mitochondrial respiration, which is incompatible with loss of Gpi1. Our study suggests that inhibiting glycolysis by targeting Gpi1 could be an effective therapeutic strategy with minimum toxicity for Th17-mediated autoimmune diseases, and, more generally, that metabolic redundancies can be exploited for selective targeting of disease processes.


Asunto(s)
Diferenciación Celular/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Glucosa-6-Fosfato Isomerasa/metabolismo , Glucólisis/genética , Fosforilación Oxidativa , Vía de Pentosa Fosfato/fisiología , Células Th17/metabolismo , Animales , Hipoxia de la Célula/genética , Hipoxia de la Célula/inmunología , Quimera/genética , Cromatografía de Gases , Cromatografía Liquida , Infecciones por Clostridium/inmunología , Citocinas/deficiencia , Citocinas/genética , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Glucosa-6-Fosfato Isomerasa/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Glucólisis/inmunología , Homeostasis/genética , Homeostasis/inmunología , Inflamación/genética , Inflamación/inmunología , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Membrana Mucosa/microbiología , Vía de Pentosa Fosfato/genética , Vía de Pentosa Fosfato/inmunología , RNA-Seq , Análisis de la Célula Individual , Células Th17/inmunología , Células Th17/patología
4.
Nat Rev Mol Cell Biol ; 23(2): 141-161, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34621061

RESUMEN

The mitochondrial oxidative phosphorylation system is central to cellular metabolism. It comprises five enzymatic complexes and two mobile electron carriers that work in a mitochondrial respiratory chain. By coupling the oxidation of reducing equivalents coming into mitochondria to the generation and subsequent dissipation of a proton gradient across the inner mitochondrial membrane, this electron transport chain drives the production of ATP, which is then used as a primary energy carrier in virtually all cellular processes. Minimal perturbations of the respiratory chain activity are linked to diseases; therefore, it is necessary to understand how these complexes are assembled and regulated and how they function. In this Review, we outline the latest assembly models for each individual complex, and we also highlight the recent discoveries indicating that the formation of larger assemblies, known as respiratory supercomplexes, originates from the association of the intermediates of individual complexes. We then discuss how recent cryo-electron microscopy structures have been key to answering open questions on the function of the electron transport chain in mitochondrial respiration and how supercomplexes and other factors, including metabolites, can regulate the activity of the single complexes. When relevant, we discuss how these mechanisms contribute to physiology and outline their deregulation in human diseases.


Asunto(s)
Mitocondrias/metabolismo , Animales , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Fosforilación Oxidativa
5.
Cell ; 179(4): 964-983.e31, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675502

RESUMEN

To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.


Asunto(s)
Carcinoma de Células Renales/genética , Proteínas de Neoplasias/genética , Proteogenómica , Transcriptoma/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Supervivencia sin Enfermedad , Exoma/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Genoma Humano/genética , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/inmunología , Fosforilación Oxidativa , Fosforilación/genética , Transducción de Señal/genética , Transcriptoma/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Secuenciación del Exoma
6.
Cell ; 179(5): 1222-1238.e17, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730859

RESUMEN

Mitochondrial dysfunction is associated with a spectrum of human conditions, ranging from rare, inborn errors of metabolism to the aging process. To identify pathways that modify mitochondrial dysfunction, we performed genome-wide CRISPR screens in the presence of small-molecule mitochondrial inhibitors. We report a compendium of chemical-genetic interactions involving 191 distinct genetic modifiers, including 38 that are synthetic sick/lethal and 63 that are suppressors. Genes involved in glycolysis (PFKP), pentose phosphate pathway (G6PD), and defense against lipid peroxidation (GPX4) scored high as synthetic sick/lethal. A surprisingly large fraction of suppressors are pathway intrinsic and encode mitochondrial proteins. A striking example of such "intra-organelle" buffering is the alleviation of a chemical defect in complex V by simultaneous inhibition of complex I, which benefits cells by rebalancing redox cofactors, increasing reductive carboxylation, and promoting glycolysis. Perhaps paradoxically, certain forms of mitochondrial dysfunction may best be buffered with "second site" inhibitors to the organelle.


Asunto(s)
Genes Modificadores , Mitocondrias/genética , Mitocondrias/patología , Autoantígenos/metabolismo , Muerte Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Epistasis Genética/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Genoma , Glutatión Peroxidasa/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/genética , Humanos , Células K562 , Mitocondrias/efectos de los fármacos , Oligomicinas/toxicidad , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Vía de Pentosa Fosfato/genética , Especies Reactivas de Oxígeno/metabolismo , Ribonucleoproteínas/metabolismo , Antígeno SS-B
7.
Nat Immunol ; 22(4): 423-433, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33767427

RESUMEN

Individuals infected with human immunodeficiency virus type-1 (HIV-1) show metabolic alterations of CD4+ T cells through unclear mechanisms with undefined consequences. We analyzed the transcriptome of CD4+ T cells from patients with HIV-1 and revealed that the elevated oxidative phosphorylation (OXPHOS) pathway is associated with poor outcomes. Inhibition of OXPHOS by the US Food and Drug Administration-approved drug metformin, which targets mitochondrial respiratory chain complex-I, suppresses HIV-1 replication in human CD4+ T cells and humanized mice. In patients, HIV-1 peak viremia positively correlates with the expression of NLRX1, a mitochondrial innate immune receptor. Quantitative proteomics and metabolic analyses reveal that NLRX1 enhances OXPHOS and glycolysis during HIV-1-infection of CD4+ T cells to promote viral replication. At the mechanistic level, HIV infection induces the association of NLRX1 with the mitochondrial protein FASTKD5 to promote expression of mitochondrial respiratory complex components. This study uncovers the OXPHOS pathway in CD4+ T cells as a target for HIV-1 therapy.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Genómica , Infecciones por VIH/virología , VIH-1/crecimiento & desarrollo , Metaboloma , Metabolómica , Fosforilación Oxidativa , Proteoma , Transcriptoma , Replicación Viral , Animales , Antivirales/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Células HEK293 , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , VIH-1/efectos de los fármacos , VIH-1/inmunología , VIH-1/metabolismo , Interacciones Huésped-Patógeno , Humanos , Células Jurkat , Masculino , Metformina/farmacología , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Proteómica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Carga Viral , Replicación Viral/efectos de los fármacos
8.
Nat Immunol ; 22(7): 904-913, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34031613

RESUMEN

Antigen-activated B cells diversify variable regions of B cell antigen receptors by somatic hypermutation in germinal centers (GCs). The positive selection of GC B cells that acquire high-affinity mutations enables antibody affinity maturation. In spite of considerable progress, the genomic states underlying this process remain to be elucidated. Single-cell RNA sequencing and topic modeling revealed increased expression of the oxidative phosphorylation (OXPHOS) module in GC B cells undergoing mitoses. Coupled analysis of somatic hypermutation in immunoglobulin heavy chain (Igh) variable gene regions showed that GC B cells acquiring higher-affinity mutations had further elevated expression of OXPHOS genes. Deletion of mitochondrial Cox10 in GC B cells resulted in reduced cell division and impaired positive selection. Correspondingly, augmentation of OXPHOS activity with oltipraz promoted affinity maturation. We propose that elevated OXPHOS activity promotes B cell clonal expansion and also positive selection by tuning cell division times.


Asunto(s)
Linfocitos B/metabolismo , Perfilación de la Expresión Génica , Centro Germinal/metabolismo , Mutación , Fosforilación Oxidativa , Receptores de Antígenos de Linfocitos B/genética , Análisis de la Célula Individual , Transcriptoma , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Animales , Linfocitos B/inmunología , Proliferación Celular , Células Cultivadas , Análisis Mutacional de ADN , Femenino , Genes de las Cadenas Pesadas de las Inmunoglobulinas , Centro Germinal/inmunología , Región Variable de Inmunoglobulina , Activación de Linfocitos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , RNA-Seq , Receptores de Antígenos de Linfocitos B/metabolismo
9.
Nat Immunol ; 22(11): 1440-1451, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34686860

RESUMEN

Intestinal epithelial cell (IEC) damage by T cells contributes to graft-versus-host disease, inflammatory bowel disease and immune checkpoint blockade-mediated colitis. But little is known about the target cell-intrinsic features that affect disease severity. Here we identified disruption of oxidative phosphorylation and an increase in succinate levels in the IECs from several distinct in vivo models of T cell-mediated colitis. Metabolic flux studies, complemented by imaging and protein analyses, identified disruption of IEC-intrinsic succinate dehydrogenase A (SDHA), a component of mitochondrial complex II, in causing these metabolic alterations. The relevance of IEC-intrinsic SDHA in mediating disease severity was confirmed by complementary chemical and genetic experimental approaches and validated in human clinical samples. These data identify a critical role for the alteration of the IEC-specific mitochondrial complex II component SDHA in the regulation of the severity of T cell-mediated intestinal diseases.


Asunto(s)
Colitis/enzimología , Colon/enzimología , Citotoxicidad Inmunológica , Complejo II de Transporte de Electrones/metabolismo , Células Epiteliales/enzimología , Enfermedad Injerto contra Huésped/enzimología , Mucosa Intestinal/enzimología , Mitocondrias/enzimología , Linfocitos T/inmunología , Animales , Estudios de Casos y Controles , Comunicación Celular , Células Cultivadas , Colitis/genética , Colitis/inmunología , Colitis/patología , Colon/inmunología , Colon/ultraestructura , Modelos Animales de Enfermedad , Complejo II de Transporte de Electrones/genética , Células Epiteliales/inmunología , Células Epiteliales/ultraestructura , Femenino , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Humanos , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Mucosa Intestinal/ultraestructura , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/inmunología , Mitocondrias/ultraestructura , Fosforilación Oxidativa , Ácido Succínico/metabolismo , Linfocitos T/metabolismo
10.
Nat Immunol ; 22(6): 746-756, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34031618

RESUMEN

T cell exhaustion presents one of the major hurdles to cancer immunotherapy. Among exhausted CD8+ tumor-infiltrating lymphocytes, the terminally exhausted subset contributes directly to tumor cell killing owing to its cytotoxic effector function. However, this subset does not respond to immune checkpoint blockades and is difficult to be reinvigorated with restored proliferative capacity. Here, we show that a half-life-extended interleukin-10-Fc fusion protein directly and potently enhanced expansion and effector function of terminally exhausted CD8+ tumor-infiltrating lymphocytes by promoting oxidative phosphorylation, a process that was independent of the progenitor exhausted T cells. Interleukin-10-Fc was a safe and highly efficient metabolic intervention that synergized with adoptive T cell transfer immunotherapy, leading to eradication of established solid tumors and durable cures in the majority of treated mice. These findings show that metabolic reprogramming by upregulating mitochondrial pyruvate carrier-dependent oxidative phosphorylation can revitalize terminally exhausted T cells and enhance the response to cancer immunotherapy.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Interleucina-10/farmacología , Neoplasias/terapia , Fosforilación Oxidativa/efectos de los fármacos , Linfocitos T Citotóxicos/efectos de los fármacos , Animales , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Línea Celular Tumoral , Terapia Combinada/métodos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Células HEK293 , Semivida , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Fragmentos Fc de Inmunoglobulinas/farmacología , Fragmentos Fc de Inmunoglobulinas/uso terapéutico , Interleucina-10/uso terapéutico , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Receptores de Interleucina-10/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo
11.
Nat Rev Mol Cell Biol ; 22(5): 307-325, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33594280

RESUMEN

Mitochondria are cellular organelles responsible for generation of chemical energy in the process called oxidative phosphorylation. They originate from a bacterial ancestor and maintain their own genome, which is expressed by designated, mitochondrial transcription and translation machineries that differ from those operating for nuclear gene expression. In particular, the mitochondrial protein synthesis machinery is structurally and functionally very different from that governing eukaryotic, cytosolic translation. Despite harbouring their own genetic information, mitochondria are far from being independent of the rest of the cell and, conversely, cellular fitness is closely linked to mitochondrial function. Mitochondria depend heavily on the import of nuclear-encoded proteins for gene expression and function, and hence engage in extensive inter-compartmental crosstalk to regulate their proteome. This connectivity allows mitochondria to adapt to changes in cellular conditions and also mediates responses to stress and mitochondrial dysfunction. With a focus on mammals and yeast, we review fundamental insights that have been made into the biogenesis, architecture and mechanisms of the mitochondrial translation apparatus in the past years owing to the emergence of numerous near-atomic structures and a considerable amount of biochemical work. Moreover, we discuss how cellular mitochondrial protein expression is regulated, including aspects of mRNA and tRNA maturation and stability, roles of auxiliary factors, such as translation regulators, that adapt mitochondrial translation rates, and the importance of inter-compartmental crosstalk with nuclear gene expression and cytosolic translation and how it enables integration of mitochondrial translation into the cellular context.


Asunto(s)
Eucariontes/genética , Mitocondrias/genética , Biosíntesis de Proteínas/genética , Transcripción Genética , Animales , Regulación de la Expresión Génica/genética , Humanos , Fosforilación Oxidativa , ARN Mensajero/genética , ARN de Transferencia/genética
12.
Cell ; 175(4): 1088-1104.e23, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30318146

RESUMEN

Despite the known causality of copy-number variations (CNVs) to human neurodevelopmental disorders, the mechanisms behind each gene's contribution to the constellation of neural phenotypes remain elusive. Here, we investigated the 7q11.23 CNV, whose hemideletion causes Williams syndrome (WS), and uncovered that mitochondrial dysfunction participates in WS pathogenesis. Dysfunction is facilitated in part by the 7q11.23 protein DNAJC30, which interacts with mitochondrial ATP-synthase machinery. Removal of Dnajc30 in mice resulted in hypofunctional mitochondria, diminished morphological features of neocortical pyramidal neurons, and altered behaviors reminiscent of WS. The mitochondrial features are consistent with our observations of decreased integrity of oxidative phosphorylation supercomplexes and ATP-synthase dimers in WS. Thus, we identify DNAJC30 as an auxiliary component of ATP-synthase machinery and reveal mitochondrial maladies as underlying certain defects in brain development and function associated with WS.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Encéfalo/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Mitocondrias/metabolismo , Síndrome de Williams/genética , Animales , Encéfalo/crecimiento & desarrollo , Células Cultivadas , Femenino , Células HEK293 , Proteínas del Choque Térmico HSP40/genética , Humanos , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación Oxidativa
13.
Cell ; 173(5): 1135-1149.e15, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29754817

RESUMEN

A primary cause of disease progression in type 2 diabetes (T2D) is ß cell dysfunction due to inflammatory stress and insulin resistance. However, preventing ß cell exhaustion under diabetic conditions is a major therapeutic challenge. Here, we identify the vitamin D receptor (VDR) as a key modulator of inflammation and ß cell survival. Alternative recognition of an acetylated lysine in VDR by bromodomain proteins BRD7 and BRD9 directs association to PBAF and BAF chromatin remodeling complexes, respectively. Mechanistically, ligand promotes VDR association with PBAF to effect genome-wide changes in chromatin accessibility and enhancer landscape, resulting in an anti-inflammatory response. Importantly, pharmacological inhibition of BRD9 promotes PBAF-VDR association to restore ß cell function and ameliorate hyperglycemia in murine T2D models. These studies reveal an unrecognized VDR-dependent transcriptional program underpinning ß cell survival and identifies the VDR:PBAF/BAF association as a potential therapeutic target for T2D.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Receptores de Calcitriol/metabolismo , Factores de Transcripción/metabolismo , Vitamina D/farmacología , Animales , Calcitriol/análogos & derivados , Calcitriol/farmacología , Ensamble y Desensamble de Cromatina , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Humanos , Insulina/sangre , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Mutagénesis Sitio-Dirigida , Fosforilación Oxidativa/efectos de los fármacos , Unión Proteica , Interferencia de ARN , ARN Guía de Kinetoplastida/genética , ARN Interferente Pequeño/metabolismo , Receptores de Calcitriol/antagonistas & inhibidores , Receptores de Calcitriol/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos
14.
Nat Immunol ; 21(9): 1022-1033, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32661364

RESUMEN

The majority of tumor-infiltrating T cells exhibit a terminally exhausted phenotype, marked by a loss of self-renewal capacity. How repetitive antigenic stimulation impairs T cell self-renewal remains poorly defined. Here, we show that persistent antigenic stimulation impaired ADP-coupled oxidative phosphorylation. The resultant bioenergetic compromise blocked proliferation by limiting nucleotide triphosphate synthesis. Inhibition of mitochondrial oxidative phosphorylation in activated T cells was sufficient to suppress proliferation and upregulate genes linked to T cell exhaustion. Conversely, prevention of mitochondrial oxidative stress during chronic T cell stimulation allowed sustained T cell proliferation and induced genes associated with stem-like progenitor T cells. As a result, antioxidant treatment enhanced the anti-tumor efficacy of chronically stimulated T cells. These data reveal that loss of ATP production through oxidative phosphorylation limits T cell proliferation and effector function during chronic antigenic stimulation. Furthermore, treatments that maintain redox balance promote T cell self-renewal and enhance anti-tumor immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Mitocondrias/metabolismo , Neoplasias/inmunología , Adenosina Difosfato/metabolismo , Animales , Antígenos de Neoplasias/inmunología , Antioxidantes/farmacología , Proliferación Celular , Autorrenovación de las Células , Anergia Clonal/genética , Metabolismo Energético , Tolerancia Inmunológica , Activación de Linfocitos , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Fosforilación Oxidativa
15.
Nat Immunol ; 21(3): 331-342, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066950

RESUMEN

Germinal center B cells (GCBCs) are critical for generating long-lived humoral immunity. How GCBCs meet the energetic challenge of rapid proliferation is poorly understood. Dividing lymphocytes typically rely on aerobic glycolysis over oxidative phosphorylation for energy. Here we report that GCBCs are exceptional among proliferating B and T cells, as they actively oxidize fatty acids (FAs) and conduct minimal glycolysis. In vitro, GCBCs had a very low glycolytic extracellular acidification rate but consumed oxygen in response to FAs. [13C6]-glucose feeding revealed that GCBCs generate significantly less phosphorylated glucose and little lactate. Further, GCBCs did not metabolize glucose into tricarboxylic acid (TCA) cycle intermediates. Conversely, [13C16]-palmitic acid labeling demonstrated that GCBCs generate most of their acetyl-CoA and acetylcarnitine from FAs. FA oxidation was functionally important, as drug-mediated and genetic dampening of FA oxidation resulted in a selective reduction of GCBCs. Hence, GCBCs appear to uncouple rapid proliferation from aerobic glycolysis.


Asunto(s)
Linfocitos B/metabolismo , Ácidos Grasos/metabolismo , Centro Germinal/metabolismo , Animales , Linfocitos B/inmunología , Proliferación Celular , Metabolismo Energético , Ácidos Grasos no Esterificados/metabolismo , Expresión Génica , Centro Germinal/citología , Centro Germinal/inmunología , Glucosa/metabolismo , Glucólisis/genética , Técnicas In Vitro , Metaboloma , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Oxidación-Reducción , Fosforilación Oxidativa , Consumo de Oxígeno
16.
Nat Immunol ; 21(10): 1219-1231, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778760

RESUMEN

Chronic inflammation is a common feature of obesity, with elevated cytokines such as interleukin-1 (IL-1) in the circulation and tissues. Here, we report an unconventional IL-1R-MyD88-IRAK2-PHB/OPA1 signaling axis that reprograms mitochondrial metabolism in adipocytes to exacerbate obesity. IL-1 induced recruitment of IRAK2 Myddosome to mitochondria outer membranes via recognition by TOM20, followed by TIMM50-guided translocation of IRAK2 into mitochondria inner membranes, to suppress oxidative phosphorylation and fatty acid oxidation, thereby attenuating energy expenditure. Adipocyte-specific MyD88 or IRAK2 deficiency reduced high-fat-diet-induced weight gain, increased energy expenditure and ameliorated insulin resistance, associated with a smaller adipocyte size and increased cristae formation. IRAK2 kinase inactivation also reduced high-fat diet-induced metabolic diseases. Mechanistically, IRAK2 suppressed respiratory super-complex formation via interaction with PHB1 and OPA1 upon stimulation of IL-1. Taken together, our results suggest that the IRAK2 Myddosome functions as a critical link between inflammation and metabolism, representing a novel therapeutic target for patients with obesity.


Asunto(s)
Adipocitos/inmunología , Inflamación/inmunología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Interleucina-1/metabolismo , Membranas Mitocondriales/metabolismo , Obesidad/inmunología , Adipocitos/patología , Animales , Células Cultivadas , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Masculino , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Fosforilación Oxidativa , Prohibitinas , Transporte de Proteínas , Receptores de Interleucina-1/metabolismo , Transducción de Señal
17.
Nat Immunol ; 21(1): 42-53, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31768073

RESUMEN

Pathogen-associated molecular patterns (PAMPs) have the capacity to couple inflammatory gene expression to changes in macrophage metabolism, both of which influence subsequent inflammatory activities. Similar to their microbial counterparts, several self-encoded damage-associated molecular patterns (DAMPs) induce inflammatory gene expression. However, whether this symmetry in host responses between PAMPs and DAMPs extends to metabolic shifts is unclear. Here, we report that the self-encoded oxidized phospholipid oxPAPC alters the metabolism of macrophages exposed to lipopolysaccharide. While cells activated by lipopolysaccharide rely exclusively on glycolysis, macrophages exposed to oxPAPC also use mitochondrial respiration, feed the Krebs cycle with glutamine, and favor the accumulation of oxaloacetate in the cytoplasm. This metabolite potentiates interleukin-1ß production, resulting in hyperinflammation. Similar metabolic adaptions occur in vivo in hypercholesterolemic mice and human subjects. Drugs that interfere with oxPAPC-driven metabolic changes reduce atherosclerotic plaque formation in mice, thereby underscoring the importance of DAMP-mediated activities in pathophysiological conditions.


Asunto(s)
Alarminas/inmunología , Lipopolisacáridos/inmunología , Macrófagos/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Fosfatidilcolinas/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Glucólisis/fisiología , Hipercolesterolemia/inmunología , Hipercolesterolemia/patología , Inflamación/prevención & control , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Fosforilación Oxidativa , Placa Aterosclerótica/patología , Placa Aterosclerótica/prevención & control
18.
Immunity ; 56(3): 516-530.e9, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36738738

RESUMEN

In vitro studies have associated oxidative phosphorylation (OXPHOS) with anti-inflammatory macrophages, whereas pro-inflammatory macrophages rely on glycolysis. However, the metabolic needs of macrophages in tissues (TMFs) to fulfill their homeostatic activities are incompletely understood. Here, we identified OXPHOS as the highest discriminating process among TMFs from different organs in homeostasis by analysis of RNA-seq data in both humans and mice. Impairing OXPHOS in TMFs via Tfam deletion differentially affected TMF populations. Tfam deletion resulted in reduction of alveolar macrophages (AMs) due to impaired lipid-handling capacity, leading to increased cholesterol content and cellular stress, causing cell-cycle arrest in vivo. In obesity, Tfam depletion selectively ablated pro-inflammatory lipid-handling white adipose tissue macrophages (WAT-MFs), thus preventing insulin resistance and hepatosteatosis. Hence, OXPHOS, rather than glycolysis, distinguishes TMF populations and is critical for the maintenance of TMFs with a high lipid-handling activity, including pro-inflammatory WAT-MFs. This could provide a selective therapeutic targeting tool.


Asunto(s)
Inflamación , Fosforilación Oxidativa , Humanos , Ratones , Animales , Inflamación/metabolismo , Macrófagos/metabolismo , Homeostasis , Lípidos , Tejido Adiposo/metabolismo
19.
Mol Cell ; 84(8): 1541-1555.e11, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38503286

RESUMEN

Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS subunit biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared with nuclear mRNAs, mt-mRNAs were produced 1,100-fold more, degraded 7-fold faster, and accumulated to 160-fold higher levels. Quantitative modeling and depletion of mitochondrial factors LRPPRC and FASTKD5 identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.


Asunto(s)
Mitocondrias , Ribosomas Mitocondriales , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Fosforilación Oxidativa , Proteínas Mitocondriales/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
20.
Annu Rev Biochem ; 85: 77-101, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26789594

RESUMEN

Mitochondria are essential organelles of endosymbiotic origin that are responsible for oxidative phosphorylation within eukaryotic cells. Independent evolution between species has generated mitochondrial genomes that are extremely diverse, with the composition of the vestigial genome determining their translational requirements. Typically, translation within mitochondria is restricted to a few key subunits of the oxidative phosphorylation complexes that are synthesized by dedicated ribosomes (mitoribosomes). The dramatically rearranged mitochondrial genomes, the limited set of transcripts, and the need for the synthesized proteins to coassemble with nuclear-encoded subunits have had substantial consequences for the translation machinery. Recent high-resolution cryo-electron microscopy has revealed the effect of coevolution on the mitoribosome with the mitochondrial genome. In this review, we place the new structural information in the context of the molecular mechanisms of mitochondrial translation and focus on the novel ways protein synthesis is organized and regulated in mitochondria.


Asunto(s)
ADN Mitocondrial/genética , Genoma Mitocondrial , Mitocondrias/genética , Proteínas Mitocondriales/genética , Biosíntesis de Proteínas , Animales , Evolución Biológica , ADN Mitocondrial/metabolismo , Regulación de la Expresión Génica , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , Biogénesis de Organelos , Fosforilación Oxidativa , Transducción de Señal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda