Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Biol Chem ; 300(7): 107482, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38897567

RESUMEN

Siglecs are cell surface receptors whose functions are tied to the binding of their sialoglycan ligands. Recently, we developed an optimized liposome formulation and used it to investigate the binding of human Siglecs (hSiglec) against a panel of gangliosides. Animal models, more specifically murine models, are used to understand human biology; however, species-specific differences can complicate the interpretation of the results. Herein, we used our optimized liposome formulation to dissect the interactions between murine Siglecs (mSiglecs) and gangliosides to assess the appropriateness of mSiglecs as a proxy to better understand the biological roles of hSiglec-ganglioside interactions. Using our optimized liposome formulation, we found that ganglioside binding is generally conserved between mice and humans with mSiglec-1, -E, -F, and -15 binding multiple gangliosides like their human counterparts. However, in contrast to the hSiglecs, we observed little to no binding between the mSiglecs and ganglioside GM1a. Detailed analysis of mSiglec-1 interacting with GM1a and its structural isomer, GM1b, suggests that mSiglec-1 preferentially binds α2-3-linked sialic acids presented from the terminal galactose residue. The ability of mSiglecs to interact or not interact with gangliosides, particularly GM1a, has implications for using mice to study neurodegenerative diseases, infections, and cancer, where interactions between Siglecs and glycolipids have been proposed to modulate these human diseases.


Asunto(s)
Gangliósidos , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Animales , Gangliósidos/metabolismo , Ratones , Humanos , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Liposomas/metabolismo , Lectinas/metabolismo , Lectinas/química , Unión Proteica , Antígenos CD/metabolismo , Antígenos CD/genética
2.
J Virol ; 98(3): e0191523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38334327

RESUMEN

As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus]. However, the molecular mechanisms of NDV-induced CavME remain poorly understood. Herein, we demonstrate that sialic acid-containing gangliosides, rather than glycoproteins, were utilized by NDV as receptors to initiate the endocytic entry of NDV into HD11 cells. The binding of NDV to gangliosides induced the activation of a non-receptor tyrosine kinase, Src, leading to the phosphorylation of caveolin-1 (Cav1) and dynamin-2 (Dyn2), which contributed to the endocytic entry of NDV. Moreover, an inoculation of cells with NDV-induced actin cytoskeletal rearrangement through Src to facilitate NDV entry via endocytosis and direct fusion with the plasma membrane. Subsequently, unique members of the Rho GTPases family, RhoA and Cdc42, were activated by NDV in a Src-dependent manner. Further analyses revealed that RhoA and Cdc42 regulated the activities of specific effectors, cofilin and myosin regulatory light chain 2, responsible for actin cytoskeleton rearrangement, through diverse intracellular signaling cascades. Taken together, our results suggest that an inoculation of NDV-induced Src-mediated cellular activation by binding to ganglioside receptors. This process orchestrated NDV endocytic entry by modulating the activities of caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPases and downstream effectors. IMPORTANCE: In general, it is known that the paramyxovirus gains access to host cells through direct penetration at the plasma membrane; however, emerging evidence suggests more complex entry mechanisms for paramyxoviruses. The endocytic entry of Newcastle disease virus (NDV), a representative member of the paramyxovirus family, into multiple types of cells has been recently reported. Herein, we demonstrate the binding of NDV to induce ganglioside-activated Src signaling, which is responsible for the endocytic entry of NDV through caveolae-mediated endocytosis. This process involved Src-dependent activation of the caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPase and downstream effectors, thereby orchestrating the endocytic entry process of NDV. Our findings uncover a novel molecular mechanism of endocytic entry of NDV into host cells and provide novel insight into paramyxovirus mechanisms of entry.


Asunto(s)
Macrófagos , Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Transducción de Señal , Internalización del Virus , Animales , Endocitosis , Gangliósidos/metabolismo , Macrófagos/metabolismo , Macrófagos/virología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/fisiología , Proteínas de Unión al GTP rho/metabolismo
3.
Exp Cell Res ; 436(2): 113960, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38311048

RESUMEN

PURPOSE: Intracerebral hemorrhage (ICH) results in substantial morbidity, mortality, and disability. Depleting neural cells in advanced stages of ICH poses a significant challenge to recovery. The objective of our research is to investigate the potential advantages and underlying mechanism of exosomes obtained from human umbilical cord mesenchymal stem cells (hUMSCs) pretreated with monosialoteterahexosyl ganglioside (GM1) in the prevention of secondary brain injury (SBI) resulting from ICH. PATIENTS AND METHODS: In vitro, hUMSCs were cultured and induced to differentiate into neuron-like cells after they were pretreated with 150 µg/mL GM1. The exosomes extracted from the culture medium following a 6-h pretreatment with 150 µg/mL GM1 were used as the treatment group. Striatal infusion of collagenase and hemoglobin (Hemin) was used to establish in vivo and in vitro models of ICH. RESULTS: After being exposed to 150 µg/mL GM1 for 6 h, specific cells displayed typical neuron-like cell morphology and expressed neuron-specific enolase (NSE). The rate of differentiation into neuron-like cells was up to (15.9 ± 5.8) %, and the synthesis of N-Acetylgalactosaminyltransferase (GalNAcT), which is upstream of GM1, was detected by Western blot. This study presented an increase in the synthesis of GalNAcT. Compared with the ICH group, apoptosis in the treatment group was remarkably reduced, as detected by TUNEL, and mitochondrial membrane potential was restored by JC-1. Additionally, Western blot revealed the restoration of up-regulated autophagy markers Beclin-1 and LC3 and the down-regulation of autophagy marker p62 after ICH. CONCLUSION: These findings suggest that GM1 is an effective agent to induce the differentiation of hUMSCs into neuron-like cells. GM1 can potentially increase GalNAcT production through "positive feedback", which generates more GM1 and promotes the differentiation of hUMSCs. After pretreatment with GM1, exosomes derived from hUMSCs (hUMSCs-Exos) demonstrate a neuroprotective effect by inhibiting autophagy in the ICH model. This study reveals the potential mechanism by which GM1 induces differentiation of hUMSCs into neuron-like cells and confirms the therapeutic effect of hUMSCs-Exos pretreated by GM1 (GM1-Exos) on an ICH model, potentially offering a new direction for stem cell therapy in ICH.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Humanos , Gangliósidos/metabolismo , Gangliósido G(M1)/metabolismo , Autofagia/fisiología , Células Madre Mesenquimatosas/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Cordón Umbilical
4.
Glia ; 72(1): 167-183, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37667994

RESUMEN

The postnatal neural stem cell (NSC) pool hosts quiescent and activated radial glia-like NSCs contributing to neurogenesis throughout adulthood. However, the underlying regulatory mechanism during the transition from quiescent NSCs to activated NSCs in the postnatal NSC niche is not fully understood. Lipid metabolism and lipid composition play important roles in regulating NSC fate determination. Biological lipid membranes define the individual cellular shape and help maintain cellular organization and are highly heterogeneous in structure and there exist diverse microdomains (also known as lipid rafts), which are enriched with sugar molecules, such as glycosphingolipids. An often overlooked but key aspect is that the functional activities of proteins and genes are highly dependent on their molecular environments. We previously reported that ganglioside GD3 is the predominant species in NSCs and that the reduced postnatal NSC pools are observed in global GD3-synthase knockout (GD3S-KO) mouse brains. The specific roles of GD3 in determining the stage and cell-lineage determination of NSCs remain unclear, since global GD3S-KO mice cannot distinguish if GD3 regulates postnatal neurogenesis or developmental impacts. Here, we show that inducible GD3 deletion in postnatal radial glia-like NSCs promotes NSC activation, resulting in the loss of the long-term maintenance of the adult NSC pools. The reduced neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of GD3S-conditional-knockout mice led to the impaired olfactory and memory functions. Thus, our results provide convincing evidence that postnatal GD3 maintains the quiescent state of radial glia-like NSCs in the adult NSC niche.


Asunto(s)
Células-Madre Neurales , Ratones , Animales , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Gangliósidos/genética , Gangliósidos/metabolismo , Diferenciación Celular , Ratones Noqueados
5.
Glycobiology ; 34(7)2024 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-38785323

RESUMEN

Aberrant glycosylation is a key mechanism employed by cancer cells to evade immune surveillance, induce angiogenesis and metastasis, among other hallmarks of cancer. Sialic acids, distinctive terminal glycan structures located on glycoproteins or glycolipids, are prominently upregulated across various tumor types, including colorectal cancer (CRC). Sialylated glycans modulate anti-tumor immune responses through their interactions with Siglecs, a family of glycan-binding receptors with specificity for sialic acid-containing glycoconjugates, often resulting in immunosuppression. In this paper, we investigated the immunomodulatory function of ST3Gal5, a sialyltransferase that catalyzes the addition of α2-3 sialic acids to glycosphingolipids, since lower expression of ST3Gal5 is associated with better survival of CRC patients. We employed CRISPR/Cas9 to knock out the ST3Gal5 gene in two murine CRC cell lines MC38 and CT26. Glycomics analysis confirmed the removal of sialic acids on glycolipids, with no discernible impact on glycoprotein sialylation. Although knocking out ST3Gal5 in both cell lines did not affect in vivo tumor growth, we observed enhanced levels of regulatory T cells in CT26 tumors lacking ST3Gal5. Moreover, we demonstrate that the absence of ST3Gal5 affected size and blood vessel density only in MC38 tumors. In summary, we ascertain that sialylation of glycosphingolipids has a limited influence on the anti-tumor immune response in CRC, despite detecting alterations in the tumor microenvironment, possibly due to a shift in ganglioside abundance.


Asunto(s)
Neoplasias Colorrectales , Gangliósidos , Sialiltransferasas , Sialiltransferasas/metabolismo , Sialiltransferasas/genética , Gangliósidos/metabolismo , Gangliósidos/inmunología , Animales , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ratones , Línea Celular Tumoral , Humanos , beta-Galactosida alfa-2,3-Sialiltransferasa
6.
J Am Chem Soc ; 146(26): 17801-17816, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38887845

RESUMEN

Gangliosides, sialic acid bearing glycosphingolipids, are components of the outer leaflet of plasma membranes of all vertebrate cells. They contribute to cell regulation by interacting with proteins in their own membranes (cis) or their extracellular milieu (trans). As amphipathic membrane constituents, gangliosides present challenges for identifying their ganglioside protein interactome. To meet these challenges, we synthesized bifunctional clickable photoaffinity gangliosides, delivered them to plasma membranes of cultured cells, then captured and identified their interactomes using proteomic mass spectrometry. Installing probes on ganglioside lipid and glycan moieties, we captured cis and trans ganglioside-protein interactions. Ganglioside interactomes varied with the ganglioside structure, cell type, and site of the probe (lipid or glycan). Gene ontology revealed that gangliosides engage with transmembrane transporters and cell adhesion proteins including integrins, cadherins, and laminins. The approach developed is applicable to other gangliosides and cell types, promising to provide insights into molecular and cellular regulation by gangliosides.


Asunto(s)
Química Clic , Gangliósidos , Gangliósidos/química , Gangliósidos/metabolismo , Humanos , Etiquetas de Fotoafinidad/química , Etiquetas de Fotoafinidad/síntesis química , Sondas Moleculares/química , Sondas Moleculares/síntesis química , Membrana Celular/metabolismo , Membrana Celular/química
7.
Neurobiol Dis ; 199: 106564, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876323

RESUMEN

Biallelic variants in the SPG11 gene account for the most common form of autosomal recessive hereditary spastic paraplegia characterized by motor and cognitive impairment, with currently no therapeutic option. We previously observed in a Spg11 knockout mouse that neurodegeneration is associated with accumulation of gangliosides in lysosomes. To test whether a substrate reduction therapy could be a therapeutic option, we downregulated the key enzyme involved in ganglioside biosynthesis using an AAV-PHP.eB viral vector expressing a miRNA targeting St3gal5. Downregulation of St3gal5 in Spg11 knockout mice prevented the accumulation of gangliosides, delayed the onset of motor and cognitive symptoms, and prevented the upregulation of serum levels of neurofilament light chain, a biomarker widely used in neurodegenerative diseases. Importantly, similar results were observed when Spg11 knockout mice were administrated venglustat, a pharmacological inhibitor of glucosylceramide synthase expected to decrease ganglioside synthesis. Downregulation of St3gal5 or venglustat administration in Spg11 knockout mice strongly decreased the formation of axonal spheroids, previously associated with impaired trafficking. Venglustat had similar effect on cultured human SPG11 neurons. In conclusion, this work identifies the first disease-modifying therapeutic strategy in SPG11, and provides data supporting its relevance for therapeutic testing in SPG11 patients.


Asunto(s)
Gangliósidos , Ratones Noqueados , Paraplejía Espástica Hereditaria , Animales , Gangliósidos/metabolismo , Ratones , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Humanos , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/genética , Proteínas/genética , Proteínas/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/deficiencia , Neuronas/metabolismo , Ratones Endogámicos C57BL , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Proteínas de Neurofilamentos
8.
Mol Genet Metab ; 142(1): 108434, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38489976

RESUMEN

Congenital disorders of glycosylation (CDG) are a large family of rare disorders affecting the different glycosylation pathways. Defective glycosylation can affect any organ, with varying symptoms among the different CDG. Even between individuals with the same CDG there is quite variable severity. Associating specific symptoms to deficiencies of certain glycoproteins or glycolipids is thus a challenging task. In this review, we focus on the glycosphingolipid (GSL) synthesis pathway, which is still rather unexplored in the context of CDG, and outline the functions of the main GSLs, including gangliosides, and their role in the central nervous system. We provide an overview of GSL studies that have been performed in CDG and show that abnormal GSL levels are not only observed in CDG directly affecting GSL synthesis, but also in better known CDG, such as PMM2-CDG. We highlight the importance of studying GSLs in CDG in order to better understand the pathophysiology of these disorders.


Asunto(s)
Trastornos Congénitos de Glicosilación , Glicoesfingolípidos , Humanos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Glicoesfingolípidos/metabolismo , Glicosilación , Animales , Gangliósidos/metabolismo , Gangliósidos/deficiencia
9.
Acta Neuropathol ; 147(1): 105, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896306

RESUMEN

Alzheimer's disease (AD) is a progressive neurological condition characterized by impaired cognitive function and behavioral alterations. While AD research historically centered around mis-folded proteins, advances in mass spectrometry techniques have triggered increased exploration of the AD lipidome with lipid dysregulation emerging as a critical player in AD pathogenesis. Gangliosides are a class of glycosphingolipids enriched within the central nervous system. Previous work has suggested a shift in a-series gangliosides from complex (GM1) to simple (GM2 and GM3) species may be related to the development of neurodegenerative disease. In addition, complex gangliosides with 20 carbon sphingosine chains have been shown to increase in the aging brain. In this study, we utilized matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) to interrogate the in situ relationship of a-series gangliosides with either 18 or 20 carbon sphingosine chains (d18:1 or d20:1, respectively) in the post-mortem human AD brain. Here, we expanded upon previous literature and demonstrated a significant decrease in the GM1 d20:1 to GM1 d18:1 ratio in regions of the dentate gyrus and entorhinal cortex in AD relative to control brain tissue. Then, we demonstrated that the MALDI-MSI profile of GM3 co-localizes with histologically confirmed amyloid beta (Aß) plaques and found a significant increase in both GM1 and GM3 in proximity to Aß plaques. Collectively, this study demonstrates a perturbation of the ganglioside profile in AD, and validates a pipeline for MALDI-MSI and classic histological staining in the same tissue sections. This demonstrates feasibility for integrating untargeted mass spectrometry imaging approaches into a digital pathology framework.


Asunto(s)
Enfermedad de Alzheimer , Gangliósidos , Placa Amiloide , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Gangliósidos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Placa Amiloide/patología , Placa Amiloide/metabolismo , Anciano , Anciano de 80 o más Años , Encéfalo/patología , Encéfalo/metabolismo , Masculino , Femenino
10.
BMC Musculoskelet Disord ; 25(1): 565, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033138

RESUMEN

INTRODUCTION: Growth plate damage in long bones often results in progressive skeletal growth imbalance and deformity, leading to significant physical problems. Gangliosides, key glycosphingolipids in cartilage, are notably abundant in articular cartilage and regulate chondrocyte homeostasis. This suggests their significant roles in regulating growth plate cartilage repair. METHODS: Chondrocytes from 3 to 5 day-old C57BL/6 mice underwent glycoblotting and mass spectrometry. Based on the results of the glycoblotting analysis, we employed GD3 synthase knockout mice (GD3-/-), which lack b-series gangliosides. In 3-week-old mice, physeal injuries were induced in the left tibiae, with right tibiae sham operated. Tibiae were analyzed at 5 weeks postoperatively for length and micro-CT for growth plate height and bone volume at injury sites. Tibial shortening ratio and bone mineral density were measured by micro-CT. RESULTS: Glycoblotting analysis indicated that b-series gangliosides were the most prevalent in physeal chondrocytes among ganglioside series. At 3 weeks, GD3-/- exhibited reduced tibial shortening (14.7 ± 0.2 mm) compared to WT (15.0 ± 0.1 mm, P = 0.03). By 5 weeks, the tibial lengths in GD3-/- (16.0 ± 0.4 mm) closely aligned with sham-operated lengths (P = 0.70). Micro-CT showed delayed physeal bridge formation in GD3-/-, with bone volume measuring 168.9 ± 5.8 HU at 3 weeks (WT: 180.2 ± 3.2 HU, P = 0.09), but normalizing by 5 weeks. CONCLUSION: This study highlights that GD3 synthase knockout mice inhibit physeal bridge formation after growth plate injury, proposing a new non-invasive approach for treating skeletal growth disorders.


Asunto(s)
Condrocitos , Gangliósidos , Placa de Crecimiento , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Placa de Crecimiento/patología , Placa de Crecimiento/metabolismo , Gangliósidos/metabolismo , Condrocitos/metabolismo , Ratones , Diferencia de Longitud de las Piernas , Tibia/diagnóstico por imagen , Tibia/patología , Tibia/metabolismo , Tibia/crecimiento & desarrollo , Microtomografía por Rayos X , Sialiltransferasas/deficiencia , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Modelos Animales de Enfermedad
11.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891974

RESUMEN

Tetanus disease, caused by C. tetani, starts with wounds or mucous layer contact. Prevented by vaccination, the lack of booster shots throughout life requires prophylactic treatment in case of accidents. The incidence of tetanus is high in underdeveloped countries, requiring the administration of antitetanus antibodies, usually derived from immunized horses or humans. Heterologous sera represent risks such as serum sickness. Human sera can carry unknown viruses. In the search for human monoclonal antibodies (mAbs) against TeNT (Tetanus Neurotoxin), we previously identified a panel of mAbs derived from B-cell sorting, selecting two nonrelated ones that binded to the C-terminal domain of TeNT (HCR/T), inhibiting its interaction with the cellular receptor ganglioside GT1b. Here, we present the results of cellular assays and molecular docking tools. TeNT internalization in neurons is prevented by more than 50% in neonatal rat spinal cord cells, determined by quantitative analysis of immunofluorescence punctate staining of Alexa Fluor 647 conjugated to TeNT. We also confirmed the mediator role of the Synaptic Vesicle Glycoprotein II (SV2) in TeNT endocytosis. The molecular docking assays to predict potential TeNT epitopes showed the binding of both antibodies to the HCR/T domain. A higher incidence was found between N1153 and W1297 when evaluating candidate residues for conformational epitope.


Asunto(s)
Anticuerpos Monoclonales , Endocitosis , Simulación del Acoplamiento Molecular , Neuronas , Toxina Tetánica , Animales , Ratas , Neuronas/metabolismo , Humanos , Anticuerpos Monoclonales/inmunología , Toxina Tetánica/inmunología , Toxina Tetánica/metabolismo , Tétanos/prevención & control , Tétanos/inmunología , Epítopos/inmunología , Gangliósidos/inmunología , Gangliósidos/metabolismo , Células Cultivadas , Simulación por Computador , Metaloendopeptidasas
12.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732111

RESUMEN

Glycosphingolipids (GSLs), a subtype of glycolipids containing sphingosine, are critical components of vertebrate plasma membranes, playing a pivotal role in cellular signaling and interactions. In human articular cartilage in osteoarthritis (OA), GSL expression is known notably to decrease. This review focuses on the roles of gangliosides, a specific type of GSL, in cartilage degeneration and regeneration, emphasizing their regulatory function in signal transduction. The expression of gangliosides, whether endogenous or augmented exogenously, is regulated at the enzymatic level, targeting specific glycosyltransferases. This regulation has significant implications for the composition of cell-surface gangliosides and their impact on signal transduction in chondrocytes and progenitor cells. Different levels of ganglioside expression can influence signaling pathways in various ways, potentially affecting cell properties, including malignancy. Moreover, gene manipulations against gangliosides have been shown to regulate cartilage metabolisms and chondrocyte differentiation in vivo and in vitro. This review highlights the potential of targeting gangliosides in the development of therapeutic strategies for osteoarthritis and cartilage injury and addresses promising directions for future research and treatment.


Asunto(s)
Cartílago Articular , Condrocitos , Glicoesfingolípidos , Osteoartritis , Regeneración , Humanos , Osteoartritis/terapia , Osteoartritis/metabolismo , Osteoartritis/patología , Animales , Cartílago Articular/metabolismo , Cartílago Articular/patología , Condrocitos/metabolismo , Glicoesfingolípidos/metabolismo , Transducción de Señal , Gangliósidos/metabolismo
13.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928016

RESUMEN

While much has been learned about sphingolipids, originally named for their sphinx-like enigmatic properties, there are still many unanswered questions about the possible effect(s) of the composition of ceramide on the synthesis and/or behavior of a glycosphingolipid (GSL). Over time, studies of their ceramide component, the sphingoid base containing the lipid moiety of GSLs, were frequently distinct from those performed to ascertain the roles of the carbohydrate moieties. Due to the number of classes of GSLs that can be derived from ceramide, this review focuses on the possible role(s) of ceramide in the synthesis/function of just one GSL class, derived from glucosylceramide (Glc-Cer), namely sialylated ganglio derivatives, initially characterized and named gangliosides (GGs) due to their presence in ganglion cells. While much is known about their synthesis and function, much is still being learned. For example, it is only within the last 15-20 years or so that the mechanism by which the fatty acyl component of ceramide affected its transport to different sites in the Golgi, where it is used for the synthesis of Glu- or galactosyl-Cer (Gal-Cer) and more complex GSLs, was defined. Still to be fully addressed are questions such as (1) whether ceramide composition affects the transport of partially glycosylated GSLs to sites where their carbohydrate chain can be elongated or affects the activity of glycosyl transferases catalyzing that elongation; (2) what controls the differences seen in the ceramide composition of GGs that have identical carbohydrate compositions but vary in that of their ceramide and vice versa; (3) how alterations in ceramide composition affect the function of membrane GGs; and (4) how this knowledge might be applied to the development of therapies for treating diseases that correlate with abnormal expression of GGs. The availability of an updatable data bank of complete structures for individual classes of GSLs found in normal tissues as well as those associated with disease would facilitate research in this area.


Asunto(s)
Ceramidas , Gangliósidos , Glicoesfingolípidos , Ceramidas/química , Ceramidas/metabolismo , Humanos , Animales , Gangliósidos/química , Gangliósidos/metabolismo , Glicoesfingolípidos/metabolismo , Glicoesfingolípidos/química , Esfingolípidos/metabolismo , Esfingolípidos/química , Glucosilceramidas/metabolismo , Glucosilceramidas/química
14.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791186

RESUMEN

Malignant melanoma represents a form of skin cancer characterized by a bleak prognosis and heightened resistance to traditional therapies. Quercetin has demonstrated notable anti-carcinogenic, anti-inflammatory, anti-oxidant, and pharmacological effects across various cancer types. However, the intricate relationship between quercetin's anti-cancer properties and ganglioside expression in melanoma remains incompletely understood. In this study, quercetin manifests specific anti-proliferative, anti-migratory, and cell-cycle arrest effects, inducing mitochondrial dysfunction and apoptosis in two melanoma cancer cell lines. This positions quercetin as a promising candidate for treating malignant melanoma. Moreover, our investigation indicates that quercetin significantly reduces the expression levels of ganglioside GD3 and its synthetic enzyme. Notably, this reduction is achieved through the inhibition of the FAK/paxillin/Akt signaling pathway, which plays a crucial role in cancer development. Taken together, our findings suggest that quercetin may be a potent anti-cancer drug candidate for the treatment of malignant melanoma.


Asunto(s)
Apoptosis , Gangliósidos , Melanoma , Mitocondrias , Quercetina , Quercetina/farmacología , Humanos , Melanoma/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/patología , Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular Tumoral , Gangliósidos/metabolismo , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo
15.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139047

RESUMEN

Gangliosides are major glycans on vertebrate nerve cells, and their metabolic disruption results in congenital disorders with marked cognitive and motor deficits. The sialyltransferase gene St3gal2 is responsible for terminal sialylation of two prominent brain gangliosides in mammals, GD1a and GT1b. In this study, we analyzed the expression of calcium-binding interneurons in primary sensory (somatic, visual, and auditory) and motor areas of the neocortex, hippocampus, and striatum of St3gal2-null mice as well as St3gal3-null and St3gal2/3-double null. Immunohistochemistry with highly specific primary antibodies for GABA, parvalbumin, calretinin, and calbindin were used for interneuron detection. St3gal2-null mice had decreased expression of all three analyzed types of calcium-binding interneurons in all analyzed regions of the neocortex. These results implicate gangliosides GD1a and GT1b in the process of interneuron migration and maturation.


Asunto(s)
Calcio , Neocórtex , Sialiltransferasas , beta-Galactosida alfa-2,3-Sialiltransferasa , Animales , Ratones , Calbindina 2/metabolismo , Calbindinas/metabolismo , Calcio/metabolismo , Gangliósidos/metabolismo , Hipocampo/metabolismo , Interneuronas/metabolismo , Mamíferos/metabolismo , Ratones Noqueados , Mutación , Neocórtex/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , beta-Galactosida alfa-2,3-Sialiltransferasa/genética , beta-Galactosida alfa-2,3-Sialiltransferasa/metabolismo
16.
ACS Chem Neurosci ; 15(3): 656-670, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38206798

RESUMEN

Ganglioside GAA-7 exhibits higher neurite outgrowth than ganglioside GM1a and most echinodermatous gangliosides (EGs) when tested on neuron-like rat adrenal pheochromocytoma (PC12) cells in the presence of nerve growth factor (NGF). The unique structure of GAA-7 glycan, containing an uncommon sialic acid (8-O-methyl-N-glycolylneuraminic acid) and sialic acid-α-2,3-GalNAc linkage, makes it challenging to synthesize. We recently developed a streamlined method to chemoenzymatically synthesize GAA-7 glycan and employed this modular strategy to efficiently prepare a library of GAA-7 glycan analogues incorporating N-modified or 8-methoxyl sialic acids. Most of these synthetic glycans exhibited moderate efficacy in promoting neuronal differentiation of PC12 cells. Among them, the analogue containing common sialic acid shows greater potential than the GAA-7 glycan itself. This result reveals that methoxy modification is not essential for neurite outgrowth. Consequently, the readily available analogue presents a promising model for further biological investigations.


Asunto(s)
Ácido N-Acetilneuramínico , Neuronas , Ratas , Animales , Ácido N-Acetilneuramínico/metabolismo , Neuronas/metabolismo , Gangliósidos/metabolismo , Polisacáridos/metabolismo , Células PC12 , Neuritas/metabolismo
17.
Nat Chem ; 16(6): 881-892, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38844638

RESUMEN

Ganglioside glycans are ubiquitous and complex biomolecules that are involved in a wide range of biological functions and disease processes. Variations in sialylation and sulfation render the structural complexity and diversity of ganglioside glycans, and influence protein-carbohydrate interactions. Structural and functional insights into the biological roles of these glycans are impeded due to the limited accessibility of well-defined structures. Here we report an integrated chemoenzymatic strategy for expeditious and systematic synthesis of a comprehensive 65-membered ganglioside glycan library covering all possible patterns of sulfation and sialylation. This strategy relies on the streamlined modular assembly of three common sialylated precursors by highly stereoselective iterative sialylation, modular site-specific sulfation through flexible orthogonal protecting-group manipulations and enzymatic-catalysed diversification using three sialyltransferase modules and a galactosidase module. These diverse ganglioside glycans enable exploration into their structure-function relationships using high-throughput glycan microarray technology, which reveals that different patterns of sulfation and sialylation on these glycans mediate their unique binding specificities.


Asunto(s)
Gangliósidos , Polisacáridos , Polisacáridos/química , Polisacáridos/metabolismo , Gangliósidos/química , Gangliósidos/metabolismo , Sialiltransferasas/metabolismo , Sialiltransferasas/química , Sulfatos/química , Sulfatos/metabolismo , Glicómica/métodos
18.
Front Immunol ; 15: 1382931, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736882

RESUMEN

Background: Neuroblastoma (NB) is characterized by both adrenergic (ADRN) and undifferentiated mesenchymal (MES) subsets. The ganglioside sialic acid-containing glycosphingolipid (GD2) is widely overexpressed on tumors of neuroectodermal origin promoting malignant phenotypes. MES cells are greatly enriched in post-therapy and relapsing tumors and are characterized by decreased expression of GD2. This event may cause failure of GD2-based immunotherapy. NK cells represent a key innate cell subset able to efficiently kill tumors. However, the tumor microenvironment (TME) that includes tumor cells and tumor-associated (TA) cells could inhibit their effector function. Methods: We studied eight NB primary cultures that, in comparison with commercial cell lines, more faithfully reflect the tumor cell characteristics. We studied four primary NB-MES cell cultures and two pairs of MES/ADRN (691 and 717) primary cultures, derived from the same patient. In particular, in the six human NB primary cultures, we assessed their phenotype, the expression of GD2, and the enzymes that control its expression, as well as their interactions with NK cells, using flow cytometry, RT-qPCR, and cytotoxicity assays. Results: We identified mature (CD105+/CD133-) and undifferentiated (CD133+/CD105-) NB subsets that express high levels of the MES transcripts WWTR1 and SIX4. In addition, undifferentiated MES cells display a strong resistance to NK-mediated killing. On the contrary, mature NB-MES cells display an intermediate resistance to NK-mediated killing and exhibit some immunomodulatory capacities on NK cells but do not inhibit their cytolytic activity. Notably, independent from their undifferentiated or mature phenotype, NB-MES cells express GD2 that can be further upregulated in undifferentiated NB-MES cells upon co-culture with NK cells, leading to the generation of mature mesenchymal GD2bright neuroblasts. Concerning 691 and 717, they show high levels of GD2 and resistance to NK cell-mediated killing that can be overcome by the administration of dinutuximab beta, the anti-GD2 monoclonal antibody applied in the clinic. Conclusions: NB is a heterogeneous tumor representing a further hurdle in NB immunotherapy. However, different from what was reported with NB commercial cells and independent of their MES/ADRN phenotype, the expression of GD2 and its displayed sensitivity to anti-GD2 mAb ADCC indicated the possible effectiveness of anti-GD2 immunotherapy.


Asunto(s)
Gangliósidos , Células Asesinas Naturales , Neuroblastoma , Humanos , Línea Celular Tumoral , Citotoxicidad Inmunológica , Gangliósidos/inmunología , Gangliósidos/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Neuroblastoma/inmunología , Neuroblastoma/metabolismo , Células Tumorales Cultivadas , Escape del Tumor , Microambiente Tumoral/inmunología
19.
Protein Sci ; 33(8): e5119, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39012029

RESUMEN

Despite causing over 1 million deaths annually, Type 2 Diabetes (T2D) currently has no curative treatments. Aggregation of the islet amyloid polypeptide (hIAPP) into amyloid plaques plays an important role in the pathophysiology of T2D and thus presents a target for therapeutic intervention. The mechanism by which hIAPP aggregates contribute to the development of T2D is unclear, but it is proposed to involve disruption of cellular membranes. However, nearly all research on hIAPP-lipid interactions has focused on anionic phospholipids, which are primarily present in the cytosolic face of plasma membranes. We seek here to characterize the effects of three gangliosides, the dominant anionic lipids in the outer leaflet of the plasma membrane, on the aggregation, structure, and toxicity of hIAPP. Our results show a dual behavior that depends on the molar ratio between the gangliosides and hIAPP. For each ganglioside, a low-lipid:peptide ratio enhances hIAPP aggregation and alters the morphology of hIAPP fibrils, while a high ratio eliminates aggregation and stabilizes an α-helix-rich hIAPP conformation. A more negative lipid charge more efficiently promotes aggregation, and a larger lipid headgroup improves inhibition of aggregation. hIAPP also alters the phase transitions of the lipids, favoring spherical micelles over larger tubular micelles. We discuss our results in the context of the available lipid surface area for hIAPP binding and speculate on a role for gangliosides in facilitating toxic hIAPP aggregation.


Asunto(s)
Gangliósidos , Polipéptido Amiloide de los Islotes Pancreáticos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Gangliósidos/química , Gangliósidos/metabolismo , Humanos , Agregado de Proteínas/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Conformación Proteica
20.
J Am Soc Mass Spectrom ; 35(8): 1692-1701, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39052897

RESUMEN

Gangliosides play important roles in innate and adaptive immunity. The high degree of structural heterogeneity results in significant variability in ganglioside expression patterns and greatly complicates linking structure and function. Structural characterization at the site of infection is essential in elucidating host ganglioside function in response to invading pathogens, such as Staphylococcus aureus (S. aureus). Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) enables high-specificity spatial investigation of intact gangliosides. Here, ganglioside structural and spatial heterogeneity within an S. aureus-infected mouse kidney abscess was characterized. Differences in spatial distributions were observed for gangliosides of different classes and those that differ in ceramide chain composition and oligosaccharide-bound sialic acid. Furthermore, integrating trapped ion mobility spectrometry (TIMS) allowed for the gas-phase separation and visualization of monosialylated ganglioside isomers that differ in sialic acid type and position. The isomers differ in spatial distributions within the host-pathogen interface, where molecular patterns revealed new molecular zones in the abscess previously unidentified by traditional histology.


Asunto(s)
Absceso , Gangliósidos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Gangliósidos/química , Gangliósidos/análisis , Gangliósidos/metabolismo , Ratones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Staphylococcus aureus/química , Infecciones Estafilocócicas/microbiología , Absceso/microbiología , Riñón/química , Riñón/microbiología , Riñón/metabolismo , Espectrometría de Movilidad Iónica/métodos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/análisis , Ácido N-Acetilneuramínico/metabolismo , Enfermedades Renales/microbiología , Enfermedades Renales/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda