Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 17.670
Filtrar
Más filtros

Publication year range
1.
Nature ; 629(8010): 228-234, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447670

RESUMEN

Animals crave sugars because of their energy potential and the pleasurable sensation of tasting sweetness. Yet all sugars are not metabolically equivalent, requiring mechanisms to detect and differentiate between chemically similar sweet substances. Insects use a family of ionotropic gustatory receptors to discriminate sugars1, each of which is selectively activated by specific sweet molecules2-6. Here, to gain insight into the molecular basis of sugar selectivity, we determined structures of Gr9, a gustatory receptor from the silkworm Bombyx mori (BmGr9), in the absence and presence of its sole activating ligand, D-fructose. These structures, along with structure-guided mutagenesis and functional assays, illustrate how D-fructose is enveloped by a ligand-binding pocket that precisely matches the overall shape and pattern of chemical groups in D-fructose. However, our computational docking and experimental binding assays revealed that other sugars also bind BmGr9, yet they are unable to activate the receptor. We determined the structure of BmGr9 in complex with one such non-activating sugar, L-sorbose. Although both sugars bind a similar position, only D-fructose is capable of engaging a bridge of two conserved aromatic residues that connects the pocket to the pore helix, inducing a conformational change that allows the ion-conducting pore to open. Thus, chemical specificity does not depend solely on the selectivity of the ligand-binding pocket, but it is an emergent property arising from a combination of receptor-ligand interactions and allosteric coupling. Our results support a model whereby coarse receptor tuning is derived from the size and chemical characteristics of the pocket, whereas fine-tuning of receptor activation is achieved through the selective engagement of an allosteric pathway that regulates ion conduction.


Asunto(s)
Bombyx , Proteínas de Insectos , Receptores Acoplados a Proteínas G , Azúcares , Gusto , Animales , Regulación Alostérica , Sitios de Unión , Bombyx/metabolismo , Bombyx/química , Microscopía por Crioelectrón , Fructosa/metabolismo , Fructosa/química , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/ultraestructura , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Sorbosa/química , Sorbosa/metabolismo , Especificidad por Sustrato , Azúcares/metabolismo , Azúcares/química , Gusto/fisiología
2.
Cell ; 151(5): 1113-25, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23178127

RESUMEN

Internal nutrient sensors play important roles in feeding behavior, yet their molecular structure and mechanism of action are poorly understood. Using Ca(2+) imaging and behavioral assays, we show that the gustatory receptor 43a (Gr43a) functions as a narrowly tuned fructose receptor in taste neurons. Remarkably, Gr43a also functions as a fructose receptor in the brain. Interestingly, hemolymph fructose levels are tightly linked to feeding status: after nutritious carbohydrate consumption, fructose levels rise several fold and reach a concentration sufficient to activate Gr43a in the brain. By using different feeding paradigms and artificial activation of Gr43a-expressing brain neurons, we show that Gr43a is both necessary and sufficient to sense hemolymph fructose and promote feeding in hungry flies but suppress feeding in satiated flies. Thus, our studies indicate that the Gr43a-expressing brain neurons function as a nutrient sensor for hemolymph fructose and assign opposing valence to feeding experiences in a satiation-dependent manner.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Fructosa/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Encéfalo/fisiología , Alimentos , Tracto Gastrointestinal/fisiología , Hemolinfa/metabolismo , Hambre , Neuronas/metabolismo , Respuesta de Saciedad
3.
Nature ; 597(7875): 263-267, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34408323

RESUMEN

Fructose consumption is linked to the rising incidence of obesity and cancer, which are two of the leading causes of morbidity and mortality globally1,2. Dietary fructose metabolism begins at the epithelium of the small intestine, where fructose is transported by glucose transporter type 5 (GLUT5; encoded by SLC2A5) and phosphorylated by ketohexokinase to form fructose 1-phosphate, which accumulates to high levels in the cell3,4. Although this pathway has been implicated in obesity and tumour promotion, the exact mechanism that drives these pathologies in the intestine remains unclear. Here we show that dietary fructose improves the survival of intestinal cells and increases intestinal villus length in several mouse models. The increase in villus length expands the surface area of the gut and increases nutrient absorption and adiposity in mice that are fed a high-fat diet. In hypoxic intestinal cells, fructose 1-phosphate inhibits the M2 isoform of pyruvate kinase to promote cell survival5-7. Genetic ablation of ketohexokinase or stimulation of pyruvate kinase prevents villus elongation and abolishes the nutrient absorption and tumour growth that are induced by feeding mice with high-fructose corn syrup. The ability of fructose to promote cell survival through an allosteric metabolite thus provides additional insights into the excess adiposity generated by a Western diet, and a compelling explanation for the promotion of tumour growth by high-fructose corn syrup.


Asunto(s)
Fructosa/farmacología , Jarabe de Maíz Alto en Fructosa/farmacología , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Nutrientes/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Activación Enzimática , Femenino , Fructoquinasas/metabolismo , Fructosa/metabolismo , Jarabe de Maíz Alto en Fructosa/metabolismo , Hipoxia/dietoterapia , Hipoxia/patología , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Piruvato Quinasa/metabolismo
4.
Genome Res ; 33(5): 703-714, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37156619

RESUMEN

Hummingbirds are very well adapted to sustain efficient and rapid metabolic shifts. They oxidize ingested nectar to directly fuel flight when foraging but have to switch to oxidizing stored lipids derived from ingested sugars during the night or long-distance migratory flights. Understanding how this organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. To explore these questions, we generated a chromosome-scale genome assembly of the ruby-throated hummingbird (A. colubris) using a combination of long- and short-read sequencing, scaffolding it using existing assemblies. We then used hybrid long- and short-read RNA sequencing of liver and muscle tissue in fasted and fed metabolic states for a comprehensive transcriptome assembly and annotation. Our genomic and transcriptomic data found positive selection of key metabolic genes in nectivorous avian species and deletion of critical genes (SLC2A4, GCK) involved in glucostasis in other vertebrates. We found expression of a fructose-specific version of SLC2A5 putatively in place of insulin-sensitive SLC2A5, with predicted protein models suggesting affinity for both fructose and glucose. Alternative isoforms may even act to sequester fructose to preclude limitations from transport in metabolism. Finally, we identified differentially expressed genes from fasted and fed hummingbirds, suggesting key pathways for the rapid metabolic switch hummingbirds undergo.


Asunto(s)
Aves , Metabolismo Energético , Animales , Aves/genética , Músculos/metabolismo , Genómica , Fructosa/metabolismo
5.
EMBO Rep ; 25(4): 2097-2117, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38532128

RESUMEN

High fructose intake during pregnancy increases insulin resistance (IR) and gestational diabetes mellitus (GDM) risk. IR during pregnancy primarily results from elevated hormone levels. We aim to determine the role of liver carbohydrate response element binding protein (ChREBP) in insulin sensitivity and lipid metabolism in pregnant mice and their offspring. Pregnant C57BL/6J wild-type mice and hepatocyte-specific ChREBP-deficient mice were fed with a high-fructose diet (HFrD) or normal chow diet (NC) pre-delivery. We found that the combination of HFrD with pregnancy excessively activates hepatic ChREBP, stimulating progesterone synthesis by increasing MTTP expression, which exacerbates IR. Increased progesterone levels upregulated hepatic ChREBP via the progesterone-PPARγ axis. Placental progesterone activated the progesterone-ChREBP loop in female offspring, contributing to IR and lipid accumulation. In normal dietary conditions, hepatic ChREBP modestly affected progesterone production and influenced IR during pregnancy. Our findings reveal the role of hepatic ChREBP in regulating insulin sensitivity and lipid homeostasis in both pregnant mice consuming an HFrD and female offspring, and suggest it as a potential target for managing gestational metabolic disorders, including GDM.


Asunto(s)
Resistencia a la Insulina , Embarazo , Femenino , Ratones , Animales , Resistencia a la Insulina/genética , Fructosa/efectos adversos , Fructosa/metabolismo , Progesterona/metabolismo , Ratones Endogámicos C57BL , Placenta/metabolismo , Hígado/metabolismo , Lípidos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
6.
Nature ; 579(7800): 507-517, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32214253

RESUMEN

Tumours depend on nutrients supplied by the host for their growth and survival. Modifications to the host's diet can change nutrient availability in the tumour microenvironment, which might represent a promising strategy for inhibiting tumour growth. Dietary modifications can limit tumour-specific nutritional requirements, alter certain nutrients that target the metabolic vulnerabilities of the tumour, or enhance the cytotoxicity of anti-cancer drugs. Recent reports have suggested that modification of several nutrients in the diet can alter the efficacy of cancer therapies, and some of the newest developments in this quickly expanding field are reviewed here. The results discussed indicate that the dietary habits and nutritional state of a patient must be taken into account during cancer research and therapy.


Asunto(s)
Dieta , Neoplasias/dietoterapia , Neoplasias/terapia , Estado Nutricional , Aminoácidos/deficiencia , Aminoácidos/metabolismo , Animales , Suplementos Dietéticos , Ayuno/fisiología , Ácidos Grasos/metabolismo , Ácido Fólico/metabolismo , Fructosa/deficiencia , Fructosa/metabolismo , Glucosa/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología
7.
Nature ; 579(7800): 586-591, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32214246

RESUMEN

Consumption of fructose has risen markedly in recent decades owing to the use of sucrose and high-fructose corn syrup in beverages and processed foods1, and this has contributed to increasing rates of obesity and non-alcoholic fatty liver disease2-4. Fructose intake triggers de novo lipogenesis in the liver4-6, in which carbon precursors of acetyl-CoA are converted into fatty acids. The ATP citrate lyase (ACLY) enzyme cleaves cytosolic citrate to generate acetyl-CoA, and is upregulated after consumption of carbohydrates7. Clinical trials are currently pursuing the inhibition of ACLY as a treatment for metabolic diseases8. However, the route from dietary fructose to hepatic acetyl-CoA and lipids remains unknown. Here, using in vivo isotope tracing, we show that liver-specific deletion of Acly in mice is unable to suppress fructose-induced lipogenesis. Dietary fructose is converted to acetate by the gut microbiota9, and this supplies lipogenic acetyl-CoA independently of ACLY10. Depletion of the microbiota or silencing of hepatic ACSS2, which generates acetyl-CoA from acetate, potently suppresses the conversion of bolus fructose into hepatic acetyl-CoA and fatty acids. When fructose is consumed more gradually to facilitate its absorption in the small intestine, both citrate cleavage in hepatocytes and microorganism-derived acetate contribute to lipogenesis. By contrast, the lipogenic transcriptional program is activated in response to fructose in a manner that is independent of acetyl-CoA metabolism. These data reveal a two-pronged mechanism that regulates hepatic lipogenesis, in which fructolysis within hepatocytes provides a signal to promote the expression of lipogenic genes, and the generation of microbial acetate feeds lipogenic pools of acetyl-CoA.


Asunto(s)
Acetatos/metabolismo , Azúcares de la Dieta/metabolismo , Fructosa/metabolismo , Microbioma Gastrointestinal/fisiología , Lipogénesis , Hígado/metabolismo , ATP Citrato (pro-S)-Liasa/deficiencia , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Acetato CoA Ligasa/deficiencia , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Acetilcoenzima A/metabolismo , Animales , Ácido Cítrico/metabolismo , Azúcares de la Dieta/administración & dosificación , Azúcares de la Dieta/farmacología , Ácidos Grasos/metabolismo , Fructosa/administración & dosificación , Fructosa/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/metabolismo , Marcaje Isotópico , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Hígado/citología , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Ratones , Especificidad por Sustrato
8.
J Biol Chem ; 300(5): 107215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522518

RESUMEN

Sugar absorption is crucial for life and relies on glucose transporters, including sodium-glucose cotransporters (SGLTs). Although the structure of SGLTs has been resolved, the substrate selectivity of SGLTs across diverse isoforms has not been determined owing to the complex substrate-recognition processes and limited analysis methods. Therefore, this study used voltage-clamp fluorometry (VCF) to explore the substrate-binding affinities of human SGLT1 in Xenopus oocytes. VCF analysis revealed high-affinity binding of D-glucose and D-galactose, which are known transported substrates. D-fructose, which is not a transported substrate, also bound to SGLT1, suggesting potential recognition despite the lack of transport activity. VCF analysis using the T287N mutant of the substrate-binding pocket, which has reduced D-glucose transport capacity, showed that its D-galactose-binding affinity exceeded its D-glucose-binding affinity. This suggests that the change in the VCF signal was due to substrate binding to the binding pocket. Both D-fructose and L-sorbose showed similar binding affinities, indicating that SGLT1 preferentially binds to pyranose-form sugars, including D-fructopyranose. Electrophysiological analysis confirmed that D-fructose binding did not affect the SGLT1 transport function. The significance of the VCF assay lies in its ability to measure sugar-protein interactions in living cells, thereby bridging the gap between structural analyses and functional characterizations of sugar transporters. Our findings also provide insights into SGLT substrate selectivity and the potential for developing medicines with reduced side effects by targeting non-glucose sugars with low bioreactivity.


Asunto(s)
Fluorometría , Glucosa , Oocitos , Transportador 1 de Sodio-Glucosa , Xenopus laevis , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Transportador 1 de Sodio-Glucosa/química , Animales , Humanos , Fluorometría/métodos , Glucosa/metabolismo , Oocitos/metabolismo , Unión Proteica , Técnicas de Placa-Clamp , Galactosa/metabolismo , Fructosa/metabolismo , Fructosa/química , Sitios de Unión
9.
J Biol Chem ; 300(6): 107352, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723750

RESUMEN

In Escherichia coli, the master transcription regulator catabolite repressor activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli's central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fructoquinasas/metabolismo , Fructoquinasas/genética , Fructosa/metabolismo , Fructosadifosfatos/metabolismo , Fructosafosfatos/metabolismo , Regulación Bacteriana de la Expresión Génica
10.
Plant J ; 117(5): 1392-1412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38044792

RESUMEN

The composition and abundance of soluble sugars in mature pear (Pyrus) fruit are important for its acceptance by consumers. However, our understanding of the genes responsible for soluble sugar accumulation remains limited. In this study, a S1-group member of bZIP gene family, PbrbZIP15, was characterized from pear genome through the combined analyses of metabolite and transcriptome data followed by experimental validation. PbrbZIP15, located in nucleus, was found to function in fructose, sucrose, and total soluble sugar accumulation in pear fruit and calli. After analyzing the expression profiles of sugar-metabolism-related genes and the distribution of cis-acting elements in their promoters, the glucose isomerase 1 gene (PbrXylA1), whose corresponding protein catalyzed the isomerization of glucose and fructose in vitro, was identified as a downstream target gene of PbrbZIP15. PbrbZIP15 could directly bind to the G-box element in PbrXylA1 promoter and activate its transcription, as evidenced by chromatin immunoprecipitation-quantitative PCR, yeast one-hybrid, electrophoretic mobility shift assay, and dual-luciferase assay. PbrXylA1, featuring a leucine-rich signal peptide in its N-terminal, was localized to the endoplasmic reticulum. It was validated to play a significant role in fructose, sucrose, and total soluble sugar accumulation in pear fruit and calli, which was associated with the upregulated fructose/glucose ratio. Further studies revealed a positive correlation between the sucrose content and the expression levels of several sucrose-biosynthesis-related genes (PbrFRK3/8, PbrSPS1/3/4/8, and PbrSPP1) in PbrbZIP15-/PbrXylA1-transgenic fruit/calli. In conclusion, our results suggest that PbrbZIP15-induced soluble sugar accumulation during pear development is at least partly attributed to the activation of PbrXylA1 transcription.


Asunto(s)
Isomerasas Aldosa-Cetosa , Pyrus , Azúcares , Azúcares/metabolismo , Glucosa/metabolismo , Pyrus/metabolismo , Sacarosa/metabolismo , Fructosa/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
11.
Gastroenterology ; 167(2): 333-342, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38401741

RESUMEN

BACKGROUND & AIMS: The efficacy of a low fermentable oligo-, di-, monosaccharides and polyols (FODMAP) diet in irritable bowel syndrome (IBS) is well established. After the elimination period, a reintroduction phase aims to identify triggers. We studied the impact of a blinded reintroduction using FODMAP powders to objectively identify triggers and evaluated the effect on symptoms, quality of life, and psychosocial comorbidities. METHODS: Responders to a 6-week low FODMAP diet, defined by a drop in IBS symptom severity score (IBS-SSS) compared with baseline, entered a 9-week blinded randomized reintroduction phase with 6 FODMAP powders (fructans, fructose, galacto-oligosaccharides, lactose, mannitol, sorbitol) or control (glucose). A rise in IBS-SSS (≥50 points) defined a FODMAP trigger. Patients completed daily symptom diaries and questionnaires for quality of life and psychosocial comorbidities. RESULTS: In 117 recruited patients with IBS, IBS-SSS improved significantly after the elimination period compared with baseline (150 ± 116 vs 301 ± 97, P < .0001, 80% responders). Symptom recurrence was triggered in 85% of the FODMAP powders, by an average of 2.5 ± 2 FODMAPs/patient. The most prevalent triggers were fructans (56%) and mannitol (54%), followed by galacto-oligosaccharides, lactose, fructose, sorbitol, and glucose (respectively 35%, 28%, 27%, 23%, and 26%) with a significant increase in abdominal pain at day 1 for sorbitol/mannitol, day 2 for fructans/galacto-oligosaccharides, and day 3 for lactose. CONCLUSION: We confirmed the significant benefit of the low FODMAP diet in tertiary-care IBS. A blinded reintroduction revealed a personalized pattern of symptom recurrence, with fructans and mannitol as the most prevalent, and allows the most objective identification of individual FODMAP triggers. Ethical commission University hospital of Leuven reference number: s63629; Clinicaltrials.gov number: NCT04373304.


Asunto(s)
Dieta Baja en Carbohidratos , Disacáridos , Fermentación , Síndrome del Colon Irritable , Lactosa , Manitol , Monosacáridos , Oligosacáridos , Calidad de Vida , Humanos , Síndrome del Colon Irritable/dietoterapia , Femenino , Masculino , Adulto , Persona de Mediana Edad , Oligosacáridos/administración & dosificación , Oligosacáridos/efectos adversos , Manitol/administración & dosificación , Manitol/efectos adversos , Dieta Baja en Carbohidratos/métodos , Dieta Baja en Carbohidratos/efectos adversos , Resultado del Tratamiento , Lactosa/efectos adversos , Lactosa/administración & dosificación , Monosacáridos/administración & dosificación , Monosacáridos/efectos adversos , Disacáridos/administración & dosificación , Disacáridos/efectos adversos , Polímeros/administración & dosificación , Fructosa/administración & dosificación , Fructosa/efectos adversos , Sorbitol/administración & dosificación , Sorbitol/efectos adversos , Fructanos/administración & dosificación , Fructanos/efectos adversos , Índice de Severidad de la Enfermedad , Método Doble Ciego , Encuestas y Cuestionarios , Polvos , Recurrencia , Adulto Joven , Dieta FODMAP
12.
Stem Cells ; 42(4): 374-384, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280209

RESUMEN

Increased fructose consumption has been elucidated to contribute to metabolic diseases. Bone is a dynamic organ that undergoes constant remodeling. However, the effects of fructose on bone health are still in dispute. Here, we identified fructose deteriorated bone mineral density while promoting the abundance of bone marrow adipose tissue. Fructose remarkably promoted the bone marrow mesenchymal stem cells' (BMMSCs) adipogenic commitment at the expense of osteogenic commitment. Fructose boosted the glycolysis of BMMSCs and inhibited phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK), which played a crucial role in bone-fat alteration. Our results suggested that fructose potentiated bone loss and marrow adipose tissue accumulation by suppressing AMPK activation in BMMSCs. Understanding fructose which affected bone metabolism was thus of primary importance in order to establish preventative measures or treatments for this condition.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Médula Ósea/metabolismo , Diferenciación Celular , Proteínas Quinasas Activadas por AMP/metabolismo , Fructosa/farmacología , Fructosa/metabolismo , Adipogénesis , Tejido Adiposo/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Adenosina , Células de la Médula Ósea , Células Cultivadas
13.
Cell Mol Life Sci ; 81(1): 87, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349431

RESUMEN

The existence of cancer stem cells is widely acknowledged as the underlying cause for the challenging curability and high relapse rates observed in various tumor types, including non-small cell lung cancer (NSCLC). Despite extensive research on numerous therapeutic targets for NSCLC treatment, the strategies to effectively combat NSCLC stemness and achieve a definitive cure are still not well defined. The primary objective of this study was to examine the underlying mechanism through which Fructose-1,6-bisphosphatase 1 (FBP1), a gluconeogenic enzyme, functions as a tumor suppressor to regulate the stemness of NSCLC. Herein, we showed that overexpression of FBP1 led to a decrease in the proportion of CD133-positive cells, weakened tumorigenicity, and decreased expression of stemness factors. FBP1 inhibited the activation of Notch signaling, while it had no impact on the transcription level of Notch 1 intracellular domain (NICD1). Instead, FBP1 interacted with NICD1 and the E3 ubiquitin ligase FBXW7 to facilitate the degradation of NICD1 through the ubiquitin-proteasome pathway, which is independent of the metabolic enzymatic activity of FBP1. The aforementioned studies suggest that targeting the FBP1-FBXW7-NICD1 axis holds promise as a therapeutic approach for addressing the challenges of NSCLC recurrence and drug resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Fructosa , Neoplasias Pulmonares/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
14.
Nucleic Acids Res ; 51(11): 5432-5448, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-36987873

RESUMEN

Phosphorylation state-dependent interactions of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) components with transcription factors play a key role in carbon catabolite repression (CCR) by glucose in bacteria. Glucose inhibits the PTS-dependent transport of fructose and is preferred over fructose in Vibrio cholerae, but the mechanism is unknown. We have recently shown that, contrary to Escherichia coli, the fructose-dependent transcriptional regulator FruR acts as an activator of the fru operon in V. cholerae and binding of the FruR-fructose 1-phosphate (F1P) complex to an operator facilitates RNA polymerase (RNAP) binding to the fru promoter. Here we show that, in the presence of glucose, dephosphorylated HPr, a general PTS component, binds to FruR. Whereas HPr does not affect DNA-binding affinity of FruR, regardless of the presence of F1P, it prevents the FruR-F1P complex from facilitating the binding of RNAP to the fru promoter. Structural and biochemical analyses of the FruR-HPr complex identify key residues responsible for the V. cholerae-specific FruR-HPr interaction not observed in E. coli. Finally, we reveal how the dephosphorylated HPr interacts with FruR in V. cholerae, whereas the phosphorylated HPr binds to CcpA, which is a global regulator of CCR in Bacillus subtilis and shows structural similarity to FruR.


Asunto(s)
Proteínas Bacterianas , Proteínas Represoras , Vibrio cholerae , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fructosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucosa , Operón , Fosforilación , Proteínas Represoras/metabolismo , Vibrio cholerae/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(31): e2204407119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881794

RESUMEN

Cellular metabolism is regulated over space and time to ensure that energy production is efficiently matched with consumption. Fluorescent biosensors are useful tools for studying metabolism as they enable real-time detection of metabolite abundance with single-cell resolution. For monitoring glycolysis, the intermediate fructose 1,6-bisphosphate (FBP) is a particularly informative signal as its concentration is strongly correlated with flux through the whole pathway. Using GFP insertion into the ligand-binding domain of the Bacillus subtilis transcriptional regulator CggR, we developed a fluorescent biosensor for FBP termed HYlight. We demonstrate that HYlight can reliably report the real-time dynamics of glycolysis in living cells and tissues, driven by various metabolic or pharmacological perturbations, alone or in combination with other physiologically relevant signals. Using this sensor, we uncovered previously unknown aspects of ß-cell glycolytic heterogeneity and dynamics.


Asunto(s)
Técnicas Biosensibles , Fructosa , Glucólisis , Análisis de la Célula Individual , Fluorescencia , Fructosa/análisis , Fructosadifosfatos/análisis , Humanos , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Análisis de la Célula Individual/métodos
16.
PLoS Genet ; 18(9): e1010430, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36166480

RESUMEN

Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually causes CDGs. While both in vivo models ostensibly cause cellular stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress.


Asunto(s)
Trastornos Congénitos de Glicosilación , Manosiltransferasas , N-Acetilglucosaminiltransferasas/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Trastornos Congénitos de Glicosilación/genética , Fructosa , Genoma , Glicoproteínas/genética , Humanos , Manosiltransferasas/genética
17.
Biochemistry ; 63(5): 699-710, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386885

RESUMEN

Campylobacter jejuni is a Gram-negative pathogenic bacterium commonly found in chickens and is the leading cause of human diarrheal disease worldwide. The various serotypes of C. jejuni produce structurally distinct capsular polysaccharides (CPSs) on the exterior surfaces of the cell wall. The capsular polysaccharide from C. jejuni serotype HS:5 is composed of a repeating sequence of d-glycero-d-manno-heptose and d-glucitol-6-phosphate. We previously defined the pathway for the production of d-glycero-d-manno-heptose in C. jejuni. Here, we elucidate the biosynthetic pathway for the assembly of cytidine diphosphate (CDP)-6-d-glucitol by the combined action of two previously uncharacterized enzymes. The first enzyme catalyzes the formation of CDP-6-d-fructose from cytidine triphosphate (CTP) and d-fructose-6-phosphate. The second enzyme reduces CDP-6-d-fructose with NADPH to generate CDP-6-d-glucitol. Using sequence similarity network (SSN) and genome neighborhood network (GNN) analyses, we predict that these pairs of proteins are responsible for the biosynthesis of CDP-6-d-glucitol and/or CDP-d-mannitol in the lipopolysaccharides (LPSs) and capsular polysaccharides in more than 200 other organisms. In addition, high resolution X-ray structures of the second enzyme are reported, which provide novel insight into the manner in which an open-chain nucleotide-linked sugar is harbored in an active site cleft.


Asunto(s)
Campylobacter jejuni , Animales , Humanos , Sorbitol/metabolismo , Pollos/metabolismo , Polisacáridos/metabolismo , Citidina Difosfato/metabolismo , Fructosa/metabolismo , Polisacáridos Bacterianos/metabolismo
18.
J Biol Chem ; 299(9): 105162, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37586586

RESUMEN

Sphingomyelin synthase (SMS)-related protein (SMSr) is a phosphatidylethanolamine phospholipase C (PE-PLC) that is conserved and ubiquitous in mammals. However, its biological function is still not clear. We previously observed that SMS1 deficiency-mediated glucosylceramide accumulation caused nonalcoholic fatty liver diseases (NAFLD), including nonalcoholic steatohepatitis (NASH) and liver fibrosis. Here, first, we evaluated high-fat diet/fructose-induced NAFLD in Smsr KO and WT mice. Second, we evaluated whether SMSr deficiency can reverse SMS1 deficiency-mediated NAFLD, using Sms1/Sms2 double and Sms1/Sms2/Smsr triple KO mice. We found that SMSr/PE-PLC deficiency attenuated high-fat diet/fructose-induced fatty liver and NASH, and attenuated glucosylceramide accumulation-induced NASH, fibrosis, and tumor formation. Further, we found that SMSr/PE-PLC deficiency reduced the expression of many inflammatory cytokines and fibrosis-related factors, and PE supplementation in vitro or in vivo mimicked the condition of SMSr/PE-PLC deficiency. Furthermore, we demonstrated that SMSr/PE-PLC deficiency or PE supplementation effectively prevented membrane-bound ß-catenin transfer to the nucleus, thereby preventing tumor-related gene expression. Finally, we observed that patients with NASH had higher SMSr protein levels in the liver, lower plasma PE levels, and lower plasma PE/phosphatidylcholine ratios, and that human plasma PE levels are negatively associated with tumor necrosis factor-α and transforming growth factor ß1 levels. In conclusion, SMSr/PE-PLC deficiency causes PE accumulation, which can attenuate fatty liver, NASH, and fibrosis. These results suggest that SMSr/PE-PLC inhibition therapy may mitigate NAFLD.


Asunto(s)
Neoplasias , Enfermedad del Hígado Graso no Alcohólico , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Animales , Humanos , Ratones , Fructosa/efectos adversos , Glucosilceramidas/metabolismo , Hígado/metabolismo , Cirrosis Hepática/patología , Neoplasias/genética , Neoplasias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfatidiletanolaminas/sangre , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Ratones Noqueados , Masculino , Femenino , Dieta Alta en Grasa/efectos adversos
19.
Plant J ; 114(1): 124-141, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36710644

RESUMEN

Soluble sugars play an important role in plant growth, development and fruit quality. Pear fruits have demonstrated a considerable improvement in sugar quality during their long history of selection. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit sugar content as a result of selection by horticulturists. Here, we identified a calcium-dependent protein kinase (PbCPK28), which is located on LG15 and is present within a selective sweep region, thus linked to the quantitative trait loci for soluble solids. Association analysis indicates that a single nucleotide polymorphism-13 variation (SNP13T/C ) in the PbCPK28 regulatory region led to fructose content diversity in pear. Elevated expression of PbCPK28 resulted in significantly increased fructose levels in pear fruits. Furthermore, PbCPK28 interacts with and phosphorylates PbTST4, a proton antiporter, thereby coupling the sugar import into the vacuole with proton export. We demonstrated that residues S277 and S314 of PbTST4 are crucial for its function. Additionally, PbCPK28 interacts with and phosphorylates the vacuolar hydrogen proton pump PbVHA-A1, which could provide proton motive forces for PbTST4. We also found that the T11 and Y120 phosphorylation sites in PbVHA-A1 are essential for its function. Evolution analysis and yeast-two-hybrid results support that the CPK-TST/CPK-VHA-A regulatory network is highly conserved in plants, especially the corresponding phosphorylation sites. Together, our work identifies an agriculturally important natural variation and an important regulatory network, allowing genetic improvement of fruit sugar contents in pears through modulation of PbCPK28 expression and phosphorylation of PbTST4 and PbVHA-A1.


Asunto(s)
Pyrus , Azúcares , Azúcares/metabolismo , Pyrus/metabolismo , Protones , Regiones Promotoras Genéticas/genética , Fructosa/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
Plant J ; 115(4): 1134-1150, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37243881

RESUMEN

The unique flavors of different fruits depend upon complex blends of soluble sugars, organic acids, and volatile organic compounds. 2-Phenylethanol and phenylacetaldehyde are major contributors to flavor in many foods, including tomato. In the tomato fruit, glucose, and fructose are the chemicals that most positively contribute to human flavor preferences. We identified a gene encoding a tomato aldo/keto reductase, Sl-AKR9, that is associated with phenylacetaldehyde and 2-phenylethanol contents in fruits. Two distinct haplotypes were identified; one encodes a chloroplast-targeted protein while the other encodes a transit peptide-less protein that accumulates in the cytoplasm. Sl-AKR9 effectively catalyzes reduction of phenylacetaldehyde to 2-phenylethanol. The enzyme can also metabolize sugar-derived reactive carbonyls, including glyceraldehyde and methylglyoxal. CRISPR-Cas9-induced loss-of-function mutations in Sl-AKR9 significantly increased phenylacetaldehyde and lowered 2-phenylethanol content in ripe fruit. Reduced fruit weight and increased soluble solids, glucose, and fructose contents were observed in the loss-of-function fruits. These results reveal a previously unidentified mechanism affecting two flavor-associated phenylalanine-derived volatile organic compounds, sugar content, and fruit weight. Modern varieties of tomato almost universally contain the haplotype associated with larger fruit, lower sugar content, and lower phenylacetaldehyde and 2-phenylethanol, likely leading to flavor deterioration in modern varieties.


Asunto(s)
Alcohol Feniletílico , Solanum lycopersicum , Compuestos Orgánicos Volátiles , Humanos , Azúcares/metabolismo , Frutas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Alcohol Feniletílico/análisis , Alcohol Feniletílico/metabolismo , Glucosa/metabolismo , Fructosa/metabolismo , Solanum lycopersicum/genética , Oxidorreductasas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda