Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 648
Filtrar
1.
J Virol ; 98(6): e0046124, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38780247

RESUMEN

Transmissible gastroenteritis virus (TGEV)-induced enteritis is characterized by watery diarrhea, vomiting, and dehydration, and has high mortality in newborn piglets, resulting in significant economic losses in the pig industry worldwide. Conventional cell lines have been used for many years to investigate inflammation induced by TGEV, but these cell lines may not mimic the actual intestinal environment, making it difficult to obtain accurate results. In this study, apical-out porcine intestinal organoids were employed to study TEGV-induced inflammation. We found that apical-out organoids were susceptible to TGEV infection, and the expression of representative inflammatory cytokines was significantly upregulated upon TGEV infection. In addition, retinoic acid-inducible gene I (RIG-I) and the nuclear factor-kappa B (NF-κB) pathway were responsible for the expression of inflammatory cytokines induced by TGEV infection. We also discovered that the transcription factor hypoxia-inducible factor-1α (HIF-1α) positively regulated TGEV-induced inflammation by activating glycolysis in apical-out organoids, and pig experiments identified the same molecular mechanism as the ex vivo results. Collectively, we unveiled that the inflammatory responses induced by TGEV were modulated via the RIG-I/NF-κB/HIF-1α/glycolysis axis ex vivo and in vivo. This study provides novel insights into TGEV-induced enteritis and verifies intestinal organoids as a reliable model for investigating virus-induced inflammation. IMPORTANCE: Intestinal organoids are a newly developed culture system for investigating immune responses to virus infection. This culture model better represents the physiological environment compared with well-established cell lines. In this study, we discovered that inflammatory responses induced by TGEV infection were regulated by the RIG-I/NF-κB/HIF-1α/glycolysis axis in apical-out porcine organoids and in pigs. Our findings contribute to understanding the mechanism of intestinal inflammation upon viral infection and highlight apical-out organoids as a physiological model to mimic virus-induced inflammation.


Asunto(s)
Gastroenteritis Porcina Transmisible , Glucólisis , Inflamación , Organoides , Virus de la Gastroenteritis Transmisible , Animales , Citocinas/metabolismo , Proteína 58 DEAD Box/metabolismo , Proteína 58 DEAD Box/genética , Gastroenteritis Porcina Transmisible/virología , Gastroenteritis Porcina Transmisible/metabolismo , Gastroenteritis Porcina Transmisible/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inflamación/metabolismo , Inflamación/virología , Intestinos/virología , Intestinos/patología , FN-kappa B/metabolismo , Organoides/virología , Organoides/metabolismo , Organoides/patología , Transducción de Señal , Porcinos , Virus de la Gastroenteritis Transmisible/fisiología
2.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814698

RESUMEN

Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, has caused huge economic losses to the pig industry, with 100% mortality in piglets aged 2 weeks and intestinal injury in pigs of other ages. However, there is still a shortage of safe and effective anti-TGEV drugs in clinics. In this study, phloretin, a naturally occurring dihydrochalcone glycoside, was identified as a potent antagonist of TGEV. Specifically, we found phloretin effectively inhibited TGEV proliferation in PK-15 cells, dose-dependently reducing the expression of TGEV N protein, mRNA, and virus titer. The anti-TGEV activity of phloretin was furthermore refined to target the internalization and replication stages. Moreover, we also found that phloretin could decrease the expression levels of proinflammatory cytokines induced by TGEV infection. In addition, we expanded the potential key targets associated with the anti-TGEV effect of phloretin to AR, CDK2, INS, ESR1, ESR2, EGFR, PGR, PPARG, PRKACA, and MAPK14 with the help of network pharmacology and molecular docking techniques. Furthermore, resistant viruses have been selected by culturing TGEV with increasing concentrations of phloretin. Resistance mutations were reproducibly mapped to the residue (S242) of main protease (Mpro). Molecular docking analysis showed that the mutation (S242F) significantly disrupted phloretin binding to Mpro, suggesting Mpro might be a potent target of phloretin. In summary, our findings indicate that phloretin is a promising drug candidate for combating TGEV, which may be helpful for developing pharmacotherapies for TGEV and other coronavirus infections.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Floretina , Virus de la Gastroenteritis Transmisible , Replicación Viral , Virus de la Gastroenteritis Transmisible/efectos de los fármacos , Animales , Porcinos , Floretina/farmacología , Replicación Viral/efectos de los fármacos , Línea Celular , Antivirales/farmacología , Gastroenteritis Porcina Transmisible/tratamiento farmacológico , Gastroenteritis Porcina Transmisible/virología , Citocinas/metabolismo , Citocinas/genética , Internalización del Virus/efectos de los fármacos
3.
J Virol ; 97(6): e0058923, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37255428

RESUMEN

The inflammasome pathway is a critical early response mechanism of the host that detects pathogens, initiates the production of inflammatory cytokines, and recruits effector cells to the infection site. Nonetheless, the mechanism of inflammasome activation in coronavirus infection and its biological functions in host defense remain unclear. Transmissible gastroenteritis virus (TGEV), a member of the genus Alphacoronavirus, is a significant pathogen that mainly infects piglets and causes intestinal inflammation and inflammatory cell infiltration. Here, we investigated the mechanism of inflammasome activation in intestinal epithelial cells (IECs) infected with TGEV. We observed a substantial increase in interleukin 1ß (IL-1ß) and IL-18 levels in both IECs and TGEV-infected porcine intestinal tissues. Furthermore, TGEV infection resulted in increased activation of caspase-1 and the NLRP1 (NOD-like receptor [NLR]-containing pyrin domain [PYD]) inflammasome. Our findings revealed that TGEV infection impeded the interaction between porcine NLRP1 (pNLRP1) and porcine dipeptidyl peptidases 9 (pDPP9), yet it did not reduce the expression of pDPP9. Importantly, the ZU5 domain, not the function-to-find domain (FIIND) reported in human NLRP1, was identified as the minimal domain of pNLRP1 for pDPP9 binding. In addition, the robust type I IFN expression induced by TGEV infection also upregulated pNLRP1 expression and pNLRP1 itself acts as an interferon-stimulated gene to counteract TGEV infection. Our data demonstrate that pNLRP1 has antiviral capabilities against coronavirus infection, which highlights its potential as a novel therapeutic target for coronavirus antiviral therapy. IMPORTANCE Coronavirus primarily targets the epithelial cells of the respiratory and gastrointestinal tracts, leading to damage in both humans and animals. NLRP1 is a direct sensor for RNA virus infection which is highly expressed in epithelial barrier tissues. However, until recently, the precise molecular mechanisms underlying its activation in coronavirus infection and subsequent downstream events remained unclear. In this study, we demonstrate that the alphacoronavirus TGEV induces the production of IL-1ß and IL-18 and upregulates the expression of pNLRP1. Furthermore, we found that pNLRP1 can serve as an interferon-stimulated gene (ISG) to inhibit the infection of enterovirus TGEV. Our research highlights the crucial role of NLRP1 as a regulator of innate immunity in TGEV infection and shows that it may serve as a potential therapeutic target for the treatment of coronavirus infection.


Asunto(s)
Gastroenteritis Porcina Transmisible , Inflamasomas , Proteínas NLR , Virus de la Gastroenteritis Transmisible , Animales , Inflamasomas/inmunología , Interferón Tipo I , Interleucina-18 , Proteínas NLR/inmunología , Porcinos , Gastroenteritis Porcina Transmisible/inmunología , Gastroenteritis Porcina Transmisible/transmisión
4.
Microb Pathog ; 191: 106646, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631414

RESUMEN

Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/µL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2 % (11/5483), 8.82 % (485/5483), 1.22 % (67/5483), and 4.94 % (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39 %, 0.11 %, 0.01 %, and 0.03 %, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.


Asunto(s)
Virus de la Diarrea Epidémica Porcina , Reacción en Cadena en Tiempo Real de la Polimerasa , Rotavirus , Sensibilidad y Especificidad , Enfermedades de los Porcinos , Virus de la Gastroenteritis Transmisible , Animales , Porcinos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Virus de la Gastroenteritis Transmisible/genética , Virus de la Gastroenteritis Transmisible/aislamiento & purificación , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Virus de la Diarrea Epidémica Porcina/clasificación , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/diagnóstico , Rotavirus/genética , Rotavirus/aislamiento & purificación , Rotavirus/clasificación , Gastroenteritis Porcina Transmisible/diagnóstico , Gastroenteritis Porcina Transmisible/virología , Deltacoronavirus/genética , Deltacoronavirus/aislamiento & purificación , Diarrea/virología , Diarrea/veterinaria , Diarrea/diagnóstico , Coronavirus/genética , Coronavirus/aislamiento & purificación , Coronavirus/clasificación , Heces/virología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología
5.
Vet Res ; 55(1): 97, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095890

RESUMEN

Swine enteric coronaviruses (SeCoVs) pose a significant threat to the global pig industry, but no effective drugs are available for treatment. Previous research has demonstrated that thapsigargin (TG), an ER stress inducer, has broad-spectrum antiviral effects on human coronaviruses. In this study, we investigated the impact of TG on transmissible gastroenteritis virus (TGEV) infection using cell lines, porcine intestinal organoid models, and piglets. The results showed that TG effectively inhibited TGEV replication both in vitro and ex vivo. Furthermore, animal experiments demonstrated that oral administration of TG inhibited TGEV infection in neonatal piglets and relieved TGEV-associated tissue injury. Transcriptome analyses revealed that TG improved the expression of the ER-associated protein degradation (ERAD) component and influenced the biological processes related to secretion, nutrient responses, and epithelial cell differentiation in the intestinal epithelium. Collectively, these results suggest that TG is a potential novel oral antiviral drug for the clinical treatment of TGEV infection, even for infections caused by other SeCoVs.


Asunto(s)
Antivirales , Gastroenteritis Porcina Transmisible , Tapsigargina , Virus de la Gastroenteritis Transmisible , Animales , Virus de la Gastroenteritis Transmisible/efectos de los fármacos , Virus de la Gastroenteritis Transmisible/fisiología , Porcinos , Gastroenteritis Porcina Transmisible/tratamiento farmacológico , Gastroenteritis Porcina Transmisible/virología , Antivirales/farmacología , Tapsigargina/farmacología , Línea Celular , Replicación Viral/efectos de los fármacos
6.
Arch Virol ; 169(9): 183, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39164596

RESUMEN

Porcine transmissible gastroenteritis virus (TGEV) is a major pathogen that causes viral enteritis and severe diarrhea in newborn piglets. TGEV strains have been isolated in the USA, Europe, and China, and their molecular characteristics are well known. However, there have been few reports of molecular analysis of TGEV strains isolated in Southeast Asia. In 2016, we isolated TGEV strain VET-16 from fecal samples collected from piglets in Vietnam and determined its complete genome sequence by Sanger sequencing. We found that, while the full genome of the VET-16 strain was 92.4-99.9% identical to those of other TGEV strains, the ORF3 gene showed very little sequence similarity. Phylogenetic analysis suggested that the VET-16 strain belongs to the Purdue subgroup. Comparison of the predicted amino acid (aa) sequence of the spike protein of strain VET-16 with those of other TGEV strains revealed three aa substitutions (V378L, S379T, and D380N) and a 3-aa insertion (F383_F387insWEK) in antigenic site D of the VET-16 strain. Also, a single aa deletion (∆F1413) was found in the transmembrane domain of the spike gene of VET-16. Like the ORF3 gene from the TGEV Miller M60 vaccine strain, the VET-16 strain has a large deletion (∆725 nt) in the ORF3 gene. Previous studies have suggested that these mutations in the spike and ORF3 genes might be associated with a reduction in pathogenicity. The data from this study will facilitate further genetic analysis and research into the evolution of TGEV in pigs in Vietnam.


Asunto(s)
Gastroenteritis Porcina Transmisible , Genoma Viral , Filogenia , Virus de la Gastroenteritis Transmisible , Animales , Porcinos , Vietnam , Virus de la Gastroenteritis Transmisible/genética , Virus de la Gastroenteritis Transmisible/aislamiento & purificación , Virus de la Gastroenteritis Transmisible/clasificación , Gastroenteritis Porcina Transmisible/virología , Genoma Viral/genética , Heces/virología , Secuenciación Completa del Genoma , Enfermedades de los Porcinos/virología , Secuencia de Aminoácidos
7.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39201514

RESUMEN

Transmissible gastroenteritis virus (TGEV) is an etiological agent of enteric disease that results in high mortality rates in piglets. The economic impact of the virus is considerable, causing significant losses to the pig industry. The development of an efficacious subunit vaccine to provide promising protection against TGEV is of the utmost importance. The viral antigen, spike glycoprotein (S), is widely regarded as one of the most effective antigenic components for vaccine research. In this study, we employed immunoinformatics and molecular dynamics approaches to develop an 'ideal' multi-epitope vaccine. Firstly, the dominant, non-toxic, highly antigenic T (Th, CTL) and B cell epitopes predicted from the TGEV S protein were artificially engineered in tandem to design candidate subunit vaccines. Molecular docking and dynamic simulation results demonstrate that it exhibits robust interactions with toll-like receptor 4 (TLR4). Of particular significance was the finding that the vaccine was capable of triggering an immune response in mammals, as evidenced by the immune simulation results. The humoral aspect is typified by elevated levels of IgG and IgM, whereas the cellular immune aspect is capable of eliciting the robust production of interleukins and cytokines (IFN-γ and IL-2). Furthermore, the adoption of E. coli expression systems for the preparation of vaccines will also result in cost savings. This study offers logical guidelines for the development of a secure and efficacious subunit vaccine against TGEV, in addition to providing a novel theoretical foundation and strategy to prevent associated CoV infections.


Asunto(s)
Gastroenteritis Porcina Transmisible , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Virus de la Gastroenteritis Transmisible , Vacunas Virales , Virus de la Gastroenteritis Transmisible/inmunología , Animales , Vacunas Virales/inmunología , Porcinos , Gastroenteritis Porcina Transmisible/prevención & control , Gastroenteritis Porcina Transmisible/inmunología , Epítopos de Linfocito T/inmunología , Vacunas de Subunidad/inmunología , Epítopos de Linfocito B/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Biología Computacional/métodos , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Epítopos/inmunología , Epítopos/química
8.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38116760

RESUMEN

Transmissible gastroenteritis virus (TGEV) is a coronavirus that infects piglets with severe diarrhoea, vomiting, dehydration, and even death, causing huge economic losses to the pig industry. The underlying pathogenesis of TGEV infection and the effects of TGEV infection on host metabolites remain poorly understood. To investigate the critical metabolites and regulatory factors during TGEV infection in intestinal porcine epithelial cells (IPEC-J2), we performed metabolomic and transcriptomic analyses of TGEV-infected IPEC-J2 cells by LC/MS and RNA-seq techniques. A total of 87 differential metabolites and 489 differentially expressed genes were detected. A series of metabolites and candidate genes from glutathione metabolism and AMPK signalling pathway were examined through combined analysis of metabolome and transcriptome. We found glutathione peroxidase 3 (GPX3) is markedly reduced after TGEV infection, and a significant negative correlation between AMPK signalling pathway and TGEV infection. Exogenous addition of the AMPK activator COH-SR4 significantly downregulates stearoyl coenzyme A (SCD1) mRNA and inhibits TGEV replication; while exogenous GSK-690693 significantly promotes TGEV infection by inhibiting AMPK signalling pathway. In summary, our study provides insights into the key metabolites and regulators for TGEV infection from the metabolome and transcriptome perspective, which will offer promising antiviral metabolic and molecular targets and enrich the understanding of the existence of a similar mechanism in the host.


Asunto(s)
Gastroenteritis Porcina Transmisible , Virus de la Gastroenteritis Transmisible , Animales , Porcinos , Virus de la Gastroenteritis Transmisible/genética , Proteínas Quinasas Activadas por AMP , Línea Celular , Células Epiteliales , Perfilación de la Expresión Génica , Gastroenteritis Porcina Transmisible/genética
9.
J Virol ; 96(24): e0138822, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36448799

RESUMEN

Type III interferons (IFN-λ) are shown to be preferentially produced by epithelial cells, which provide front-line protection at barrier surfaces. Transmissible gastroenteritis virus (TGEV), belonging to the genus Alphacoronavirus of the family Coronaviridae, can cause severe intestinal injuries in porcine, resulting in enormous economic losses for the swine industry, worldwide. Here, we demonstrated that although IFN-λ1 had a higher basal expression, TGEV infection induced more intense IFN-λ3 production in vitro and in vivo than did IFN-λ1. We explored the underlying mechanism of IFN-λ induction by TGEV and found a distinct regulation mechanism of IFN-λ1 and IFN-λ3. The classical RIG-I-like receptor (RLR) pathway is involved in IFN-λ3 but not IFN-λ1 production. Except for the signaling pathways mediated by RIG-I and MDA5, TGEV nsp1 induces IFN-λ1 and IFN-λ3 by activating NF-κB via the unfolded protein responses (UPR) PERK-eIF2α pathway. Furthermore, functional domain analysis indicated that the induction of IFN-λ by the TGEV nsp1 protein was located at amino acids 85 to 102 and was dependent on the phosphorylation of eIF2α and the nuclear translocation of NF-κB. Moreover, the recombinant TGEV with the altered amino acid motif of nsp1 85-102 was constructed, and the nsp1 (85-102sg) mutant virus significantly reduced the production of IFN-λ, compared with the wild strain. Compared to the antiviral activities of IFN-λ1, the administration of IFN-λ3 showed greater antiviral activity against TGEV infections in IPEC-J2 cells. In summary, our data point to the significant role of IFN-λ in the host innate antiviral responses to coronavirus infections within mucosal organs and in the distinct mechanisms of IFN-λ1 and IFN-λ3 regulation. IMPORTANCE Coronaviruses cause infectious diseases in various mammals and birds and exhibit an epithelial cell tropism in enteric and respiratory tracts. It is critical to explore how coronavirus infections modulate IFN-λ, a key innate cytokine against mucosal viral infection. Our results uncovered the different processes of IFN-λ1 and IFN-λ3 production that are involved in the classical RLR pathway and determined that TGEV nsp1 induces IFN-λ1 and IFN-λ3 production by activating NF-κB via the PERK-eIF2α pathway in UPR. These studies highlight the unique regulation of antiviral defense in the intestine during TGEV infection. We also demonstrated that IFN-λ3 induced greater antiviral activity against TGEV replication than did IFN-λ1 in IPEC-J2 cells, which is helpful in finding a novel strategy for the treatment of coronavirus infections.


Asunto(s)
Gastroenteritis Porcina Transmisible , Interferón lambda , Virus de la Gastroenteritis Transmisible , Animales , Antivirales , Interferón lambda/inmunología , Interferón lambda/farmacología , FN-kappa B/inmunología , Porcinos , Virus de la Gastroenteritis Transmisible/fisiología , Gastroenteritis Porcina Transmisible/inmunología
10.
PLoS Pathog ; 17(12): e1010113, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34871328

RESUMEN

Emerging coronaviruses (CoVs) pose a severe threat to human and animal health worldwide. To identify host factors required for CoV infection, we used α-CoV transmissible gastroenteritis virus (TGEV) as a model for genome-scale CRISPR knockout (KO) screening. Transmembrane protein 41B (TMEM41B) was found to be a bona fide host factor involved in infection by CoV and three additional virus families. We found that TMEM41B is critical for the internalization and early-stage replication of TGEV. Notably, our results also showed that cells lacking TMEM41B are unable to form the double-membrane vesicles necessary for TGEV replication, indicating that TMEM41B contributes to the formation of CoV replication organelles. Lastly, our data from a mouse infection model showed that the KO of this factor can strongly inhibit viral infection and delay the progression of a CoV disease. Our study revealed that targeting TMEM41B is a highly promising approach for the development of broad-spectrum anti-viral therapeutics.


Asunto(s)
Sistemas CRISPR-Cas , Gastroenteritis Porcina Transmisible/virología , Interacciones Huésped-Patógeno , Proteínas de la Membrana/fisiología , Orgánulos/virología , Virus de la Gastroenteritis Transmisible/fisiología , Replicación Viral , Animales , Gastroenteritis Porcina Transmisible/genética , Gastroenteritis Porcina Transmisible/transmisión , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Porcinos
11.
Microb Pathog ; 183: 106320, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37625663

RESUMEN

BACKGROUND: Transmissible gastroenteritis virus (TGEV), which belongs to the coronaviruses (CoVs), causes diarrhea and high mortality rates in piglets and poses a huge threat and loss to the pig industry in China. METHOD: We estimated the prevalence of TGEV in Chinese pig animals from 1983 to 2022 by screening 36 papers on TGEV investigations in China from databases such as China Knowledge Network (CNKI), Wanfang Database, Science and Technology Journal Repository (VIP), PubMed, and ScienceDirect, excluding duplicate literature and other host studies according to the exclusion criteria we developed, and excluding literature with incomplete data to extract information from studies that could estimate the prevalence of TGEV infection in pigs in mainland China. RESULTS: A total of 36 studies (including data from 50,403 pigs) met our evaluation criteria. The overall estimated prevalence of TGEV infection in pigs in China is 10% (3887/50403), and the prevalence of TGEV in northeast China is 38% (2582/3078700) is significantly higher than the rest of China. The prevalence of TGEV infection was related to the sampling season and region. CONCLUSION: The results of the study show that the prevalence of TGEV is clearly seasonal and regional. Therefore, further research and monitoring of the prevalence of TGEV infection and the development of control programs based on different conditions are essential. In addition, effective and robust regulatory measures should be taken in colder regions to prevent the spread and transmission of TGEV in pigs.


Asunto(s)
Gastroenteritis Porcina Transmisible , Virus de la Gastroenteritis Transmisible , Animales , China/epidemiología , Diarrea , Gastroenteritis/epidemiología , Gastroenteritis/veterinaria , Prevalencia , Porcinos , Gastroenteritis Porcina Transmisible/epidemiología , Gastroenteritis Porcina Transmisible/virología
12.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37958953

RESUMEN

Transmissible gastroenteritis virus (TGEV) is an important swine enteric coronavirus causing viral diarrhea in pigs of all ages. Currently, the development of antiviral agents targeting host proteins to combat viral infection has received great attention. The heat shock protein 90 (HSP90) is a critical host factor and has important regulatory effects on the infection of various viruses. However, its roles in porcine coronavirus infection remain unclear. In this study, the effect of HSP90 on TGEV infection was evaluated. In addition, the influence of its inhibitor VER-82576 on proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) production induced by TGEV infection was further analyzed. The results showed that the knockdown of HSP90AB1 and HSP90 inhibitor VER-82576 treatment resulted in a reduction in TGEV M gene mRNA levels, the N protein level, and virus titers in a dose-dependent manner, while the knockdown of HSP90AA1 and KW-2478 treatment had no significant effect on TGEV infection. A time-of-addition assay indicated that the inhibitory effect of VER-82576 on TGEV infection mainly occurred at the early stage of viral replication. Moreover, the TGEV-induced upregulation of proinflammatory cytokine (IL-6, IL-12, TNF-α, CXCL10, and CXCL11) expression was significantly inhibited by VER-82576. In summary, these findings indicated that HSP90AB1 is a host factor enhancing TGEV infection, and the HSP90 inhibitor VER-82576 could reduce TGEV infection and proinflammatory cytokine production, providing a new perspective for TGEV antiviral drug target design.


Asunto(s)
Gastroenteritis Porcina Transmisible , Virus de la Gastroenteritis Transmisible , Porcinos , Animales , Virus de la Gastroenteritis Transmisible/genética , Gastroenteritis Porcina Transmisible/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Interleucina-6/farmacología , Citocinas/genética , Citocinas/farmacología , Interleucina-12/farmacología
13.
J Anim Physiol Anim Nutr (Berl) ; 106(1): 69-77, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34075636

RESUMEN

Porcine transmissible gastroenteritis virus (TGEV) is an enteric coronavirus that has caused high morbidity and mortality of piglets worldwide. Previous studies have shown that the TGEV can lead to severe diarrhoea, vomiting and dehydration in 2-week-old piglets and weaned piglets, resulting in a large number of piglet deaths. Antimicrobial peptides have broad-spectrum antimicrobial activity and a strong killing effect on bacteria, especially on the drug-resistant pathogenic bacteria, and it has attracted broad concern. However, there are very few reports on the effect of APB-13 (an antimicrobial peptide) on the intestinal microbes of piglets infected with TGEV. In this study, 16S rRNA gene sequencing was used to compare the microbial phylum and the genus of piglet's enteric microorganism in different experimental groups, and to predict the metabolic function of the microbial flora. At the same time, the apparent digestibility of nutrients, digestive enzyme activity, daily weight gain and survival rate were also measured. TGEV infection could cause the imbalance of intestinal microbes in piglets, and increase of the relative abundance of Proteobacteria, and decrease of the relative abundance of Firmicutes, Bacteroidetes and Actinobacteri. With the addition of APB-13, this problem can be alleviated, which can reduce the relative abundance of Proteobacteria and improve the balance of intestinal microorganisms. At the microbial genus level, after adding APB-13, the relative abundance of Catenibacterium, Enterobacter and Streptococcus in the intestinal tract of piglets infected with TGEV showed significant decrease, while the relative abundance of Lactobacillus and Ruminococcus increased. Finally, we found that APB-13 can significantly increase the activity of digestive enzyme in the intestinal tract of piglet, thereby improving the apparent digestibility of nutrients and the growth performance of piglets. This study demonstrates that APB-13 can alleviate the adverse outcomes caused by TGEV infection by correcting the intestinal microbial disorders.


Asunto(s)
Péptidos Antimicrobianos/uso terapéutico , Gastroenteritis Porcina Transmisible/tratamiento farmacológico , Enfermedades Intestinales , Enfermedades de los Porcinos , Animales , Enfermedades Intestinales/veterinaria , Enfermedades Intestinales/virología , Intestinos , ARN Ribosómico 16S/genética , Porcinos , Enfermedades de los Porcinos/tratamiento farmacológico , Enfermedades de los Porcinos/virología , Virus de la Gastroenteritis Transmisible
14.
J Virol ; 94(21)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796075

RESUMEN

The intestinal organoid culture system is a pathbreaking working model for investigating pathogen-host interactions in the intestines. However, due to the limitations of the first generation of intestinal organoids, basal-out structure and growth in Matrigel, most pathogens can rarely attach to the apical membrane directly and hardly initiate infection. In this study, we first developed a next-generation porcine intestinal organoid culture system, characterized by an apical membrane on the surface, called apical-out. To investigate the infectivity and antiviral immune responses of this apical-out porcine intestinal organoid, a swine enteric virus, transmissible gastroenteritis virus (TGEV), was employed to inoculate the culture system. Both reverse transcription-quantitative PCR (RT-qPCR) and immunofluorescence assay (IFA) analysis demonstrated that TGEV replicated in the apical-out porcine intestinal organoid culture system. Additionally, our results illustrated that TGEV infection significantly upregulated the expression levels of alpha interferon (IFN-α), IFN-λ1, interferon-stimulated gene 15 (ISG15), ISG58, tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) in this culture system. Hence, we successfully developed a porcine intestinal apical-out organoid culture system, which will facilitate the investigation of pathogen-host interactions in pig intestines.IMPORTANCE Intestinal organoids are a newly developed culture system for investigating pathogen-host interactions. Intestinal organoid models have been widely used since their development, because the results obtained from this type of culture model better represent physiological conditions than those from well-established cell lines. The three-dimensional (3D) porcine intestinal organoid model was reported in 2018 and 2019 for the investigation of intestinal pathogens. However, those organoid culture models were basal-out intestinal organoids, which are not suitable for porcine enteric virus research because they invade the intestines via the apical side of epithelial cells on villi. In this study, we developed a porcine apical-out intestinal organoid culture system and verified its infectivity, type I and type III interferon (IFN) antiviral responses, and inflammatory responses following infection by a swine enteric virus. Our results imply that this apical-out porcine intestinal organoid culture system is an ideal model for the investigation of interactions between swine enteric viruses and the intestines.


Asunto(s)
Células Epiteliales/inmunología , Gastroenteritis Porcina Transmisible/inmunología , Interacciones Huésped-Patógeno/inmunología , Mucosa Intestinal/inmunología , Organoides/inmunología , Virus de la Gastroenteritis Transmisible/inmunología , Animales , Bioensayo , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Células Epiteliales/patología , Células Epiteliales/virología , Gastroenteritis Porcina Transmisible/genética , Gastroenteritis Porcina Transmisible/virología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interferón-alfa/genética , Interferón-alfa/inmunología , Interferones/genética , Interferones/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Organoides/patología , Organoides/virología , Porcinos , Virus de la Gastroenteritis Transmisible/crecimiento & desarrollo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Ubiquitinas/genética , Ubiquitinas/inmunología , Replicación Viral
15.
FASEB J ; 34(3): 4653-4669, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32017270

RESUMEN

Transmissible gastroenteritis virus (TGEV) is a swine enteropathogenic coronavirus that causes significant economic losses in swine industry. Current studies on TGEV internalization mainly focus on viral receptors, but the internalization mechanism is still unclear. In this study, we used single-virus tracking to obtain the detailed insights into the dynamic events of the TGEV internalization and depict the whole sequential process. We observed that TGEVs could be internalized through clathrin- and caveolae-mediated endocytosis, and the internalization of TGEVs was almost completed within ~2 minutes after TGEVs attached to the cell membrane. Furthermore, the interactions of TGEVs with actin and dynamin 2 in real time during the TGEV internalization were visualized. To our knowledge, this is the first report that single-virus tracking technique is used to visualize the entire dynamic process of the TGEV internalization: before the TGEV internalization, with the assistance of actin, clathrin, and caveolin 1 would gather around the virus to form the vesicle containing the TGEV, and after ~60 seconds, dynamin 2 would be recruited to promote membrane fission. These results demonstrate that TGEVs enter ST cells via clathrin- and caveolae-mediated endocytic, actin-dependent, and dynamin 2-dependent pathways.


Asunto(s)
Gastroenteritis Porcina Transmisible/metabolismo , Gastroenteritis Porcina Transmisible/virología , Virus de la Gastroenteritis Transmisible/patogenicidad , Actinas/metabolismo , Animales , Caveolas/metabolismo , Caveolina 1/metabolismo , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/fisiología , Membrana Celular/virología , Clatrina/metabolismo , Dinamina II/metabolismo , Endocitosis/fisiología , Fusión de Membrana/fisiología , Porcinos , Internalización del Virus
16.
Arch Virol ; 166(3): 935-941, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33492525

RESUMEN

Enteric coronaviruses (CoVs) are major pathogens that cause diarrhea in piglets. To date, four porcine enteric CoVs have been identified: transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and HKU2-like porcine enteric alphacoronavirus (PEAV). In this study, we investigated the replicative capacity of these four enteric CoVs in LLC-PK1 cells, a porcine kidney cell line. The results showed that LLC-PK1 cells are susceptible to all four enteric CoVs, particularly to TGEV and PDCoV infections, indicating that LLC-PK1 cells can be applied to porcine enteric CoV research in vitro, particularly for coinfection studies.


Asunto(s)
Deltacoronavirus/crecimiento & desarrollo , Gastroenteritis Porcina Transmisible/virología , Virus de la Diarrea Epidémica Porcina/crecimiento & desarrollo , Virus de la Gastroenteritis Transmisible/crecimiento & desarrollo , Replicación Viral/fisiología , Animales , Línea Celular , Chlorocebus aethiops , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente Indirecta , Intestino Delgado/virología , Células LLC-PK1 , Porcinos , Enfermedades de los Porcinos/virología , Células Vero
17.
Mol Cell Proteomics ; 18(1): 51-64, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30257878

RESUMEN

Transmissible gastroenteritis virus (TGEV) is a member of Coronaviridae family. Our previous research showed that TGEV infection could induce mitochondrial dysfunction and upregulate miR-222 level. Therefore, we presumed that miR-222 might be implicated in regulating mitochondrial dysfunction induced by TGEV infection. To verify the hypothesis, the effect of miR-222 on mitochondrial dysfunction was tested and we showed that miR-222 attenuated TGEV-induced mitochondrial dysfunction. To investigate the underlying molecular mechanism of miR-222 in TGEV-induced mitochondrial dysfunction, a quantitative proteomic analysis of PK-15 cells that were transfected with miR-222 mimics and infected with TGEV was performed. In total, 4151 proteins were quantified and 100 differentially expressed proteins were obtained (57 upregulated, 43 downregulated), among which thrombospondin-1 (THBS1) and cluster of differentiation 47 (CD47) were downregulated. THBS1 was identified as the target of miR-222. Knockdown of THBS1 and CD47 decreased mitochondrial Ca2+ level and increased mitochondrial membrane potential (MMP) level. Reversely, overexpression of THBS1 and CD47 elevated mitochondrial Ca2+ level and reduced mitochondrial membrane potential (MMP) level. Together, our data establish a significant role of miR-222 in regulating mitochondrial dysfunction in response to TGEV infection.


Asunto(s)
Antígeno CD47/metabolismo , Gastroenteritis Porcina Transmisible/metabolismo , MicroARNs/genética , Mitocondrias/metabolismo , Trombospondina 1/metabolismo , Virus de la Gastroenteritis Transmisible/patogenicidad , Animales , Antígeno CD47/genética , Calcio/metabolismo , Línea Celular , Gastroenteritis Porcina Transmisible/genética , Regulación de la Expresión Génica , Potencial de la Membrana Mitocondrial , Mapas de Interacción de Proteínas , Proteómica/métodos , Porcinos , Trombospondina 1/genética , Transfección
18.
J Gen Virol ; 101(10): 1079-1084, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32677610

RESUMEN

Emerging coronaviruses represent serious threats to human and animal health worldwide, and no approved therapeutics are currently available. Here, we used Transmissible gastroenteritis virus (TGEV) as the alpha-coronavirus model, and investigated the antiviral properties of curcumin against TGEV. Our results demonstrated that curcumin strongly inhibited TGEV proliferation and viral protein expression in a dose-dependent manner. We also observed that curcumin exhibited direct virucidal abilities in a dose-, temperature- and time-dependent manner. Furthermore, time-of-addition assays showed that curcumin mainly acted in the early phase of TGEV replication. Notably, in an adsorption assay, curcumin at 40 µM resulted in a reduction in viral titres of 3.55 log TCID50 ml-1, indicating that curcumin possesses excellent inhibitory effects on the adsorption of TGEV. Collectively, we demonstrate for the first time that curcumin has virucidal activity and virtual inhibition against TGEV, suggesting that curcumin might be a candidate drug for effective control of TGEV infection.


Asunto(s)
Antivirales/farmacología , Curcumina/farmacología , Gastroenteritis Porcina Transmisible/tratamiento farmacológico , Virus de la Gastroenteritis Transmisible/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Regulación Viral de la Expresión Génica/efectos de los fármacos , Porcinos , Enfermedades de los Porcinos/tratamiento farmacológico , Acoplamiento Viral/efectos de los fármacos
19.
Virol J ; 17(1): 163, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097081

RESUMEN

BACKGROUND: Transmissible gastroenteritis virus (TGEV) causes enteric infection in piglets, characterized by vomiting, severe diarrhea and dehydration, and the mortality in suckling piglets is often high up to 100%. Vaccination is an effective measure to control the disease caused by TGEV. METHODS: In this study, cell-cultured TGEV HN-2012 strain was inactivated by formaldehyde (FA), ß-propiolactone (BPL) or binaryethylenimine (BEI), respectively. Then the inactivated TGEV vaccine was prepared with freund's adjuvant, and the immunization effects were evaluated in mice. The TGEV-specific IgG level was detected by ELISA. The positive rates of CD4+, CD8+, CD4+IFN-γ+, CD4+IL-4+ T lymphocytes were detected by flow cytometry assay. Lymphocyte proliferation assay and gross pathology and histopathology examination were also performed to assess the three different inactivating reagents in formulating TGEV vaccine. RESULTS: The results showed that the TGEV-specific IgG level in FA group (n = 17) was earlier and stronger, while the BEI group produced much longer-term IgG level. The lymphocyte proliferation test demonstrated that the BEI group had a stronger ability to induce spleen lymphocyte proliferation. The positive rates of CD4+ and CD8+ T lymphocyte subsets of peripheral blood lymphocyte in BEI group was higher than that in FA group and BPL groups by flow cytometry assay. The positive rate of CD4+IFN-γ+ T lymphocyte subset was the highest in the BPL group, and the positive rate of CD4+IL-4+ T lymphocyte subset was the highest in the FA group. There were no obvious pathological changes in the vaccinated mice and the control group after the macroscopic and histopathological examination. CONCLUSIONS: These results indicated that all the three experimental groups could induce cellular and humoral immunity, and the FA group had the best humoral immunity effect, while the BEI group showed its excellent cellular immunity effect.


Asunto(s)
Anticuerpos Antivirales/sangre , Gastroenteritis Porcina Transmisible/prevención & control , Indicadores y Reactivos/farmacología , Virus de la Gastroenteritis Transmisible/efectos de los fármacos , Vacunas Virales/inmunología , Inactivación de Virus/efectos de los fármacos , Animales , Femenino , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina G/sangre , Indicadores y Reactivos/clasificación , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Porcinos , Linfocitos T/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/administración & dosificación
20.
Virus Genes ; 56(6): 687-695, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32944812

RESUMEN

Porcine deltacoronavirus (PDCoV) has been recently identified as an emerging enteropathogenic coronavirus that mainly infects newborn piglets and causes enteritis, diarrhea and high mortality. Although coronavirus N proteins have multifarious activities, the subcellular localization of the PDCoV N protein is still unknown. Here, we produced mouse monoclonal antibodies against the PDCoV N protein. Experiments using anti-haemagglutinin antibodies and these monoclonal antibodies revealed that the PDCoV N protein is shuttled into the nucleolus in both ectopic PDCoV N-expressing cells and PDCoV-infected cells. The results of deletion mutagenesis experiments demonstrated that the predicted nucleolar localization signal at amino acids 295-318 is critical for nucleolar localization. Cumulatively, our study yielded a monoclonal antibody against the PDCoV N protein and revealed a mechanism by which the PDCoV N protein translocated into the nucleolus. The tolls and findings from this work will facilitate further investigations on the functions of the PDCoV N protein.


Asunto(s)
Nucléolo Celular/genética , Infecciones por Coronavirus/virología , Proteínas de la Nucleocápside de Coronavirus/genética , Deltacoronavirus/genética , Gastroenteritis Porcina Transmisible/virología , Interacciones Huésped-Patógeno/genética , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/química , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/química , Línea Celular , Nucléolo Celular/metabolismo , Infecciones por Coronavirus/patología , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Deltacoronavirus/crecimiento & desarrollo , Deltacoronavirus/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Células Epiteliales/virología , Gastroenteritis Porcina Transmisible/patología , Expresión Génica , Hemaglutininas Virales/genética , Hemaglutininas Virales/metabolismo , Riñón/patología , Riñón/virología , Ratones , Señales de Localización Nuclear , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Porcinos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda