Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.211
Filtrar
1.
Nature ; 626(7998): 377-384, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109938

RESUMEN

Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies1. Here we analysed 149,842 environmental genomes from multiple habitats2-6 and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date. The FESNov catalogue is enriched in clade-specific traits, including 1,034 novel families that can distinguish entire uncultivated phyla, classes and orders, probably representing synapomorphies that facilitated their evolutionary divergence. Using genomic context analysis and structural alignments we predicted functional associations for 32.4% of FESNov families, including 4,349 high-confidence associations with important biological processes. These predictions provide a valuable hypothesis-driven framework that we used for experimental validatation of a new gene family involved in cell motility and a novel set of antimicrobial peptides. We also demonstrate that the relative abundance profiles of novel families can discriminate between environments and clinical conditions, leading to the discovery of potentially new biomarkers associated with colorectal cancer. We expect this work to enhance future metagenomics studies and expand our knowledge of the genetic repertory of uncultivated organisms.


Asunto(s)
Archaea , Bacterias , Ecosistema , Evolución Molecular , Genes Arqueales , Genes Bacterianos , Genómica , Conocimiento , Péptidos Antimicrobianos/genética , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Biomarcadores , Movimiento Celular/genética , Neoplasias Colorrectales/genética , Genómica/métodos , Genómica/tendencias , Metagenómica/tendencias , Familia de Multigenes , Filogenia , Reproducibilidad de los Resultados
2.
Mol Biol Evol ; 40(8)2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37440531

RESUMEN

Many aerobic microbes can utilize alternative electron acceptors under oxygen-limited conditions. In some cases, this is mediated by extracellular electron transfer (or EET), wherein electrons are transferred to extracellular oxidants such as iron oxide and manganese oxide minerals. Here, we show that an ammonia-oxidizer previously known to be strictly aerobic, Nitrosomonas communis, may have been able to utilize a poised electrode to maintain metabolic activity in anoxic conditions. The presence and activity of multiheme cytochromes in N. communis further suggest a capacity for EET. Molecular clock analysis shows that the ancestors of ß-proteobacterial ammonia oxidizers appeared after Earth's atmospheric oxygenation when the oxygen levels were >10-4pO2 (present atmospheric level [PAL]), consistent with aerobic origins. Equally important, phylogenetic reconciliations of gene and species trees show that the multiheme c-type EET proteins in Nitrosomonas and Nitrosospira lineages were likely acquired by gene transfer from γ-proteobacteria when the oxygen levels were between 0.1 and 1 pO2 (PAL). These results suggest that ß-proteobacterial EET evolved during the Proterozoic when oxygen limitation was widespread, but oxidized minerals were abundant.


Asunto(s)
Amoníaco , Gammaproteobacteria , Oxidación-Reducción , Amoníaco/metabolismo , Electrones , Filogenia , Oxígeno , Genes Arqueales , Gammaproteobacteria/metabolismo
3.
Extremophiles ; 27(1): 7, 2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36906854

RESUMEN

Three novel filamentous halophilic archaea, strains DFN5T, RDMS1, and QDMS1, were isolated from the coastal saline soil samples of the intertidal zones located in different regions of Jiangsu Province, China. The colonies of these strains were pinkish-white due to the presence of white spores. These three strains are extremely halophilic and grew optimally at 35-37 °C and pH 7.0-7.5. Based on 16S rRNA and rpoB' gene analysis, strains DFN5T, RDMS1, and QDMS1 gathered together in phylogenetic trees and then clustered with the current species of the genus Halocatena showing 96.9-97.4% and 82.2-82.5% similarities, respectively. Both the 16S rRNA gene-based and rpoB' gene-based phylogenies were fully supported by the phylogenomic analysis, and the overall genome-related indexes indicated that strains DFN5T, RDMS1, and QDMS1 should be a novel species of the genus Halocatena. Genome mining revealed that there are considerable differences in the genes related to ß-carotene synthesis among these three strains and the current species of Halocatena. The major polar lipids of strains DFN5T, RDMS1, and QDMS1 are PA, PG, PGP-Me, S-TGD-1, TGD-1, and TGD-2. The minor polar lipids, S-DGD-1, DGD-1, S2-DGD, and S-TeGD may be detected. According to the phenotypic characteristics, phylogenetic analysis, genomic and chemotaxonomic features, strains DFN5T (= CGMCC 1.19401 T = JCM 35422 T), RDMS1 (= CGMCC 1.19411) and QDMS1 (= CGMCC 1.19410) were classified as a novel species of the genus Halocatena with the proposed name, Halocatena marina sp. nov. This is the first report of the description of a novel filamentous haloarchaeon isolated from marine intertidal zones.


Asunto(s)
Halobacteriaceae , Halobacteriales , Glucolípidos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN de Archaea/genética , Composición de Base , Hibridación de Ácido Nucleico , Genes Arqueales , China
4.
Nucleic Acids Res ; 49(16): 9077-9096, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417604

RESUMEN

tRNAscan-SE has been widely used for transfer RNA (tRNA) gene prediction for over twenty years, developed just as the first genomes were decoded. With the massive increase in quantity and phylogenetic diversity of genomes, the accurate detection and functional prediction of tRNAs has become more challenging. Utilizing a vastly larger training set, we created nearly one hundred specialized isotype- and clade-specific models, greatly improving tRNAscan-SE's ability to identify and classify both typical and atypical tRNAs. We employ a new comparative multi-model strategy where predicted tRNAs are scored against a full set of isotype-specific covariance models, allowing functional prediction based on both the anticodon and the highest-scoring isotype model. Comparative model scoring has also enhanced the program's ability to detect tRNA-derived SINEs and other likely pseudogenes. For the first time, tRNAscan-SE also includes fast and highly accurate detection of mitochondrial tRNAs using newly developed models. Overall, tRNA detection sensitivity and specificity is improved for all isotypes, particularly those utilizing specialized models for selenocysteine and the three subtypes of tRNA genes encoding a CAU anticodon. These enhancements will provide researchers with more accurate and detailed tRNA annotation for a wider variety of tRNAs, and may direct attention to tRNAs with novel traits.


Asunto(s)
ARN de Transferencia/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Genes Arqueales , Genes Bacterianos , Genes Fúngicos
5.
Nucleic Acids Res ; 49(18): 10677-10688, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34551428

RESUMEN

Aside from providing adaptive immunity, type I CRISPR-Cas was recently unearthed to employ a noncanonical RNA guide (CreA) to transcriptionally repress an RNA toxin (CreT). Here, we report that, for most archaeal and bacterial CreTA modules, the creA gene actually carries two flanking 'CRISPR repeats', which are, however, highly divergent and degenerated. By deep sequencing, we show that the two repeats give rise to an 8-nt 5' handle and a 22-nt 3' handle, respectively, i.e., the conserved elements of a canonical CRISPR RNA, indicating they both retained critical nucleotides for Cas6 processing during divergent degeneration. We also uncovered a minimal CreT toxin that sequesters the rare transfer RNA for isoleucine, tRNAIleCAU, with a six-codon open reading frame containing two consecutive AUA codons. To fully relieve its toxicity, both tRNAIleCAU overexpression and supply of extra agmatine (modifies the wobble base of tRNAIleCAU to decipher AUA codons) are required. By replacing AUA to AGA/AGG codons, we reprogrammed this toxin to sequester rare arginine tRNAs. These data provide essential information on CreTA origin and for future CreTA prediction, and enrich the knowledge of tRNA-sequestering small RNAs that are employed by CRISPR-Cas to get addictive to the host.


Asunto(s)
Toxinas Bacterianas/metabolismo , Sistemas CRISPR-Cas , Haloarcula/genética , Halobacterium/genética , ARN Pequeño no Traducido/metabolismo , ARN de Transferencia de Isoleucina/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Ingeniería Celular , Genes Arqueales , Genes Bacterianos , Biosíntesis de Proteínas , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , ARN de Transferencia de Arginina/metabolismo
6.
Nucleic Acids Res ; 48(D1): D579-D589, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31647104

RESUMEN

Large-scale genome sequencing and the increasingly massive use of high-throughput approaches produce a vast amount of new information that completely transforms our understanding of thousands of microbial species. However, despite the development of powerful bioinformatics approaches, full interpretation of the content of these genomes remains a difficult task. Launched in 2005, the MicroScope platform (https://www.genoscope.cns.fr/agc/microscope) has been under continuous development and provides analysis for prokaryotic genome projects together with metabolic network reconstruction and post-genomic experiments allowing users to improve the understanding of gene functions. Here we present new improvements of the MicroScope user interface for genome selection, navigation and expert gene annotation. Automatic functional annotation procedures of the platform have also been updated and we added several new tools for the functional annotation of genes and genomic regions. We finally focus on new tools and pipeline developed to perform comparative analyses on hundreds of genomes based on pangenome graphs. To date, MicroScope contains data for >11 800 microbial genomes, part of which are manually curated and maintained by microbiologists (>4500 personal accounts in September 2019). The platform enables collaborative work in a rich comparative genomic context and improves community-based curation efforts.


Asunto(s)
Genes Arqueales , Genes Bacterianos , Genómica/métodos , Anotación de Secuencia Molecular/métodos , Programas Informáticos , Bases de Datos Genéticas , Redes y Vías Metabólicas
7.
Nucleic Acids Res ; 48(W1): W72-W76, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32282909

RESUMEN

Key steps in a computational study of protein function involve analysis of (i) relationships between homologous proteins, (ii) protein domain architecture and (iii) gene neighborhoods the corresponding proteins are encoded in. Each of these steps requires a separate computational task and sets of tools. Currently in order to relate protein features and gene neighborhoods information to phylogeny, researchers need to prepare all the necessary data and combine them by hand, which is time-consuming and error-prone. Here, we present a new platform, TREND (tree-based exploration of neighborhoods and domains), which can perform all the necessary steps in automated fashion and put the derived information into phylogenomic context, thus making evolutionary based protein function analysis more efficient. A rich set of adjustable components allows a user to run the computational steps specific to his task. TREND is freely available at http://trend.zhulinlab.org.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Programas Informáticos , Proteínas Arqueales/clasificación , Proteínas Bacterianas/clasificación , Genes Arqueales , Genes Bacterianos , Filogenia , Dominios Proteicos , Análisis de Secuencia de Proteína
8.
Proc Natl Acad Sci U S A ; 116(11): 5037-5044, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30814220

RESUMEN

Methanogenic archaea are major contributors to the global carbon cycle and were long thought to belong exclusively to the euryarchaeal phylum. Discovery of the methanogenesis gene cluster methyl-coenzyme M reductase (Mcr) in the Bathyarchaeota, and thereafter the Verstraetearchaeota, led to a paradigm shift, pushing back the evolutionary origin of methanogenesis to predate that of the Euryarchaeota. The methylotrophic methanogenesis found in the non-Euryarchaota distinguished itself from the predominantly hydrogenotrophic methanogens found in euryarchaeal orders as the former do not couple methanogenesis to carbon fixation through the reductive acetyl-CoA [Wood-Ljungdahl pathway (WLP)], which was interpreted as evidence for independent evolution of the two methanogenesis pathways. Here, we report the discovery of a complete and divergent hydrogenotrophic methanogenesis pathway in a thermophilic order of the Verstraetearchaeota, which we have named Candidatus Methanohydrogenales, as well as the presence of the WLP in the crenarchaeal order Desulfurococcales. Our findings support the ancient origin of hydrogenotrophic methanogenesis, suggest that methylotrophic methanogenesis might be a later adaptation of specific orders, and provide insight into how the transition from hydrogenotrophic to methylotrophic methanogenesis might have occurred.


Asunto(s)
Euryarchaeota/clasificación , Euryarchaeota/metabolismo , Hidrógeno/metabolismo , Metano/metabolismo , Filogenia , Euryarchaeota/genética , Genes Arqueales , Metagenoma
9.
World J Microbiol Biotechnol ; 38(8): 135, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35695998

RESUMEN

Thermophiles and hyperthermophiles are immensely useful in understanding the evolution of life, besides their utility in environmental and industrial biotechnology. Advancements in sequencing technologies have revolutionized the field of microbial genomics. The massive generation of data enhances the sequencing coverage multi-fold and allows to analyse the entire genomic features of microbes efficiently and accurately. The mandate of a pure isolate can also be bypassed where whole metagenome-assembled genomes and single cell-based sequencing have fulfilled the majority of the criteria to decode various attributes of microbial genomes. A boom has, therefore, been seen in analysing the extremophilic bacteria and archaea using sequence-based approaches. Due to extensive sequence analysis, it becomes easier to understand the gene flow and their evolution among the members of bacteria and archaea. For instance, sequencing unveiled that Thermotoga maritima shares around 24% of genes of archaeal origin. Comparative and functional genomics provide an analytical view to understanding the microbial diversity of thermophilic bacteria and archaea, their interactions with other microbes, their adaptations, gene flow, and evolution over time. In this review, the genomic features of thermophilic bacteria and archaea are dealt with comprehensively.


Asunto(s)
Archaea , Bacterias , Archaea/genética , Bacterias/genética , Genes Arqueales , Genómica , Metagenoma , Filogenia
10.
Mol Microbiol ; 114(5): 735-741, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32633872

RESUMEN

Genome analysis points to N-glycosylation as being an almost universal posttranslational modification in Archaea. Although such predictions have been confirmed in only a limited number of species, such studies are making it increasingly clear that the N-linked glycans which decorate archaeal glycoproteins present diversity in terms of both glycan composition and architecture far beyond what is seen in the other two domains of life. In addition to continuing to decipher pathways of N-glycosylation, recent efforts have revealed how Archaea exploit this variability in novel roles. As well as encouraging glycoprotein synthesis, folding and assembly into properly functioning higher ordered complexes, N-glycosylation also provides Archaea with a strategy to cope with changing environments. Archaea can, moreover, exploit the apparent species-specific nature of N-glycosylation for selectivity in mating, and hence, to maintain species boundaries, and in other events where cell-selective interactions are required. At the same time, addressing components of N-glycosylation pathways across archaeal phylogeny offers support for the concept of an archaeal origin for eukaryotes. In this MicroReview, these and other recent discoveries related to N-glycosylation in Archaea are considered.


Asunto(s)
Archaea/metabolismo , Glicosilación , Polisacáridos/metabolismo , Proteínas Arqueales/metabolismo , Evolución Biológica , Evolución Molecular , Genes Arqueales/genética , Glicoproteínas/metabolismo , Polisacáridos/genética , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología
11.
Annu Rev Genet ; 47: 539-61, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24050175

RESUMEN

Genetic techniques for the Archaea have undergone a rapid expansion in complexity, resulting in increased exploration of the role of Archaea in the environment and detailed analyses of the molecular physiology and information-processing systems in the third domain of life. Complementary gains in describing the ever-increasing diversity of archaeal organisms have allowed these techniques to be leveraged in new and imaginative ways to elucidate shared and unique aspects of archaeal diversity and metabolism. In this review, we introduce the four archaeal clades for which advanced genetic techniques are available--the methanogens, halophiles, Sulfolobales, and Thermococcales--with the aim of providing an overall profile of the advantages and disadvantages of working within each clade, as essentially all of the genetically accessible archaeal organisms require unique culturing techniques that present real challenges. We discuss the full repertoire of techniques possible within these clades while highlighting the recent advances that have been made by taking advantage of the most prominent techniques and approaches.


Asunto(s)
Archaea/genética , Regulación de la Expresión Génica Arqueal , Técnicas Genéticas , Técnicas Microbiológicas , Archaea/clasificación , Archaea/fisiología , Proteínas Arqueales/genética , Proteínas Arqueales/fisiología , Biodiversidad , ADN de Archaea/genética , Técnicas de Transferencia de Gen , Genes Arqueales , Genes Reporteros , Vectores Genéticos/genética , Genotipo , Fenotipo , Filogenia , Plásmidos/genética , Regiones Promotoras Genéticas , Selección Genética
12.
Appl Environ Microbiol ; 87(20): e0138321, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34378947

RESUMEN

Arsenic (As) metabolism genes are generally present in soils, but their diversity, relative abundance, and transcriptional activity in response to different As concentrations remain unclear, limiting our understanding of the microbial activities that control the fate of an important environmental pollutant. To address this issue, we applied metagenomics and metatranscriptomics to paddy soils showing a gradient of As concentrations to investigate As resistance genes (ars) including arsR, acr3, arsB, arsC, arsM, arsI, arsP, and arsH as well as energy-generating As respiratory oxidation (aioA) and reduction (arrA) genes. Somewhat unexpectedly, the relative DNA abundances and diversities of ars, aioA, and arrA genes were not significantly different between low and high (∼10 versus ∼100 mg kg-1) As soils. Compared to available metagenomes from other soils, geographic distance rather than As levels drove the different compositions of microbial communities. Arsenic significantly increased ars gene abundance only when its concentration was higher than 410 mg kg-1. In contrast, metatranscriptomics revealed that relative to low-As soils, high-As soils showed a significant increase in transcription of ars and aioA genes, which are induced by arsenite, the dominant As species in paddy soils, but not arrA genes, which are induced by arsenate. These patterns appeared to be community wide as opposed to taxon specific. Collectively, our findings advance understanding of how microbes respond to high As levels and the diversity of As metabolism genes in paddy soils and indicated that future studies of As metabolism in soil or other environments should include the function (transcriptome) level. IMPORTANCE Arsenic (As) is a toxic metalloid pervasively present in the environment. Microorganisms have evolved the capacity to metabolize As, and As metabolism genes are ubiquitously present in the environment even in the absence of high concentrations of As. However, these previous studies were carried out at the DNA level; thus, the activity of the As metabolism genes detected remains essentially speculative. Here, we show that the high As levels in paddy soils increased the transcriptional activity rather than the relative DNA abundance and diversity of As metabolism genes. These findings advance our understanding of how microbes respond to and cope with high As levels and have implications for better monitoring and managing an important toxic metalloid in agricultural soils and possibly other ecosystems.


Asunto(s)
Arsénico/metabolismo , Genes Arqueales , Genes Bacterianos , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Archaea/genética , Archaea/metabolismo , Arsénico/análisis , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Metales Pesados/análisis , Oryza , ARN Ribosómico 16S , Contaminantes del Suelo/análisis
13.
PLoS Biol ; 16(2): e2005163, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29394244

RESUMEN

The cellular adjustment of Bacteria and Archaea to high-salinity habitats is well studied and has generally been classified into one of two strategies. These are to accumulate high levels either of ions (the "salt-in" strategy) or of physiologically compliant organic osmolytes, the compatible solutes (the "salt-out" strategy). Halophilic protists are ecophysiological important inhabitants of salt-stressed ecosystems because they are not only very abundant but also represent the majority of eukaryotic lineages in nature. However, their cellular osmostress responses have been largely neglected. Recent reports have now shed new light on this issue using the geographically widely distributed halophilic heterotrophic protists Halocafeteria seosinensis, Pharyngomonas kirbyi, and Schmidingerothrix salinarum as model systems. Different approaches led to the joint conclusion that these unicellular Eukarya use the salt-out strategy to cope successfully with the persistent high salinity in their habitat. They accumulate various compatible solutes, e.g., glycine betaine, myo-inositol, and ectoines. The finding of intron-containing biosynthetic genes for ectoine and hydroxyectoine, their salt stress-responsive transcription in H. seosinensis, and the production of ectoine and its import by S. salinarum come as a considerable surprise because ectoines have thus far been considered exclusive prokaryotic compatible solutes. Phylogenetic considerations of the ectoine/hydroxyectoine biosynthetic genes of H. seosinensis suggest that they have been acquired via lateral gene transfer by these bacterivorous Eukarya from ectoine/hydroxyectoine-producing food bacteria that populate the same habitat.


Asunto(s)
Archaea/fisiología , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Genes Arqueales , Genes Bacterianos , Salinidad , Estrés Salino/genética , Aminoácidos Diaminos/metabolismo , Archaea/genética , Archaea/metabolismo , Bacterias/metabolismo , Betaína/metabolismo , Transporte Biológico , Inositol/metabolismo , Intrones , Modelos Biológicos , Presión Osmótica , Filogenia , Transcripción Genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-34406920

RESUMEN

A novel mesophilic and aerobic ammonia-oxidizing archaeon of the phylum Thaumarchaeota, strain NM25T, was isolated from coastal eelgrass zone sediment sampled in Shimoda (Japan). The cells were rod-shaped with an S-layer cell wall. The temperature range for growth was 20-37 °C, with an optimum at 30 °C. The pH range for growth was pH 6.1-7.7, with an optimum at pH 7.1. The salinity range for growth was 5-40 %, with an optimum range of 15-32 %. Cells obtained energy from ammonia oxidation and used bicarbonate as a carbon source. Utilization of urea was not observed for energy generation and growth. Strain NM25T required a hydrogen peroxide scavenger, such as α-ketoglutarate, pyruvate or catalase, for sustained growth on ammonia. Growth of strain NM25T was inhibited by addition of low concentrations of some organic compounds and organic mixtures, including complete inhibition by glycerol, peptone and yeast extract. Phylogenetic analysis of four concatenated housekeeping genes (16S rRNA, rpoB, rpsI and atpD) and concatenated AmoA, AmoB, AmoC amino acid sequences indicated that the isolate is similar to members of the genus Nitrosopumilus. The closest relative is Nitrosopumilus ureiphilus PS0T with sequence similarities of 99.5 % for the 16S rRNA gene and 97.2 % for the amoA gene. Genome relatedness between strain NM25T and N. ureiphilus PS0T was assessed by average nucleotide identity and digital DNA-DNA hybridization, giving results of 85.4 and 40.2 %, respectively. On the basis of phenotypic, genotypic and phylogenetic data, strain NM25T represents a novel species of the genus Nitrosopumilus, for which the name sp. nov, is proposed. The type strain is NM25T (=NBRC 111181T=ATCC TSD-147T).


Asunto(s)
Amoníaco , Archaea , Sedimentos Geológicos/microbiología , Filogenia , Humedales , Archaea/clasificación , Archaea/aislamiento & purificación , Genes Arqueales , Japón , Hibridación de Ácido Nucleico , Oxidación-Reducción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
RNA Biol ; 18(3): 421-434, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32957821

RESUMEN

CRISPR type III systems, which are abundantly found in archaea, recognize and degrade RNA in their specific response to invading nucleic acids. Therefore, these systems can be harnessed for gene knockdown technologies even in hyperthermophilic archaea to study essential genes. We show here the broader usability of this posttranscriptional silencing technology by expanding the application to further essential genes and systematically analysing and comparing silencing thresholds and escape mutants. Synthetic guide RNAs expressed from miniCRISPR cassettes were used to silence genes involved in cell division (cdvA), transcription (rpo8), and RNA metabolism (smAP2) of the two crenarchaeal model organisms Saccharolobus solfataricus and Sulfolobus acidocaldarius. Results were systematically analysed together with those obtained from earlier experiments of cell wall biogenesis (slaB) and translation (aif5A). Comparison of over 100 individual transformants revealed gene-specific silencing maxima ranging between 40 and 75%, which induced specific knockdown phenotypes leading to growth retardation. Exceedance of this threshold by strong miniCRISPR constructs was not tolerated and led to specific mutation of the silencing miniCRISPR array and phenotypical reversion of cultures. In two thirds of sequenced reverted cultures, the targeting spacers were found to be precisely excised from the miniCRISPR array, indicating a still hypothetical, but highly active recombination system acting on the dynamics of CRISPR spacer arrays. Our results indicate that CRISPR type III - based silencing is a broadly applicable tool to study in vivo functions of essential genes in Sulfolobales which underlies a specific mechanism to avoid malignant silencing overdose.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Genes Arqueales , Genes Esenciales , Genes Letales , Sulfolobales/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas , División Celular/genética , Orden Génico , Marcación de Gen , Vectores Genéticos/genética , Mutación , Operón , Fenotipo , ARN Guía de Kinetoplastida , Sulfolobales/metabolismo
16.
Methods ; 172: 76-85, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31150759

RESUMEN

In the years following its discovery and characterization, the CRISPR-Cas system has been modified and converted into a multitude of applications for eukaryotes and bacteria, such as genome editing and gene regulation. Since no such method has been available for archaea, we developed a tool for gene repression in the haloarchaeon Haloferax volcanii by repurposing its endogenous type I-B CRISPR-Cas system. Here, we present the two possible approaches for gene repression as well as our workflow to achieve and assess gene knockdown, offer recommendations on protospacer selection and give some examples of genes we have successfully silenced.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Regulación de la Expresión Génica Arqueal , Haloferax volcanii/genética , Cromosomas de Archaea/genética , Técnicas de Silenciamiento del Gen/métodos , Genes Arqueales/genética , Genes Esenciales/genética , Plásmidos/genética
17.
Nature ; 517(7532): 77-80, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25317564

RESUMEN

The mechanisms that underlie the origin of major prokaryotic groups are poorly understood. In principle, the origin of both species and higher taxa among prokaryotes should entail similar mechanisms--ecological interactions with the environment paired with natural genetic variation involving lineage-specific gene innovations and lineage-specific gene acquisitions. To investigate the origin of higher taxa in archaea, we have determined gene distributions and gene phylogenies for the 267,568 protein-coding genes of 134 sequenced archaeal genomes in the context of their homologues from 1,847 reference bacterial genomes. Archaeal-specific gene families define 13 traditionally recognized archaeal higher taxa in our sample. Here we report that the origins of these 13 groups unexpectedly correspond to 2,264 group-specific gene acquisitions from bacteria. Interdomain gene transfer is highly asymmetric, transfers from bacteria to archaea are more than fivefold more frequent than vice versa. Gene transfers identified at major evolutionary transitions among prokaryotes specifically implicate gene acquisitions for metabolic functions from bacteria as key innovations in the origin of higher archaeal taxa.


Asunto(s)
Archaea/clasificación , Archaea/genética , Bacterias/genética , Evolución Molecular , Transferencia de Gen Horizontal/genética , Genes Arqueales/genética , Genes Bacterianos/genética , Archaea/metabolismo , Proteínas Arqueales/genética , Bacterias/metabolismo , Genoma Arqueal/genética , Filogenia
18.
Biosci Biotechnol Biochem ; 85(7): 1650-1657, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-33942867

RESUMEN

The amino acid sequence of the OCC_10945 gene product from the hyperthermophilic archaeon Thermococcus litoralis DSM5473, originally annotated as γ-aminobutyrate aminotransferase, is highly similar to that of the uncharacterized pyridoxal 5'-phosphate (PLP)-dependent amino acid racemase from Pyrococcus horikoshii. The OCC_10945 enzyme was successfully overexpressed in Escherichia coli by coexpression with a chaperone protein. The purified enzyme demonstrated PLP-dependent amino acid racemase activity primarily toward Met and Leu. Although PLP contributed to enzyme stability, it only loosely bound to this enzyme. Enzyme activity was strongly inhibited by several metal ions, including Co2+ and Zn2+, and nonsubstrate amino acids such as l-Arg and l-Lys. These results suggest that the underlying PLP-binding and substrate recognition mechanisms in this enzyme are significantly different from those of the other archaeal and bacterial amino acid racemases. This is the first description of a novel PLP-dependent amino acid racemase with moderate substrate specificity in hyperthermophilic archaea.


Asunto(s)
Isomerasas de Aminoácido/metabolismo , Proteínas Arqueales/metabolismo , Thermococcus/enzimología , Isomerasas de Aminoácido/química , Secuencia de Aminoácidos , Proteínas Arqueales/química , Electroforesis en Gel de Poliacrilamida , Genes Arqueales , Chaperonas Moleculares/metabolismo , Filogenia , Especificidad por Sustrato , Thermococcus/genética
19.
Nucleic Acids Res ; 47(D1): D271-D279, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30371900

RESUMEN

A growing number of whole genome sequencing projects, in combination with development of phylogenetic methods for reconstructing gene evolution, have provided us with a window into genomes that existed millions, and even billions, of years ago. Ancestral Genomes (http://ancestralgenomes.org) is a resource for comprehensive reconstructions of these 'fossil genomes'. Comprehensive sets of protein-coding genes have been reconstructed for 78 genomes of now-extinct species that were the common ancestors of extant species from across the tree of life. The reconstructed genes are based on the extensive library of over 15 000 gene family trees from the PANTHER database, and are updated on a yearly basis. For each ancestral gene, we assign a stable identifier, and provide additional information designed to facilitate analysis: an inferred name, a reconstructed protein sequence, a set of inferred Gene Ontology (GO) annotations, and a 'proxy gene' for each ancestral gene, defined as the least-diverged descendant of the ancestral gene in a given extant genome. On the Ancestral Genomes website, users can browse the Ancestral Genomes by selecting nodes in a species tree, and can compare an extant genome with any of its reconstructed ancestors to understand how the genome evolved.


Asunto(s)
Bases de Datos Genéticas , Evolución Molecular , Genes , Genoma , Filogenia , Animales , Eucariontes/genética , Extinción Biológica , Genes Arqueales , Genes Bacterianos , Genes Protozoarios , Anotación de Secuencia Molecular , Programas Informáticos
20.
J Biol Chem ; 294(18): 7460-7471, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30902813

RESUMEN

Phosphorylation-dependent interactions play crucial regulatory roles in all domains of life. Forkhead-associated (FHA) and von Willebrand type A (vWA) domains are involved in several phosphorylation-dependent processes of multiprotein complex assemblies. Although well-studied in eukaryotes and bacteria, the structural and functional contexts of these domains are not yet understood in Archaea. Here, we report the structural base for such an interacting pair of FHA and vWA domain-containing proteins, ArnA and ArnB, in the thermoacidophilic archaeon Sulfolobus acidocaldarius, where they act synergistically and negatively modulate motility. The structure of the FHA domain of ArnA at 1.75 Å resolution revealed that it belongs to the subclass of FHA domains, which recognizes double-pSer/pThr motifs. We also solved the 1.5 Å resolution crystal structure of the ArnB paralog vWA2, disclosing a complex topology comprising the vWA domain, a ß-sandwich fold, and a C-terminal helix bundle. We further show that ArnA binds to the C terminus of ArnB, which harbors all the phosphorylation sites identified to date and is important for the function of ArnB in archaellum regulation. We also observed that expression levels of the archaellum components in response to changes in nutrient conditions are independent of changes in ArnA and ArnB levels and that a strong interaction between ArnA and ArnB observed during growth on rich medium sequentially diminishes after nutrient limitation. In summary, our findings unravel the structural features in ArnA and ArnB important for their interaction and functional archaellum expression and reveal how nutrient conditions affect this interaction.


Asunto(s)
Proteínas Arqueales/metabolismo , Regulación de la Expresión Génica Arqueal , Genes Arqueales , Sulfolobus acidocaldarius/genética , Proteínas Arqueales/química , Proteínas Arqueales/genética , Cristalografía por Rayos X , Medios de Cultivo , Fosforilación , Conformación Proteica , Sulfolobus acidocaldarius/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda