Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 930
Filtrar
Más filtros

Publication year range
1.
Mar Drugs ; 22(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38786592

RESUMEN

Malnutrition is one of the major factors of bone and cartilage disorders. Pacific cod (Gadus macrocephalus) processing waste is a cheap and highly promising source of bioactive substances, including collagen-derived peptides and amino acids, for bone and cartilage structure stabilization. The addition of these substances to a functional drink is one of the ways to achieve their fast intestinal absorption. Collagen hydrolysate was obtained via enzymatic hydrolysis, ultrafiltration, freeze-drying, and grinding to powder. The lyophilized hydrolysate was a light gray powder with high protein content (>90%), including collagen (about 85% of total protein) and a complete set of essential and non-essential amino acids. The hydrolysate had no observed adverse effect on human mesenchymal stem cell morphology, viability, or proliferation. The hydrolysate was applicable as a protein food supply or a structure-forming food component due to the presence of collagen fiber fragments. An isotonic fitness drink (osmolality 298.1 ± 2.1 mOsm/L) containing hydrolysate and vitamin C as a cofactor in collagen biosynthesis was prepared. The addition of the hydrolysate did not adversely affect its organoleptic parameters. The production of such functional foods and drinks is one of the beneficial ways of fish processing waste utilization.


Asunto(s)
Huesos , Cartílago , Colágeno , Gadiformes , Hidrolisados de Proteína , Animales , Colágeno/metabolismo , Humanos , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Células Madre Mesenquimatosas/efectos de los fármacos , Bebidas , Alimentos Funcionales , Hidrólisis
2.
J Fish Dis ; 47(2): e13881, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37886898

RESUMEN

Cryptocaryoniasis remains a major parasitic disease and economic challenge for marine aquaculture. Cryptocaryoniasis in marine fish is caused by Cryptocaryon irritans (Ciliata). A theront is a motile, free-swimming stage in the life cycle of C. irritans, which is typically the infective stage that actively seeks out a host to initiate infection. Population density and growth rate of theronts were investigated in Nile tilapia, Oreochromis niloticus fed with citric acid-supplemented feed. The experiment involved feeding three diets with graded levels of citric acid (0, control diet, 0.5, 1 and 1.5 g kg-1 diet), to seawater-adapted Nile tilapia (O. niloticus) juveniles for 21 days. The results showed that citric acid in the fish feed had an impact on the theront number of C. irritans in a manner of dose-dependent. In the experimental cohort administered a diet supplemented with 1.5 g kg-1 citric acid, the population density of theronts was observed to be significantly reduced, measured at 29 ± 3.34, as opposed to 473.34 ± 16.48 in the control group at the culmination of the experiment. The observed population growth rate of theronts was significantly higher in the control group than in the group administered the citric acid feed (p < .005). The growth rate (r d-1 ) was 0.12 in control, 0.05 in 0.5 g kg-1 , 0.031 in 1 g kg-1 , and - 0.031 in 1.5 g kg-1 citric acid-supplemented groups. Fish growth and feed conversion ratio were not affected by the citric acid in the feed. In conclusion, the findings of this investigation provide a valuable addition to our understanding of the potential protective effects of citric acid supplementation for fish against the C. irritans parasite. This is evidenced by the observed reduction in theronts present in the water.


Asunto(s)
Cíclidos , Cilióforos , Enfermedades de los Peces , Gadiformes , Hymenostomatida , Tilapia , Humanos , Animales , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/parasitología , Dieta/veterinaria , Suplementos Dietéticos , Agua de Mar , Alimentación Animal/análisis
3.
Magn Reson Chem ; 62(6): 452-462, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38237933

RESUMEN

Benchtop diffusion nuclear magnetic resonance (NMR) spectroscopy was used to perform quantitative monitoring of enzymatic hydrolysis. The study aimed to test the feasibility of the technology to characterize enzymatic hydrolysis processes in real time. Diffusion ordered spectroscopy (DOSY) was used to measure the signal intensity and apparent self-diffusion constant of solubilized protein in hydrolysate. The NMR technique was tested on an enzymatic hydrolysis reaction of red cod, a lean white fish, by the endopeptidase alcalase at 50°C. Hydrolysate samples were manually transferred from the reaction vessel to the NMR equipment. Measurement time was approximately 3 min per time point. The signal intensity from the DOSY experiment was used to measure protein concentration and the apparent self-diffusion constant was converted into an average molecular weight and an estimated degree of hydrolysis. These values were plotted as a function of time and both the rate of solubilization and the rate of protein breakdown could be calculated. In addition to being rapid and noninvasive, DOSY using benchtop NMR spectroscopy has an advantage compared with other enzymatic hydrolysis characterization methods as it gives a direct measure of average protein size; many functional properties of proteins are strongly influenced by protein size. Therefore, a method to give protein concentration and average size in real time will allow operators to more tightly control production from enzymatic hydrolysis. Although only one type of material was tested, it is anticipated that the method should be applicable to a broad variety of enzymatic hydrolysis feedstocks.


Asunto(s)
Subtilisinas , Hidrólisis , Subtilisinas/metabolismo , Subtilisinas/química , Difusión , Animales , Espectroscopía de Resonancia Magnética/métodos , Gadiformes/metabolismo
4.
J Fish Biol ; 104(3): 892-897, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37975731

RESUMEN

A large adult (138 mm head length) of the grenadier genus Coryphaenoides is described. It is identified as C. affinis hitherto known only from two juvenile type specimens collected by HMS Challenger off Uruguay in 1876. The diagnosis of the species is revised to include the discovery of considerable ontogenetic changes in squamation. Spinulation on the body scales are reduced or lost with size, while the armament of the head scales become amplified. The larger of the syntype specimens is designated as the lectotype. All three known specimens of C. affinis were collected in the southwestern Atlantic at depths between 3500 and 4000 m. A key for identification for the species of the subgenus Nematonurus is provided.


Asunto(s)
Gadiformes , Animales , Peces , Uruguay
5.
J Fish Biol ; 104(6): 2086-2089, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38477062

RESUMEN

The occurrence of a small specimen of Brosme brosme (Gadiformes: Lotidae) from the Porcupine Bank is reported. A single specimen with a total length of 73.2 mm was caught with bottom trawl at a depth of 322 m depth in 2017. The specimen was identified morphologically and confirmed by molecular taxonomy using DNA barcoding. Based on the size and ontogenetic characters found, the specimen was identified as a post-larval individual, and a pelagic habitat of the specimen seems more likely.


Asunto(s)
Gadiformes , Animales , Gadiformes/anatomía & histología , Gadiformes/genética , Gadiformes/clasificación , Código de Barras del ADN Taxonómico , Irlanda , Ecosistema
6.
Mol Phylogenet Evol ; 178: 107646, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265831

RESUMEN

The Old World flycatchers, robins and chats (Aves, Muscicapidae) are a diverse songbird family with over three hundred species. Despite continuous efforts over the past two decades, there is still no comprehensive and well-resolved species-level phylogeny for Muscicapidae. Here we present a supermatrix phylogeny that includes all 50 currently recognized genera and ca. 92% of all the species, built using data from up to 15 mitochondrial and 13 nuclear loci. In addition to assembling nucleotide sequences available in public databases, we also extracted sequences from the genome assemblies and raw sequencing reads from GenBank and included a few unpublished sequences. Our analyses resolved the phylogenetic position for several previously unsampled taxa, for example, the Grand Comoro Flycatcher Humblotia flavirostris, the Collared Palm Thrush Cichladusa arquata, and the Taiwan Whistling-Thrush Myophonus insularis, etc. We also provide taxonomic recommendations for genera that exhibit paraphyly or polyphyly. Our results suggest that Muscicapidae diverged from Turdidae (thrushes and allies) in the early Miocene, and the most recent common ancestors for the four subfamilies (Muscicapinae, Niltavinae, Cossyphinae and Saxicolinae) all arose around the middle Miocene.


Asunto(s)
Gadiformes , Passeriformes , Pájaros Cantores , Animales , Pájaros Cantores/genética , Filogenia , Passeriformes/genética , Gadiformes/genética , Núcleo Celular/genética , ADN Mitocondrial/genética
7.
Glob Chang Biol ; 29(7): 1822-1838, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36565055

RESUMEN

Borealization is a type of community reorganization where Arctic specialists are replaced by species with more boreal distributions in response to climatic warming. The process of borealization is often exemplified by the northward range expansions and subsequent proliferation of boreal species on the Pacific and Atlantic inflow Arctic shelves (i.e., Bering/Chukchi and Barents seas, respectively). But the circumpolar nearshore distribution of Arctic-boreal fishes that predates recent warming suggests borealization is possible beyond inflow shelves. To examine this question, we revisited two nearshore lagoons in the eastern Alaska Beaufort Sea (Kaktovik and Jago lagoons, Arctic National Wildlife Refuge, Alaska, USA), a High Arctic interior shelf. We compared summer fish species assemblage, catch rate, and size distribution among three periods that spanned a 30-year record (baseline conditions, 1988-1991; moderate sea ice decline, 2003-2005; rapid sea ice decline, 2017-2019). Fish assemblages differed among periods in both lagoons, consistent with borealization. Among Arctic specialists, a clear decline in fourhorn sculpin (Myoxocephalus quadricornis, Kanayuq in Iñupiaq) occurred in both lagoons with 86%-90% lower catch rates compared with the baseline period. Among the Arctic-boreal species, a dramatic 18- to 19-fold increase in saffron cod (Eleginus gracilis, Uugaq) occurred in both lagoons. Fish size (length) distributions demonstrated increases in the proportion of larger fish for most species examined, consistent with increasing survival and addition of age-classes. These field data illustrate borealization of an Arctic nearshore fish community during a period of rapid warming. Our results agree with predictions that Arctic-boreal fishes (e.g., saffron cod) are well positioned to exploit the changing Arctic ecosystem. Another Arctic-boreal species, Dolly Varden (Salvelinus malma, Iqalukpik), appear to have already responded to warming by shifting from Arctic nearshore to shelf waters. More broadly, our findings suggest that areas of borealization could be widespread in the circumpolar nearshore.


Asunto(s)
Gadiformes , Perciformes , Animales , Ecosistema , Regiones Árticas , Peces , Alaska , Océanos y Mares
8.
Glob Chang Biol ; 29(15): 4212-4233, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37058084

RESUMEN

The Pacific Arctic marine ecosystem has undergone rapid changes in recent years due to ocean warming, sea ice loss, and increased northward transport of Pacific-origin waters into the Arctic. These climate-mediated changes have been linked to range shifts of juvenile and adult subarctic (boreal) and Arctic fish populations, though it is unclear whether distributional changes are also occurring during the early life stages. We analyzed larval fish abundance and distribution data sampled in late summer from 2010 to 2019 in two interconnected Pacific Arctic ecosystems: the northern Bering Sea and Chukchi Sea, to determine whether recent warming and loss of sea ice has restricted habitat for Arctic species and altered larval fish assemblage composition from Arctic- to boreal-associated taxa. Multivariate analyses revealed the presence of three distinct multi-species assemblages across all years: (1) a boreal assemblage dominated by yellowfin sole (Limanda aspera), capelin (Mallotus catervarius), and walleye pollock (Gadus chalcogrammus); (2) an Arctic assemblage composed of Arctic cod (Boreogadus saida) and other common Arctic species; and (3) a mixed assemblage composed of the dominant species from the other two assemblages. We found that the wind- and current-driven northward advection of warmer, subarctic waters and the unprecedented low-ice conditions observed in the northern Bering and Chukchi seas beginning in 2017 and persisting into 2018 and 2019 have precipitated community-wide shifts, with the boreal larval fish assemblage expanding northward and offshore and the Arctic assemblage retreating poleward. We conclude that Arctic warming is most significantly driving changes in abundance at the leading and trailing edges of the Chukchi Sea larval fish community as boreal species increase in abundance and Arctic species decline. Our analyses document how quickly larval fish assemblages respond to environmental change and reveal that the impacts of Arctic borealization on fish community composition spans multiple life stages over large spatial scales.


Asunto(s)
Ecosistema , Gadiformes , Animales , Larva , Peces/fisiología , Océanos y Mares , Regiones Árticas
9.
Protein Expr Purif ; 212: 106356, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37604271

RESUMEN

Decades of extensive efforts on marine collagen extraction and characterization allowed to recognize the unique and excellent characteristics of marine collagen offering advantages over that obtained from terrestrial sources. However, not all marine collagens have the same biochemical characteristics; understanding those at molecular and supramolecular level, is crucial for optimal design of applications. One relevant aspect of collagen characterization is the analysis of its different subunits (α-chains) and their intermolecular cross-links (ß- and γ-components), which ultimately determine the specific functions of a particular collagen. Collagens from a teleost and an elasmobranch species were analyzed to understand the influence of their subunit composition and intermolecular crosslinking pattern on their different physicochemical behaviour. For comparative purposes a commercial mammal collagen was included in the study. Although electrophoretic profiles showed the typical composition of type I collagen for hake, blue shark and calf collagen, molar ratios of their α-chains were different indicating a different degree of dimerization of their α2-chains with implications in the presence of a different crosslinking degree pattern. Electrophoresis, amino acid composition, hydrophobicity (RP-HPLC) and molecular weight analysis (GPC-HPLC) results, besides a peptide mapping and an antioxidant activity study of the resultant peptides, would help to understand the role of different subunit collagen composition and different crosslinking pattern in the conformation of a differential quaternary supramolecular structure within different species and its biofunctional implications. The experiments developed would allow to progress in the valorization potential of fish discards and byproducts to explore commercial uses of collagens from marine origin.


Asunto(s)
Colágeno , Gadiformes , Animales , Aminoácidos , Cromatografía Líquida de Alta Presión , Dimerización , Mamíferos
10.
J Anim Ecol ; 92(10): 1966-1978, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37485731

RESUMEN

Movement diversity within species represent an important but often neglected, component of biodiversity that affects ecological and genetic interactions, as well as the productivity of exploited systems. By combining individual tracking data from acoustic telemetry with novel genetic analyses, we describe the movement diversity of two Atlantic cod Gadus morhua ecotypes in two high-latitude fjord systems: the highly migratory Northeast Arctic cod (NEA cod) that supports the largest cod fishery in the world, and the more sedentary Norwegian coastal cod, which is currently in a depleted state. As predicted, coastal cod displayed a higher level of fjord residency than NEA cod. Of the cod tagged during the spawning season, NEA cod left the fjords permanently to a greater extent and earlier compared to coastal cod, which to a greater extent remained resident and left the fjords temporarily. Despite this overall pattern, horizontal movements atypical for the ecotypes were common with some NEA cod remaining within the fjords year-round and some coastal cod displaying a low fjord fidelity. Fjord residency and exit timing also differed with spawning status and body size, with spawning cod and large individuals tagged during the feeding season more prone to leave the fjords and earlier than non-spawning and smaller individuals. While our results confirm a lower fjord dependency for NEA cod, they highlight a movement diversity within each ecotype and sympatric residency between ecotypes, previously undetected by population-level monitoring. This new knowledge is relevant for the management, which should base their fisheries advice for these interacting ecotypes on their habitat use and seasonal movements.


Asunto(s)
Gadiformes , Gadus morhua , Humanos , Animales , Ecotipo , Simpatría , Gadus morhua/genética , Biodiversidad
11.
Fish Shellfish Immunol ; 140: 108939, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37451526

RESUMEN

Burbot (Lota lota), a fish species of economic and ecological significance found across northern hemisphere freshwater ecosystems, was the focus of this study. We characterized 19 Toll-like receptor (TLR) genes in burbot, tracing their expression patterns following pathogen exposure. TLR genes, crucial to the innate immune system, including TLR13-1/2/3, TLR2/2-2/2-3/2-4/2-5, and TLR22a/22b/22c/22d, were discovered to be tandemly repeated, signifying an evolution in the fish's immune system. Notably, different TLR subfamilies displayed tissue-specific expressions, with TLR1 primarily in spleen and head kidney, TLR13 in head kidney, trunk kidney, and heart, TLR22 in trunk kidney and liver, and TLR3 and TLR9 predominantly in spleen and head kidney, but also in trunk kidney. Further, we investigated the response of TLR genes in burbot to pathogen exposure using qRT-PCR. This involved measuring mRNA expressions of identified TLR genes in spleen and liver tissues after injecting Poly(I:C) to simulate a double-stranded RNA viral infection. The results revealed a time and tissue-specific expression pattern. Specifically, LoTLR3 reached peak expression in the spleen 12 h post-injection, declining thereafter, while TLR2 subfamily members only began expressing after 24 h. In the liver, activation of the TLR3-IRF7 and TLR3-IRF3 signaling pathways was noted. Integrating these results with transcriptomic data illuminated the pivotal role of TLR genes in the burbot's immune response. Such findings are vital in shaping future disease prevention and treatment strategies.


Asunto(s)
Gadiformes , Receptor Toll-Like 3 , Animales , Ecosistema , Receptor Toll-Like 2 , Receptores Toll-Like , Transducción de Señal
12.
Fish Shellfish Immunol ; 137: 108775, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37105427

RESUMEN

Burbot (Lota lota) are an ideal candidate for cool or cold-water aquaculture and are gaining interest because of their high economic value, low temperature requirements, and fast growth rate. Limited information exists on the innate and adaptive immune systems of this species. This is partly due to the lack of species-specific tools to determine antibody responses following disease or vaccination or to characterize the immune response in general. An anti-IgM monoclonal antibody (mAb 27C) was developed and characterized via enzyme-linked immunosorbent assay (ELISA) and Western blot for species specificity, affinity to the heavy chain of burbot IgM, and cross-reactivity to other reagents used in the analysis. The 27C monoclonal antibody was further utilized to develop an ELISA protocol to measure the specific antibody response of burbot following exposure to two pathogenic strains of Aeromonas sp. (A141 and IR004). This ELISA confirmed that vaccinated burbot that survived the challenge with either strain developed statistically higher titers of anti-Aeromonas antibodies specific for the relative strain when compared to fish that were not vaccinated or challenged. Western blot analysis further demonstrated that burbot surviving challenge had serum IgM that recognized distinct antigens specific to the strain they were challenged with, A141 bound to antigens in the 50-250Kda range and IR004 bound to a distinct 150Kda antigen. Western blots further indicated that each strain shared antigenic regions regardless of experimental Aeromonas strain exposure. Finally, immunofluorescent staining confirmed that mAb 27C binds to membrane-bound IgM (presumably B cells) on burbot head kidney cells. Taken together, results from this study demonstrate that mAb 27C specifically recognized burbot IgM and will be an important tool to further characterize the adaptive and cellular immune responses of this fish species.


Asunto(s)
Aeromonas , Gadiformes , Animales , Anticuerpos Monoclonales , Peces , Ensayo de Inmunoadsorción Enzimática/veterinaria
13.
Mar Drugs ; 21(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37999411

RESUMEN

The rest raw materials of whitefish have great potential for increased utilisation and value creation. Whitefish heads have a high protein content and should be considered a healthy protein source for the growing population's demands for sustainable protein. In this study, the heads of four different species of whitefish were processed via enzymatic hydrolysis, namely cod (Gadus morhua), cusk (Brosme bromse), haddock (Melanogrammus aeglefinus), and saithe (Pollachius virens), using three commercially available enzymes. Trials were conducted after 0, 3, and 6 months of the frozen storage of heads. A proximate analysis, molecular weight distribution, and protein solubility were evaluated for each of the products. The results show that, although the enzymatic hydrolysis of rest raw materials from different species of whitefish yielded products of slightly different characteristics, this process is viable for the production of high-quality protein from cod, cusk, haddock, and saithe heads. Six months of frozen storage of heads had a minimal effect on the yield and proximate composition of hydrolysates.


Asunto(s)
Gadiformes , Gadus morhua , Salmonidae , Animales , Hidrolisados de Proteína/química , Alimentos Marinos
14.
Mar Drugs ; 21(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37999376

RESUMEN

Fish by-catches, along with other fish side-streams, were previously used as raw material for the production of fishmeal and fish oil but appropriate handling allows their use in more valuable options. The aim of this research was to valorize undersized hake (Merluccius merluccius) as a model of using fish by-catch from the Bay of Biscay to produce protein hydrolysates with bioactivities. Six enzymes, with different proteolytic activities (endo- or exoproteases) and specificities, were tested to produce protein hydrolysates. Products obtained with an endoprotease of serine resulted in the most promising results in terms of protein extraction yield (68%), with an average molecular weight of 2.5 kDa, and bioactivity yield (antioxidant activity = 88.5 mg TE antioxidant capacity/g fish protein; antihypertensive activity = 47% inhibition at 1 mg/mL). Then, process conditions for the use of this enzyme to produce bioactive products were optimized using Box-Behnken design. The most favorable process conditions (time = 2 h, solids = 50% and enzyme/substrate = 2% with respect to protein) were scaled up (from 0.5 L to 150 L reactor) to confirm laboratory scale and model forecasts. The results obtained in the pilot-scale testing matched the outcomes predicted by the model, confirming the technical viability of the proposed process.


Asunto(s)
Gadiformes , Perciformes , Animales , Hidrólisis , Gadiformes/metabolismo , Hidrolisados de Proteína/química , Péptidos/química , Antihipertensivos/farmacología , Peces/metabolismo , Perciformes/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo
15.
Parasitol Res ; 122(12): 3053-3062, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806979

RESUMEN

Fish play an important role in human nutrition. They are not only a great source of protein and healthy fats, but also a unique source of essential nutrients such as omega-3 fatty acids. Moreover, most fish are parasitized, and some of these parasites are able to influence the reallocation of resources in their favor and thus reduce the nutritional quality of the fish. The present study was conducted to investigate the impact of the third stage larvae (L3) of Anisakis spp. on the proximate composition, macro-minerals (potassium, calcium, and sodium), and fatty acids of European hake (Merluccius merluccius Linnaeus, 1758). In parasitized female group, our results revealed a decrease (p< 0.005) in the amount of carbohydrate by 6.5%, of calcium by 17%, and of 2 polyunsaturated fatty acids (arachidonic acid (C20: 4w-6), and eicosapentaenoic acid (C20: 5w-3) with 33% and 15% respectively. Simultaneously, an increase by 25% in the level of a single saturated fatty acid C10:0 was noticed. According to the principal component analysis, the parasitized female was wealthy of saturated fatty acids and monounsaturated fatty acids and contains less of polyunsaturated fatty acids, omega-3 fatty acids, and omega-6 fatty acids than the unparasitized female and male. No significant changes were observed in the biochemical composition of male hake, probably due to the low mean intensity of L3 larvae of Anisakis spp. in this group.


Asunto(s)
Anisakis , Ácidos Grasos Omega-3 , Gadiformes , Animales , Masculino , Femenino , Humanos , Ácidos Grasos , Calcio , Gadiformes/parasitología , Peces , Ácidos Grasos Insaturados , Ácidos Grasos Omega-3/análisis , Larva , Minerales
16.
Parasitol Res ; 123(1): 39, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095734

RESUMEN

Parasitic fauna of the White Sea cod, Gadus morhua marisalbi; the navaga, Eleginus nawaga; and the shorthorn sculpin, Myoxocephalus scorpius, in the White Sea was repeatedly studied, but no large-scale parasitological surveys have been made in the recent three decades. To fill this gap, we conducted a survey of the helminths of these three fish species at the White Sea Biological Station (Karelia, Russia) of the Lomonosov Moscow State University in August 2021. The navaga (50 specimens studied) was found to be infected with 13 species of helminths; the White Sea cod (50 specimens), with 12 species; and the shorthorn sculpin (21 specimens), with 13 species. Plerocercoids of Diphyllobothrium schistochilus and third-stage juveniles of Pseudoterranova bulbosa were recorded in the White Sea for the first time. The helminth infracommunities of the navaga and the White Sea cod were closer in structure to each other than to those of the shorthorn sculpin. In general, the levels of helminth infection of the White Sea cod, the navaga, and shorthorn sculpin have been consistently high over 85 years of observations in the White Sea, but long-term trends in the abundance of some helminth species were multidirectional.


Asunto(s)
Gadiformes , Gadus morhua , Helmintos , Perciformes , Humanos , Animales , Peces/parasitología
17.
Parasitol Res ; 122(8): 1953-1957, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37212836

RESUMEN

Although within-host competition among parasites if often assumed to occur based on statistical patterns, actual physical evidence of direct antagonistic interactions between parasites, either intraspecific or interspecific, is very rare. Here, we report such evidence between and within two species of hemiurid trematodes infecting the deep-sea grenadier fish Coryphaenoides subserrulatus. We found pairs of worms attached together, with one worm using its ventral sucker against another worm, and sucking out a large protuberance on the victim. We also found single worms showing clear signs of past attacks. There was no evidence that these interactions were more common at high intensities of infection, where the conditions would be expected to be more conducive to competitive interactions. Our findings provide evidence that trematodes may cause some harm to co-occurring individuals, suggesting a direct form of interference competition among intestinal helminths.


Asunto(s)
Gadiformes , Helmintiasis , Trematodos , Infecciones por Trematodos , Animales , Peces/parasitología , Interacciones Huésped-Parásitos
18.
BMC Biol ; 20(1): 293, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575514

RESUMEN

BACKGROUND: Antibody affinity maturation in vertebrates requires the enzyme activation-induced cytidine deaminase (AID) which initiates secondary antibody diversification by mutating the immunoglobulin loci. AID-driven antibody diversification is conserved across jawed vertebrates since bony and cartilaginous fish. Two exceptions have recently been reported, the Pipefish and Anglerfish, in which the AID-encoding aicda gene has been lost. Both cases are associated with unusual reproductive behavior, including male pregnancy and sexual parasitism. Several cold water fish in the Atlantic cod (Gadinae) family carry an aicda gene that encodes for a full-length enzyme but lack affinity-matured antibodies and rely on antibodies of broad antigenic specificity. Hence, we examined the functionality of their AID. RESULTS: By combining genomics, transcriptomics, immune responsiveness, and functional enzymology of AID from 36 extant species, we demonstrate that AID of that Atlantic cod and related fish have extremely lethargic or no catalytic activity. Through ancestral reconstruction and functional enzymology of 71 AID enzymes, we show that this enzymatic inactivation likely took place relatively recently at the emergence of the true cod family (Gadidae) from their ancestral Gadiformes order. We show that this AID inactivation is not only concordant with the previously shown loss of key adaptive immune genes and expansion of innate and cell-based immune genes in the Gadiformes but is further reflected in the genomes of these fish in the form of loss of AID-favored sequence motifs in their immunoglobulin variable region genes. CONCLUSIONS: Recent demonstrations of the loss of the aicda gene in two fish species challenge the paradigm that AID-driven secondary antibody diversification is absolutely conserved in jawed vertebrates. These species have unusual reproductive behaviors forming an evolutionary pressure for a certain loss of immunity to avoid tissue rejection. We report here an instance of catalytic inactivation and functional loss of AID rather than gene loss in a conventionally reproducing vertebrate. Our data suggest that an expanded innate immunity, in addition to lower pathogenic pressures in a cold environment relieved the pressure to maintain robust secondary antibody diversification. We suggest that in this unique scenario, the AID-mediated collateral genome-wide damage would form an evolutionary pressure to lose AID function.


Asunto(s)
Gadiformes , Animales , Masculino , Agua , Citidina Desaminasa/genética , Peces/genética , Vertebrados
19.
J Acoust Soc Am ; 154(5): 2937-2949, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37938046

RESUMEN

There are substantial interspecific differences in the morphology of the ears of the more than 34 000 living fish species. However, almost nothing is known about the functional significance of these differences. One reason is that most comparative studies have been conducted on shallow-water species with far less focus on the numerous species that inhabit the depths of the oceans. Thus, to get a better sense of ear diversity in fishes and its potential role in hearing, this study focuses on the saccule and lagena, the primary auditory end organs, in six species of the family Macrouridae (rattails), a large group of fishes that typically inhabit depths from 1000 to 4000 m. The inner ears and, particularly, the saccules and lagenae in these species are large with the saccule resembling that of other Gadiformes. The lagenae of all macrourids studied here have serrated edge otoliths and highly diverse hair cell ciliary bundle shapes. The differences found in the inner ear anatomy of macrourids likely reflect the sensory advantages in different habitats that are related to the benefits and constraints at different depths, the fish's particular lifestyle, and the trade-off among different sensory systems.


Asunto(s)
Peces , Gadiformes , Animales , Sáculo y Utrículo , Audición , Membrana Otolítica
20.
J Fish Biol ; 102(6): 1442-1454, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36999199

RESUMEN

Polar cod (Boreogadus saida) is an important trophic link within Arctic marine food webs and is likely to experience diet shifts in response to climate change. One important tool for assessing organism diet is bulk stable isotope analysis. However, key parameters necessary for interpreting the temporal context of stable isotope values are lacking, especially for Arctic species. This study provides the first experimental determination of isotopic turnover (as half-life) and trophic discrimination factors (TDFs) of both δ13 C and δ15 N in adult polar cod muscle. Using a diet enriched in both 13 C and 15 N, we measured isotopic turnover times of 61 and 49 days for δ13 C and δ15 N, respectively, with metabolism accounting for >94% of the total turnover. These half-life estimates are valid for adult polar cod (>3 years) experiencing little somatic growth. We measured TDFs in our control of 2.6‰ and 3.9‰ for δ13 C and δ15 N, respectively, and we conclude that applying the commonly used TDF of ~1‰ for δ13 C for adult polar cod may lead to misrepresentation of dietary carbon source, while the use of 3.8‰ for δ15 N is appropriate. Based on these results, we recommend that studies investigating seasonal shifts in the diet of adult polar cod sample at temporal intervals of at least 60 days to account for isotopic turnover in polar cod muscle. Although isotopic equilibrium was reached by the fish in this study, it was at substantially lower isotope values than the diet. Additionally, the use of highly enriched algae in the experimental feed caused very high variability in diet isotope values which precluded accurate calculation of TDFs from the enriched fish. As a result of the challenges faced in this study, we discourage the use of highly enriched diets for similar experiments and provide recommendations to guide the design of future isotopic turnover experiments.


Asunto(s)
Gadiformes , Músculos , Animales , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Músculos/química , Carbono , Estado Nutricional , Dieta , Peces/metabolismo , Gadiformes/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda