Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 2.489
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Plant J ; 119(4): 1937-1952, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923617

RESUMEN

Flavonols are widely synthesized throughout the plant kingdom, playing essential roles in plant physiology and providing unique health benefits for humans. Their glycosylation plays significant role in improving their stability and solubility, thus their accumulation and function. However, the genes encoding the enzymes catalyze this glycosylation remain largely unknown in apple. This study utilized a combination of methods to identify genes encoding such enzymes. Initially, candidate genes were selected based on their potential to encode UDP-dependent glycosyltransferases (UGTs) and their expression patterns in response to light induction. Subsequently, through testing the in vitro enzyme activity of the proteins produced in Escherichia coli cells, four candidates were confirmed to encode a flavonol 3-O-galactosyltransferase (UGT78T6), flavonol 3-O-glucosyltransferase (UGT78S1), flavonol 3-O-xylosyltransferase/arabinosyltransferase (UGT78T5), and flavonol 3-O-rhamnosyltransferase (UGT76AE22), respectively. Further validation of these genes' functions was conducted by modulating their expression levels in stably transformed apple plants. As anticipated, a positive correlation was observed between the expression levels of these genes and the content of specific flavonol glycosides corresponding to each gene. Moreover, overexpression of a flavonol synthase gene, MdFLS, resulted in increased flavonol glycoside content in apple roots and leaves. These findings provide valuable insights for breeding programs aimed at enriching apple flesh with flavonols and for identifying flavonol 3-O-glycosyltransferases of other plant species.


Asunto(s)
Flavonoles , Glicósidos , Glicosiltransferasas , Malus , Proteínas de Plantas , Malus/genética , Malus/metabolismo , Malus/enzimología , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Flavonoles/metabolismo , Flavonoles/biosíntesis , Glicósidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicosilación
2.
Plant J ; 119(1): 176-196, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38575203

RESUMEN

4-Coumarate-CoA Ligase (4CL) is an important enzyme in the phenylpropanoid biosynthesis pathway. Multiple 4CLs are identified in Ocimum species; however, their in planta functions remain enigmatic. In this study, we independently overexpressed three Ok4CL isoforms from Ocimum kilimandscharicum (Ok4CL7, -11, and -15) in Nicotiana benthamiana. Interestingly, Ok4CL11 overexpression (OE) caused a rootless or reduced root growth phenotype, whereas overexpression of Ok4CL15 produced normal adventitious root (AR) growth. Ok4CL11 overexpression in N. benthamiana resulted in upregulation of genes involved in flavonoid biosynthesis and associated glycosyltransferases accompanied by accumulation of specific flavonoid-glycosides (kaempferol-3-rhamnoside, kaempferol-3,7-O-bis-alpha-l-rhamnoside [K3,7R], and quercetin-3-O-rutinoside) that possibly reduced auxin levels in plants, and such effects were not seen for Ok4CL7 and -15. Docking analysis suggested that auxin transporters (PINs/LAXs) have higher binding affinity to these specific flavonoid-glycosides, and thus could disrupt auxin transport/signaling, which cumulatively resulted in a rootless phenotype. Reduced auxin levels, increased K3,7R in the middle and basal stem sections, and grafting experiments (intra and inter-species) indicated a disruption of auxin transport by K3,7R and its negative effect on AR development. Supplementation of flavonoids and the specific glycosides accumulated by Ok4CL11-OE to the wild-type N. benthamiana explants delayed the AR emergence and also inhibited AR growth. While overexpression of all three Ok4CLs increased lignin accumulation, flavonoids, and their specific glycosides were accumulated only in Ok4CL11-OE lines. In summary, our study reveals unique indirect function of Ok4CL11 to increase specific flavonoids and their glycosides, which are negative regulators of root growth, likely involved in inhibition of auxin transport and signaling.


Asunto(s)
Flavonoides , Glicósidos , Nicotiana , Proteínas de Plantas , Raíces de Plantas , Flavonoides/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Glicósidos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética
3.
Plant J ; 120(1): 354-369, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39158506

RESUMEN

C-glycosides are a predominant class of flavonoids that demonstrate diverse medical properties and plant physiological functions. The chemical stability, structural diversity, and differential aboveground distribution of these compounds in plants make them ideal protectants. However, little is known about the transcriptional regulatory mechanisms that play these diverse roles in plant physiology. In this study, chard was selected from 69 families for its significantly different flavonoid C-glycosides distributions between the aboveground and underground parts to investigate the role and regulatory mechanism of flavonoid C-glycosides in plants. Our results indicate that flavonoid C-glycosides are affected by various stressors, especially UV-B. Through cloning and validation of key biosynthetic genes of flavonoid C-glycosides in chard (BvCGT1), we observed significant effects induced by UV-B radiation. This finding was further confirmed by resistance testing in BvCGT1 silenced chard lines and in Arabidopsis plants with BvCGT1 overexpression. Yeast one-hybrid and dual-luciferase assays were employed to determine the underlying regulatory mechanisms of BvCGT1 in withstanding UV-B stress. These results indicate a potential regulatory role of BvDof8 and BvDof13 in modulating flavonoid C-glycosides content, through their influence on BvCGT1. In conclusion, we have effectively demonstrated the regulation of BvCGT1 by BvDof8 and BvDof13, highlighting their crucial role in plant adaptation to UV-B radiation. Additionally, we have outlined a comprehensive transcriptional regulatory network involving BvDof8 and BvDof13 in response to UV-B radiation.


Asunto(s)
Arabidopsis , Flavonoides , Regulación de la Expresión Génica de las Plantas , Glicósidos , Rayos Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Flavonoides/metabolismo , Glicósidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estrés Fisiológico , Glicosiltransferasas/biosíntesis , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Beta vulgaris/enzimología , Beta vulgaris/genética
4.
Plant J ; 114(2): 371-389, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36775989

RESUMEN

Arabinogalactan-proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high sugar content and are widely distributed in the plant kingdom. AGPs have long been suggested to play important roles in sexual plant reproduction. The synthesis of their complex carbohydrates is initiated by a family of hydroxyproline galactosyltransferase (Hyp-GALT) enzymes which add the first galactose to Hyp residues in the protein backbone. Eight Hyp-GALT enzymes have been identified so far, and in the present work a mutant affecting five of these enzymes (galt2galt5galt7galt8galt9) was analyzed regarding the reproductive process. The galt25789 mutant presented a low seed set, and reciprocal crosses indicated a significant female gametophytic contribution to this mutant phenotype. Mutant ovules revealed abnormal callose accumulation inside the embryo sac and integument defects at the micropylar region culminating in defects in pollen tube reception. In addition, immunolocalization and biochemical analyses allowed the detection of a reduction in the amount of glucuronic acid in mutant ovary AGPs. Dramatically low amounts of high-molecular-weight Hyp-O-glycosides obtained following size exclusion chromatography of base-hydrolyzed mutant AGPs compared to the wild type indicated the presence of underglycosylated AGPs in the galt25789 mutant, while the monosaccharide composition of these Hyp-O-glycosides displayed no significant changes compared to the wild-type Hyp-O-glycosides. The present work demonstrates the functional importance of the carbohydrate moieties of AGPs in ovule development and pollen-pistil interactions.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Hidroxiprolina/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Flores/genética , Polen/metabolismo , Glicósidos/metabolismo
5.
Plant Mol Biol ; 114(5): 109, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356362

RESUMEN

Stevioside (5-10%) and rebaudioside-A (2-4%) are well-characterized diterpene glycosides found in leaves of Stevia rebaudiana known to have natural sweetening properties with zero glycaemic index. Stevioside has after-taste bitterness, whereas rebaudioside-A is sweet in taste. The ratio of rebaudioside-A to stevioside needs to be changed in order to increase the effectiveness and palatability of this natural sweetener. Plant-specific miRNAs play a significant role in the regulation of metabolic pathways for the biosynthesis of economically important secondary metabolites. In this study inhibition of miRNA through antisense technology was employed to antagonize the repressive action of miRstv_7 on its target mRNAs involved in the steviol glycosides (SGs) biosynthesis pathway. In transgenic plants expressing anti-miRstv_7, reduced expression level of endogenous miRstv_7 was observed than the non-transformed plants. As a result, enhanced expression of target genes, viz. KO (Kaurene oxidase), KAH (Kaurenoic acid-13-hydroxylase), and UGT76G1 (UDP-glycosyltransferase 76G1) led to a significant increase in the rebaudioside-A to stevioside ratio. Furthermore, metabolome analysis revealed a significant increase in total steviol glycosides content as well as total flavonoids content. Thus, our study can be utilized to generate more palatable varieties of Stevia with improved nutraceutical values including better organoleptic and antioxidant properties.


Asunto(s)
Antioxidantes , Vías Biosintéticas , Diterpenos de Tipo Kaurano , MicroARNs , Stevia , Stevia/genética , Stevia/metabolismo , Diterpenos de Tipo Kaurano/metabolismo , Antioxidantes/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Vías Biosintéticas/genética , Glucósidos/metabolismo , Glucósidos/biosíntesis , Plantas Modificadas Genéticamente , Edulcorantes/farmacología , Edulcorantes/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Glicósidos/biosíntesis , Glicósidos/metabolismo
6.
BMC Plant Biol ; 24(1): 806, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39187756

RESUMEN

BACKGROUND: Scopoletin and umbelliferone belong to coumarins, which are plant specialized metabolites with potent and wide biological activities, the accumulation of which is induced by various environmental stresses. Coumarins have been detected in various plant species, including medicinal plants and the model organism Arabidopsis thaliana. In recent years, key role of coumarins in maintaining iron (Fe) homeostasis in plants has been demonstrated, as well as their significant impact on the rhizosphere microbiome through exudates secreted into the soil environment. Several mechanisms underlying these processes require clarification. Previously, we demonstrated that Arabidopsis is an excellent model for studying genetic variation and molecular basis of coumarin accumulation in plants. RESULTS: Here, through targeted metabolic profiling and gene expression analysis, the gene-metabolite network of scopoletin and umbelliferone accumulation was examined in more detail in selected Arabidopsis accessions (Col-0, Est-1, Tsu-1) undergoing different culture conditions and characterized by variation in coumarin content. The highest accumulation of coumarins was detected in roots grown in vitro liquid culture. The expression of 10 phenylpropanoid genes (4CL1, 4CL2, 4CL3, CCoAOMT1, C3'H, HCT, F6'H1, F6'H2,CCR1 and CCR2) was assessed by qPCR in three genetic backgrounds, cultured in vitro and in soil, and in two types of tissues (leaves and roots). We not only detected the expected variability in gene expression and coumarin accumulation among Arabidopsis accessions, but also found interesting polymorphisms in the coding sequences of the selected genes through in silico analysis and resequencing. CONCLUSIONS: To the best of our knowledge, this is the first study comparing accumulation of simple coumarins and expression of phenylpropanoid-related genes in Arabidopsis accessions grown in soil and in liquid cultures. The large variations we detected in the content of coumarins and gene expression are genetically determined, but also tissue and culture dependent. It is particularly important considering that growing plants in liquid media is a widely used technology that provides a large amount of root tissue suitable for metabolomics. Research on differential accumulation of coumarins and related gene expression will be useful in future studies aimed at better understanding the physiological role of coumarins in roots and the surrounding environments.


Asunto(s)
Arabidopsis , Escopoletina , Umbeliferonas , Arabidopsis/genética , Arabidopsis/metabolismo , Escopoletina/metabolismo , Umbeliferonas/metabolismo , Glicósidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
7.
Planta ; 259(5): 113, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581452

RESUMEN

MAIN CONCLUSION: Carbohydrates are hydrolyzed by a family of carbohydrate-active enzymes (CAZymes) called glycosidases or glycosyl hydrolases. Here, we have summarized the roles of various plant defense glycosidases that possess different substrate specificities. We have also highlighted the open questions in this research field. Glycosidases or glycosyl hydrolases (GHs) are a family of carbohydrate-active enzymes (CAZymes) that hydrolyze glycosidic bonds in carbohydrates and glycoconjugates. Compared to those of all other sequenced organisms, plant genomes contain a remarkable diversity of glycosidases. Plant glycosidases exhibit activities on various substrates and have been shown to play important roles during pathogen infections. Plant glycosidases from different GH families have been shown to act upon pathogen components, host cell walls, host apoplastic sugars, host secondary metabolites, and host N-glycans to mediate immunity against invading pathogens. We could classify the activities of these plant defense GHs under eleven different mechanisms through which they operate during pathogen infections. Here, we have provided comprehensive information on the catalytic activities, GH family classification, subcellular localization, domain structure, functional roles, and microbial strategies to regulate the activities of defense-related plant GHs. We have also emphasized the research gaps and potential investigations needed to advance this topic of research.


Asunto(s)
Glicósido Hidrolasas , Polisacáridos , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Polisacáridos/metabolismo , Carbohidratos , Plantas/metabolismo , Glicósidos/metabolismo
8.
J Exp Bot ; 75(18): 5531-5546, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-38989653

RESUMEN

Fusicoccin (FC) is one of the most studied fungal metabolites to date. The finding that the plasma membrane H+-ATPase in combination with 14-3-3 proteins acts as a high-affinity receptor for FC was a breakthrough in the field. Ever since, the binding of FC to the ATPase-14-3-3 receptor complex has taken center stage in explaining all FC-induced physiological effects. However, a more critical review shows that this is not evident for a number of FC-induced effects. This review challenges the notion that all FC-affected processes start with the binding to and activation of the plasma membrane ATPase, and raises the question of whether other proteins with a key role in the respective processes are directly targeted by FC. A second unresolved question is whether FC may be another example of a fungal molecule turning out to be a 'copy' of an as yet unknown plant molecule. In view of the evidence, albeit not conclusive, that plants indeed produce 'FC-like ligands', it is worthwhile making a renewed attempt with modern improved technology to answer this question; the answer might upgrade FC or its structural analogue(s) to the classification of plant hormone.


Asunto(s)
Glicósidos , Glicósidos/metabolismo , Plantas/metabolismo , Proteínas 14-3-3/metabolismo , ATPasas de Translocación de Protón/metabolismo , Proteínas de Plantas/metabolismo
9.
Plant Cell ; 33(5): 1748-1770, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33561278

RESUMEN

The native diploid tobacco Nicotiana attenuata produces abundant, potent anti-herbivore defense metabolites known as 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) whose glycosylation and malonylation biosynthetic steps are regulated by jasmonate signaling. To characterize the biosynthetic pathway of HGL-DTGs, we conducted a genome-wide analysis of uridine diphosphate glycosyltransferases (UGTs) and identified 107 family-1 UGT members. The transcript levels of three UGTs were highly correlated with the transcript levels two key HGL-DTG biosynthetic genes: geranylgeranyl diphosphate synthase (NaGGPPS) and geranyllinalool synthase (NaGLS). NaGLS's role in HGL-DTG biosynthesis was confirmed by virus-induced gene silencing. Silencing the Uridine diphosphate (UDP)-rhamnosyltransferase gene UGT91T1 demonstrated its role in the rhamnosylation of HGL-DTGs. In vitro enzyme assays revealed that UGT74P3 and UGT74P4 use UDP-glucose for the glucosylation of 17-hydroxygeranyllinalool (17-HGL) to lyciumoside I. Plants with stable silencing of UGT74P3 and UGT74P5 were severely developmentally deformed, pointing to a phytotoxic effect of the aglycone. The application of synthetic 17-HGL and silencing of the UGTs in HGL-DTG-free plants confirmed this phytotoxic effect. Feeding assays with tobacco hornworm (Manduca sexta) larvae revealed the defensive functions of the glucosylation and rhamnosylation steps in HGL-DTG biosynthesis. Glucosylation of 17-HGL is therefore a critical step that contributes to the resulting metabolites' defensive function and solves the autotoxicity problem of this potent chemical defense.


Asunto(s)
Monoterpenos Acíclicos/metabolismo , Diterpenos/metabolismo , Glicósidos/metabolismo , Nicotiana/metabolismo , Monoterpenos Acíclicos/química , Animales , Vías Biosintéticas , Silenciador del Gen , Glicosilación , Glicosiltransferasas/metabolismo , Herbivoria , Larva/fisiología , Manduca/fisiología , Metabolómica , Necrosis , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes/metabolismo
10.
Microb Cell Fact ; 23(1): 193, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970026

RESUMEN

BACKGROUND: Due to the complexity of the metabolic pathway network of active ingredients, precise targeted synthesis of any active ingredient on a synthetic network is a huge challenge. Based on a complete analysis of the active ingredient pathway in a species, this goal can be achieved by elucidating the functional differences of each enzyme in the pathway and achieving this goal through different combinations. Lignans are a class of phytoestrogens that are present abundantly in plants and play a role in various physiological activities of plants due to their structural diversity. In addition, lignans offer various medicinal benefits to humans. Despite their value, the low concentration of lignans in plants limits their extraction and utilization. Recently, synthetic biology approaches have been explored for lignan production, but achieving the synthesis of most lignans, especially the more valuable lignan glycosides, across the entire synthetic network remains incomplete. RESULTS: By evaluating various gene construction methods and sequences, we determined that the pCDF-Duet-Prx02-PsVAO gene construction was the most effective for the production of (+)-pinoresinol, yielding up to 698.9 mg/L after shake-flask fermentation. Based on the stable production of (+)-pinoresinol, we synthesized downstream metabolites in vivo. By comparing different fermentation methods, including "one-cell, one-pot" and "multicellular one-pot", we determined that the "multicellular one-pot" method was more effective for producing (+)-lariciresinol, (-)-secoisolariciresinol, (-)-matairesinol, and their glycoside products. The "multicellular one-pot" fermentation yielded 434.08 mg/L of (+)-lariciresinol, 96.81 mg/L of (-)-secoisolariciresinol, and 45.14 mg/L of (-)-matairesinol. Subsequently, ultilizing the strict substrate recognition pecificities of UDP-glycosyltransferase (UGT) incorporating the native uridine diphosphate glucose (UDPG) Module for in vivo synthesis of glycoside products resulted in the following yields: (+)-pinoresinol glucoside: 1.71 mg/L, (+)-lariciresinol-4-O-D-glucopyranoside: 1.3 mg/L, (+)-lariciresinol-4'-O-D-glucopyranoside: 836 µg/L, (-)-secoisolariciresinol monoglucoside: 103.77 µg/L, (-)-matairesinol-4-O-D-glucopyranoside: 86.79 µg/L, and (-)-matairesinol-4'-O-D-glucopyranoside: 74.5 µg/L. CONCLUSIONS: By using various construction and fermentation methods, we successfully synthesized 10 products of the lignan pathway in Isatis indigotica Fort in Escherichia coli, with eugenol as substrate. Additionally, we obtained a diverse range of lignan products by combining different modules, setting a foundation for future high-yield lignan production.


Asunto(s)
Vías Biosintéticas , Escherichia coli , Glicósidos , Lignanos , Lignanos/biosíntesis , Lignanos/metabolismo , Glicósidos/biosíntesis , Glicósidos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Ingeniería Metabólica/métodos , Fermentación , Biología Sintética/métodos , Furanos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda