Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33.880
Filtrar
Más filtros

Publication year range
1.
Cell ; 175(2): 514-529.e20, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220461

RESUMEN

The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane. The crystal structure of the central domain of Aster-A broadly resembles the sterol-binding fold of mammalian StARD proteins, but sequence differences in the Aster pocket result in a distinct mode of ligand binding. The Aster N-terminal GRAM domain binds phosphatidylserine and mediates Aster recruitment to plasma membrane-ER contact sites in response to cholesterol accumulation in the plasma membrane. Mice lacking Aster-B are deficient in adrenal cholesterol ester storage and steroidogenesis because of an inability to transport cholesterol from SR-BI to the ER. These findings identify a nonvesicular pathway for plasma membrane to ER sterol trafficking in mammals.


Asunto(s)
HDL-Colesterol/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de la Membrana/ultraestructura , Células 3T3 , Animales , Transporte Biológico/fisiología , Antígenos CD36/metabolismo , Células CHO , Proteínas Portadoras/metabolismo , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/fisiología , Colesterol/metabolismo , Cricetulus , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Membranas Mitocondriales/metabolismo , Alineación de Secuencia , Esteroles/metabolismo
2.
Am J Hum Genet ; 110(2): 273-283, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36649705

RESUMEN

This study sought to examine the association between DNA methylation and body mass index (BMI) and the potential of BMI-associated cytosine-phosphate-guanine (CpG) sites to provide information about metabolic health. We pooled summary statistics from six trans-ethnic epigenome-wide association studies (EWASs) of BMI representing nine cohorts (n = 17,034), replicated these findings in the Women's Health Initiative (WHI, n = 4,822), and developed an epigenetic prediction score of BMI. In the pooled EWASs, 1,265 CpG sites were associated with BMI (p < 1E-7) and 1,238 replicated in the WHI (FDR < 0.05). We performed several stratified analyses to examine whether these associations differed between individuals of European and African descent, as defined by self-reported race/ethnicity. We found that five CpG sites had a significant interaction with BMI by race/ethnicity. To examine the utility of the significant CpG sites in predicting BMI, we used elastic net regression to predict log-normalized BMI in the WHI (80% training/20% testing). This model found that 397 sites could explain 32% of the variance in BMI in the WHI test set. Individuals whose methylome-predicted BMI overestimated their BMI (high epigenetic BMI) had significantly higher glucose and triglycerides and lower HDL cholesterol and LDL cholesterol compared to accurately predicted BMI. Individuals whose methylome-predicted BMI underestimated their BMI (low epigenetic BMI) had significantly higher HDL cholesterol and lower glucose and triglycerides. This study confirmed 553 and identified 685 CpG sites associated with BMI. Participants with high epigenetic BMI had poorer metabolic health, suggesting that the overestimation may be driven in part by cardiometabolic derangements characteristic of metabolic syndrome.


Asunto(s)
Epigénesis Genética , Epigenoma , Humanos , Femenino , Índice de Masa Corporal , Epigénesis Genética/genética , Obesidad/genética , HDL-Colesterol/genética , Estudio de Asociación del Genoma Completo , Metilación de ADN/genética , Epigenómica , Triglicéridos , Islas de CpG/genética
3.
Am J Hum Genet ; 110(4): 592-605, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36948188

RESUMEN

Mendelian randomization (MR) is a powerful tool for causal inference with observational genome-wide association study (GWAS) summary data. Compared to the more commonly used univariable MR (UVMR), multivariable MR (MVMR) not only is more robust to the notorious problem of genetic (horizontal) pleiotropy but also estimates the direct effect of each exposure on the outcome after accounting for possible mediating effects of other exposures. Despite promising applications, there is a lack of studies on MVMR's theoretical properties and robustness in applications. In this work, we propose an efficient and robust MVMR method based on constrained maximum likelihood (cML), called MVMR-cML, with strong theoretical support. Extensive simulations demonstrate that MVMR-cML performs better than other existing MVMR methods while possessing the above two advantages over its univariable counterpart. An application to several large-scale GWAS summary datasets to infer causal relationships between eight cardiometabolic risk factors and coronary artery disease (CAD) highlights the usefulness and some advantages of the proposed method. For example, after accounting for possible pleiotropic and mediating effects, triglyceride (TG), low-density lipoprotein cholesterol (LDL), and systolic blood pressure (SBP) had direct effects on CAD; in contrast, the effects of high-density lipoprotein cholesterol (HDL), diastolic blood pressure (DBP), and body height diminished after accounting for other risk factors.


Asunto(s)
Enfermedad de la Arteria Coronaria , Análisis de la Aleatorización Mendeliana , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Causalidad , Enfermedad de la Arteria Coronaria/genética , HDL-Colesterol/genética
4.
Nature ; 582(7810): 73-77, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494083

RESUMEN

High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular risk-changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.


Asunto(s)
LDL-Colesterol/sangre , Hipercolesterolemia/sangre , Hipercolesterolemia/epidemiología , Internacionalidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Teorema de Bayes , HDL-Colesterol/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Isquemia Miocárdica/sangre , Isquemia Miocárdica/epidemiología , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/epidemiología , Triglicéridos/sangre , Adulto Joven
5.
Circulation ; 149(3): 217-226, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014550

RESUMEN

BACKGROUND: Although low-density lipoprotein cholesterol (LDL-C) remains the primary cholesterol target in clinical practice in children and adults, non-high-density lipoprotein cholesterol (non-HDL-C) has been suggested as a more accurate measure of atherosclerotic cardiovascular disease (ASCVD) risk. We examined the associations of childhood non-HDL-C and LDL-C levels with adult ASCVD events and determined whether non-HDL-C has better utility than LDL-C in predicting adult ASCVD events. METHODS: This prospective cohort study included 21 126 participants from the i3C Consortium (International Childhood Cardiovascular Cohorts). Proportional hazards regressions were used to estimate the risk for incident fatal and fatal/nonfatal ASCVD events associated with childhood non-HDL-C and LDL-C levels (age- and sex-specific z scores; concordant/discordant categories defined by guideline-recommended cutoffs), adjusted for sex, Black race, cohort, age at and calendar year of child measurement, body mass index, and systolic blood pressure. Predictive utility was determined by the C index. RESULTS: After an average follow-up of 35 years, 153 fatal ASCVD events occurred in 21 126 participants (mean age at childhood visits, 11.9 years), and 352 fatal/nonfatal ASCVD events occurred in a subset of 11 296 participants who could be evaluated for this outcome. Childhood non-HDL-C and LDL-C levels were each associated with higher risk of fatal and fatal/nonfatal ASCVD events (hazard ratio ranged from 1.27 [95% CI, 1.14-1.41] to 1.35 [95% CI, 1.13-1.60] per unit increase in the risk factor z score). Non-HDL-C had better discriminative utility than LDL-C (difference in C index, 0.0054 [95% CI, 0.0006-0.0102] and 0.0038 [95% CI, 0.0008-0.0068] for fatal and fatal/nonfatal events, respectively). The discordant group with elevated non-HDL-C and normal LDL-C had a higher risk of ASCVD events compared with the concordant group with normal non-HDL-C and LDL-C (fatal events: hazard ratio, 1.90 [95% CI, 0.98-3.70]; fatal/nonfatal events: hazard ratio, 1.94 [95% CI, 1.23-3.06]). CONCLUSIONS: Childhood non-HDL-C and LDL-C levels are associated with ASCVD events in midlife. Non-HDL-C is better than LDL-C in predicting adult ASCVD events, particularly among individuals who had normal LDL-C but elevated non-HDL-C. These findings suggest that both non-HDL-C and LDL-C are useful in identifying children at higher risk of ASCVD events, but non-HDL-C may provide added prognostic information when it is discordantly higher than the corresponding LDL-C and has the practical advantage of being determined without a fasting sample.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Masculino , Adulto , Femenino , Niño , Humanos , LDL-Colesterol , Estudios Prospectivos , Colesterol , Aterosclerosis/diagnóstico , Aterosclerosis/epidemiología , Lipoproteínas , Factores de Riesgo , HDL-Colesterol
6.
Circulation ; 149(6): 417-426, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-37970713

RESUMEN

BACKGROUND: Tools for mortality prediction in patients with the severe hypercholesterolemia phenotype (low-density lipoprotein cholesterol ≥190 mg/dL) are limited and restricted to specific racial and ethnic cohorts. We sought to evaluate the predictors of long-term mortality in a large racially and ethnically diverse US patient cohort with low-density lipoprotein cholesterol ≥190 mg/dL. METHODS: We conducted a retrospective analysis of all patients with a low-density lipoprotein cholesterol ≥190 mg/dL seeking care at Montefiore from 2010 through 2020. Patients <18 years of age or with previous malignancy were excluded. The primary end point was all-cause mortality. Analyses were stratified by age, sex, and race and ethnicity. Patients were stratified by primary and secondary prevention. Cox regression analyses were used to adjust for demographic, clinical, and treatment variables. RESULTS: A total of 18 740 patients were included (37% non-Hispanic Black, 30% Hispanic, 12% non-Hispanic White, and 2% non-Hispanic Asian patients). The mean age was 53.9 years, and median follow-up was 5.2 years. Both high-density lipoprotein cholesterol and body mass index extremes were associated with higher mortality in univariate analyses. In adjusted models, higher low-density lipoprotein cholesterol and triglyceride levels were associated with an increased 9-year mortality risk (adjusted hazard ratio [HR], 1.08 [95% CI, 1.05-1.11] and 1.04 [95% CI, 1.02-1.06] per 20-mg/dL increase, respectively). Clinical factors associated with higher mortality included male sex (adjusted HR, 1.31 [95% CI, 1.08-1.58]), older age (adjusted HR, 1.19 per 5-year increase [95% CI, 1.15-1.23]), hypertension (adjusted HR, 2.01 [95% CI, 1.57-2.57]), chronic kidney disease (adjusted HR, 1.68 [95% CI, 1.36-2.09]), diabetes (adjusted HR, 1.79 [95% CI, 1.50-2.15]), heart failure (adjusted HR, 1.51 [95% CI, 1.16-1.95]), myocardial infarction (adjusted HR, 1.41 [95% CI, 1.05-1.90]), and body mass index <20 kg/m2 (adjusted HR, 3.36 [95% CI, 2.29-4.93]). A significant survival benefit was conferred by lipid-lowering therapy (adjusted HR, 0.57 [95% CI, 0.42-0.77]). In the primary prevention group, high-density lipoprotein cholesterol <40 mg/dL was independently associated with higher mortality (adjusted HR, 1.49 [95% CI, 1.06-2.09]). Temporal trend analyses showed a reduction in statin use over time (P<0.001). In the most recent time period (2019-2020), 56% of patients on primary prevention and 85% of those on secondary prevention were on statin therapy. CONCLUSIONS: In a large, diverse cohort of US patients with the severe hypercholesterolemia phenotype, we identified several patient characteristics associated with increased 9-year all-cause mortality and observed a decrease in statin use over time, in particular for primary prevention. Our results support efforts geared toward early recognition and consistent treatment for patients with severe hypercholesterolemia.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hipercolesterolemia , Humanos , Masculino , Persona de Mediana Edad , Hipercolesterolemia/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Estudios Retrospectivos , LDL-Colesterol , HDL-Colesterol , Fenotipo , Factores de Riesgo
7.
Circulation ; 149(10): 774-787, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38018436

RESUMEN

BACKGROUND: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS: We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.


Asunto(s)
Apolipoproteína A-I , Enfermedades Cardiovasculares , Humanos , Apolipoproteína A-I/metabolismo , Enfermedades Cardiovasculares/metabolismo , Lipoproteínas HDL/metabolismo , Colesterol , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Macrófagos/metabolismo , HDL-Colesterol
8.
N Engl J Med ; 387(21): 1923-1934, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36342113

RESUMEN

BACKGROUND: High triglyceride levels are associated with increased cardiovascular risk, but whether reductions in these levels would lower the incidence of cardiovascular events is uncertain. Pemafibrate, a selective peroxisome proliferator-activated receptor α modulator, reduces triglyceride levels and improves other lipid levels. METHODS: In a multinational, double-blind, randomized, controlled trial, we assigned patients with type 2 diabetes, mild-to-moderate hypertriglyceridemia (triglyceride level, 200 to 499 mg per deciliter), and high-density lipoprotein (HDL) cholesterol levels of 40 mg per deciliter or lower to receive pemafibrate (0.2-mg tablets twice daily) or matching placebo. Eligible patients were receiving guideline-directed lipid-lowering therapy or could not receive statin therapy without adverse effects and had low-density lipoprotein (LDL) cholesterol levels of 100 mg per deciliter or lower. The primary efficacy end point was a composite of nonfatal myocardial infarction, ischemic stroke, coronary revascularization, or death from cardiovascular causes. RESULTS: Among 10,497 patients (66.9% with previous cardiovascular disease), the median baseline fasting triglyceride level was 271 mg per deciliter, HDL cholesterol level 33 mg per deciliter, and LDL cholesterol level 78 mg per deciliter. The median follow-up was 3.4 years. As compared with placebo, the effects of pemafibrate on lipid levels at 4 months were -26.2% for triglycerides, -25.8% for very-low-density lipoprotein (VLDL) cholesterol, -25.6% for remnant cholesterol (cholesterol transported in triglyceride-rich lipoproteins after lipolysis and lipoprotein remodeling), -27.6% for apolipoprotein C-III, and 4.8% for apolipoprotein B. A primary end-point event occurred in 572 patients in the pemafibrate group and in 560 of those in the placebo group (hazard ratio, 1.03; 95% confidence interval, 0.91 to 1.15), with no apparent effect modification in any prespecified subgroup. The overall incidence of serious adverse events did not differ significantly between the groups, but pemafibrate was associated with a higher incidence of adverse renal events and venous thromboembolism and a lower incidence of nonalcoholic fatty liver disease. CONCLUSIONS: Among patients with type 2 diabetes, mild-to-moderate hypertriglyceridemia, and low HDL and LDL cholesterol levels, the incidence of cardiovascular events was not lower among those who received pemafibrate than among those who received placebo, although pemafibrate lowered triglyceride, VLDL cholesterol, remnant cholesterol, and apolipoprotein C-III levels. (Funded by the Kowa Research Institute; PROMINENT ClinicalTrials.gov number, NCT03071692.).


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Hipertrigliceridemia , Hipolipemiantes , PPAR alfa , Humanos , Apolipoproteína C-III/sangre , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Colesterol/sangre , LDL-Colesterol/sangre , Diabetes Mellitus Tipo 2/complicaciones , Método Doble Ciego , Factores de Riesgo de Enfermedad Cardiaca , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hiperlipidemias/sangre , Hiperlipidemias/tratamiento farmacológico , Hipertrigliceridemia/sangre , Hipertrigliceridemia/complicaciones , Hipertrigliceridemia/tratamiento farmacológico , Factores de Riesgo , Triglicéridos/sangre , Hipolipemiantes/uso terapéutico , PPAR alfa/agonistas , HDL-Colesterol/sangre
9.
PLoS Biol ; 20(2): e3001547, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35213538

RESUMEN

Large-scale molecular profiling and genotyping provide a unique opportunity to systematically compare the genetically predicted effects of therapeutic targets on the human metabolome. We firstly constructed genetic risk scores for 8 drug targets on the basis that they primarily modify low-density lipoprotein (LDL) cholesterol (HMGCR, PCKS9, and NPC1L1), high-density lipoprotein (HDL) cholesterol (CETP), or triglycerides (APOC3, ANGPTL3, ANGPTL4, and LPL). Conducting mendelian randomisation (MR) provided strong evidence of an effect of drug-based genetic scores on coronary artery disease (CAD) risk with the exception of ANGPTL3. We then systematically estimated the effects of each score on 249 metabolic traits derived using blood samples from an unprecedented sample size of up to 115,082 UK Biobank participants. Genetically predicted effects were generally consistent among drug targets, which were intended to modify the same lipoprotein lipid trait. For example, the linear fit for the MR estimates on all 249 metabolic traits for genetically predicted inhibition of LDL cholesterol lowering targets HMGCR and PCSK9 was r2 = 0.91. In contrast, comparisons between drug classes that were designed to modify discrete lipoprotein traits typically had very different effects on metabolic signatures (for instance, HMGCR versus each of the 4 triglyceride targets all had r2 < 0.02). Furthermore, we highlight this discrepancy for specific metabolic traits, for example, finding that LDL cholesterol lowering therapies typically had a weak effect on glycoprotein acetyls, a marker of inflammation, whereas triglyceride modifying therapies assessed provided evidence of a strong effect on lowering levels of this inflammatory biomarker. Our findings indicate that genetically predicted perturbations of these drug targets on the blood metabolome can drastically differ, despite largely consistent effects on risk of CAD, with potential implications for biomarkers in clinical development and measuring treatment response.


Asunto(s)
Colesterol , Proproteína Convertasa 9 , Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , HDL-Colesterol , LDL-Colesterol , Humanos , Lipoproteínas , Análisis de la Aleatorización Mendeliana , Proproteína Convertasa 9/genética , Triglicéridos
10.
Circ Res ; 132(4): 452-464, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36691918

RESUMEN

BACKGROUND: Recognition of the importance of conventional lipid measures and the advent of novel lipid-lowering medications have prompted the need for more comprehensive lipid panels to guide use of emerging treatments for the prevention of coronary heart disease (CHD). This report assessed the relevance of 13 apolipoproteins measured using a single mass-spectrometry assay for risk of CHD in the PROCARDIS case-control study of CHD (941 cases/975 controls). METHODS: The associations of apolipoproteins with CHD were assessed after adjustment for established risk factors and correction for statin use. Apolipoproteins were grouped into 4 lipid-related classes [lipoprotein(a), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides] and their associations with CHD were adjusted for established CHD risk factors and conventional lipids. Analyses of these apolipoproteins in a subset of the ASCOT trial (Anglo-Scandinavian Cardiac Outcomes Trial) were used to assess their within-person variability and to estimate a correction for statin use. The findings in the PROCARDIS study were compared with those for incident cardiovascular disease in the Bruneck prospective study (n=688), including new measurements of Apo(a). RESULTS: Triglyceride-carrying apolipoproteins (ApoC1, ApoC3, and ApoE) were most strongly associated with the risk of CHD (2- to 3-fold higher odds ratios for top versus bottom quintile) independent of conventional lipid measures. Likewise, ApoB was independently associated with a 2-fold higher odds ratios of CHD. Lipoprotein(a) was measured using peptides from the Apo(a)-kringle repeat and Apo(a)-constant regions, but neither of these associations differed from the association with conventionally measured lipoprotein(a). Among HDL-related apolipoproteins, ApoA4 and ApoM were inversely related to CHD, independent of conventional lipid measures. The disease associations with all apolipoproteins were directionally consistent in the PROCARDIS and Bruneck studies, with the exception of ApoM. CONCLUSIONS: Apolipoproteins were associated with CHD independent of conventional risk factors and lipids, suggesting apolipoproteins could help to identify patients with residual lipid-related risk and guide personalized approaches to CHD risk reduction.


Asunto(s)
Enfermedad Coronaria , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Estudios Prospectivos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Estudios de Casos y Controles , Proteómica , Apolipoproteínas , Factores de Riesgo , Enfermedad Coronaria/epidemiología , Enfermedad Coronaria/etiología , Triglicéridos , HDL-Colesterol , Lipoproteína(a) , Apolipoproteínas B/uso terapéutico , Apolipoproteína A-I
11.
Circ Res ; 132(11): 1521-1545, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37228232

RESUMEN

Epidemiologic studies detected an inverse relationship between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major risk factor for ASCVD and suggesting atheroprotective functions of HDL. However, the role of HDL-C as a mediator of risk for ASCVD has been called into question by the failure of HDL-C-raising drugs to reduce cardiovascular events in clinical trials. Progress in understanding the heterogeneous nature of HDL particles in terms of their protein, lipid, and small RNA composition has contributed to the realization that HDL-C levels do not necessarily reflect HDL function. The most examined atheroprotective function of HDL is reverse cholesterol transport, whereby HDL removes cholesterol from plaque macrophage foam cells and delivers it to the liver for processing and excretion into bile. Indeed, in several studies, HDL has shown inverse associations between HDL cholesterol efflux capacity and ASCVD in humans. Inflammation plays a key role in the pathogenesis of atherosclerosis and vulnerable plaque formation, and a fundamental function of HDL is suppression of inflammatory signaling in macrophages and other cells. Oxidation is also a critical process to ASCVD in promoting atherogenic oxidative modifications of LDL (low-density lipoprotein) and cellular inflammation. HDL and its proteins including apoAI (apolipoprotein AI) and PON1 (paraoxonase 1) prevent cellular oxidative stress and LDL modifications. Importantly, HDL in humans with ASCVD is oxidatively modified rendering HDL dysfunctional and proinflammatory. Modification of HDL with reactive carbonyl species, such as malondialdehyde and isolevuglandins, dramatically impairs the antiatherogenic functions of HDL. Importantly, treatment of murine models of atherosclerosis with scavengers of reactive dicarbonyls improves HDL function and reduces systemic inflammation, atherosclerosis development, and features of plaque instability. Here, we discuss the HDL antiatherogenic functions in relation to oxidative modifications and the potential of reactive dicarbonyl scavengers as a therapeutic approach for ASCVD.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Ratones , Animales , Aterosclerosis/metabolismo , Placa Aterosclerótica/complicaciones , Colesterol/metabolismo , HDL-Colesterol , Inflamación/tratamiento farmacológico , Inflamación/complicaciones , Arildialquilfosfatasa
12.
Arterioscler Thromb Vasc Biol ; 44(1): 76-88, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38031838

RESUMEN

HDL (high-density lipoprotein), owing to its high protein content and small size, is the densest circulating lipoprotein. In contrast to lipid-laden VLDL (very-low-density lipoprotein) and LDL (low-density lipoprotein) that promote atherosclerosis, HDL is hypothesized to mitigate atherosclerosis via reverse cholesterol transport, a process that entails the uptake and clearance of excess cholesterol from peripheral tissues. This process is mediated by APOA1 (apolipoprotein A-I), the primary structural protein of HDL, as well as by the activities of additional HDL proteins. Tracer-dependent kinetic studies are an invaluable tool to study HDL-mediated reverse cholesterol transport and overall HDL metabolism in humans when a cardiovascular disease therapy is investigated. Unfortunately, HDL cholesterol-raising therapies have not been successful at reducing cardiovascular events suggesting an incomplete picture of HDL biology. However, as HDL tracer studies have evolved from radioactive isotope- to stable isotope-based strategies that in turn are reliant on mass spectrometry technologies, the complexity of the HDL proteome and its metabolism can be more readily addressed. In this review, we outline the motivations, timelines, advantages, and disadvantages of the various tracer kinetics strategies. We also feature the metabolic properties of select HDL proteins known to regulate reverse cholesterol transport, which in turn underscore that HDL lipoproteins comprise a heterogeneous particle population whose distinct protein constituents and kinetics likely determine its function and potential contribution to cholesterol clearance.


Asunto(s)
Aterosclerosis , Lipoproteínas , Humanos , Cinética , Lipoproteínas/metabolismo , Lipoproteínas HDL/metabolismo , Colesterol/metabolismo , Aterosclerosis/metabolismo , Biología , HDL-Colesterol
13.
Arterioscler Thromb Vasc Biol ; 44(6): 1407-1418, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38695168

RESUMEN

BACKGROUND: LCAT (lecithin cholesterol acyl transferase) catalyzes the conversion of unesterified, or free cholesterol, to cholesteryl ester, which moves from the surface of HDL (high-density lipoprotein) into the neutral lipid core. As this iterative process continues, nascent lipid-poor HDL is converted to a series of larger, spherical cholesteryl ester-enriched HDL particles that can be cleared by the liver in a process that has been termed reverse cholesterol transport. METHODS: We conducted a randomized, placebocontrolled, crossover study in 5 volunteers with atherosclerotic cardiovascular disease, to examine the effects of an acute increase of recombinant human (rh) LCAT via intravenous administration (300-mg loading dose followed by 150 mg at 48 hours) on the in vivo metabolism of HDL APO (apolipoprotein)A1 and APOA2, and the APOB100-lipoproteins, very low density, intermediate density, and low-density lipoproteins. RESULTS: As expected, recombinant human LCAT treatment significantly increased HDL-cholesterol (34.9 mg/dL; P≤0.001), and this was mostly due to the increase in cholesteryl ester content (33.0 mg/dL; P=0.014). This change did not affect the fractional clearance or production rates of HDL-APOA1 and HDL-APOA2. There were also no significant changes in the metabolism of APOB100-lipoproteins. CONCLUSIONS: Our results suggest that an acute increase in LCAT activity drives greater flux of cholesteryl ester through the reverse cholesterol transport pathway without significantly altering the clearance and production of the main HDL proteins and without affecting the metabolism of APOB100-lipoproteins. Long-term elevations of LCAT might, therefore, have beneficial effects on total body cholesterol balance and atherogenesis.


Asunto(s)
Apolipoproteína A-II , Apolipoproteína A-I , HDL-Colesterol , Estudios Cruzados , Fosfatidilcolina-Esterol O-Aciltransferasa , Proteínas Recombinantes , Humanos , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Masculino , Apolipoproteína A-I/sangre , Persona de Mediana Edad , HDL-Colesterol/sangre , Apolipoproteína A-II/sangre , Femenino , Ésteres del Colesterol/sangre , Ésteres del Colesterol/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/enzimología , Aterosclerosis/sangre , Apolipoproteína B-100/sangre , Anciano , Adulto , Lipoproteínas/sangre , Lipoproteínas/metabolismo
14.
Nature ; 572(7769): 323-328, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31367044

RESUMEN

Exome-sequencing studies have generally been underpowered to identify deleterious alleles with a large effect on complex traits as such alleles are mostly rare. Because the population of northern and eastern Finland has expanded considerably and in isolation following a series of bottlenecks, individuals of these populations have numerous deleterious alleles at a relatively high frequency. Here, using exome sequencing of nearly 20,000 individuals from these regions, we investigate the role of rare coding variants in clinically relevant quantitative cardiometabolic traits. Exome-wide association studies for 64 quantitative traits identified 26 newly associated deleterious alleles. Of these 26 alleles, 19 are either unique to or more than 20 times more frequent in Finnish individuals than in other Europeans and show geographical clustering comparable to Mendelian disease mutations that are characteristic of the Finnish population. We estimate that sequencing studies of populations without this unique history would require hundreds of thousands to millions of participants to achieve comparable association power.


Asunto(s)
Secuenciación del Exoma , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Sitios de Carácter Cuantitativo/genética , Alelos , HDL-Colesterol/genética , Análisis por Conglomerados , Determinación de Punto Final , Finlandia , Mapeo Geográfico , Humanos , Herencia Multifactorial/genética , Reproducibilidad de los Resultados
15.
Eur Heart J ; 45(2): 117-128, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-37638490

RESUMEN

BACKGROUND AND AIMS: Statin recommendations in primary prevention depend upon risk algorithms. Moreover, with intermediate risk, risk enhancers and de-enhancers are advocated to aid decisions. The aim of this study was to compare algorithms used in North America and Europe for the identification of patients warranting statin or consideration of risk enhancers and de-enhancers. METHODS: A simulated population (n = 7680) equal in males and females, with/without smoking, aged 45-70 years, total cholesterol 3.5-7.0 mmol/L, high-density lipoprotein cholesterol 0.6-2.2 mmol/L, and systolic blood pressure 100-170 mmHg, was evaluated. High, intermediate, and low risks were determined using the Framingham Risk Score (FRS), Pooled Cohort Equation (PCE), four versions of Systematic Coronary Risk Evaluation 2 (SCORE2), and Multi-Ethnic Study of Atherosclerosis (MESA) algorithm (0-1000 Agatston Units). RESULTS: Concordance for the three levels of risk varied from 19% to 85%. Both sexes might be considered to have low, intermediate, or high risk depending on the algorithm applied, even with the same burden of risk factors. Only SCORE2 (High Risk and Very High Risk versions) identified equal proportions of males and females with high risk. Excluding MESA, the proportion with moderate risk was 25% (SCORE2, Very High Risk Region), 32% (FRS), 39% (PCE), and 45% (SCORE2, Low Risk Region). CONCLUSION: Risk algorithms differ substantially in their estimation of risk, recommendations for statin treatment, and use of ancillary testing, even in identical patients. These results highlight the limitations of currently used risk-based approaches for addressing lipid-specific risk in primary prevention.


Asunto(s)
Aterosclerosis , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Masculino , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Factores de Riesgo , Aterosclerosis/epidemiología , HDL-Colesterol , Presión Sanguínea
16.
Eur Heart J ; 45(6): 458-471, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37950859

RESUMEN

BACKGROUND AND AIMS: Physical inactivity, sedentary behaviour (SB), and inadequate sleep are key behavioural risk factors of cardiometabolic diseases. Each behaviour is mainly considered in isolation, despite clear behavioural and biological interdependencies. The aim of this study was to investigate associations of five-part movement compositions with adiposity and cardiometabolic biomarkers. METHODS: Cross-sectional data from six studies (n = 15 253 participants; five countries) from the Prospective Physical Activity, Sitting and Sleep consortium were analysed. Device-measured time spent in sleep, SB, standing, light-intensity physical activity (LIPA), and moderate-vigorous physical activity (MVPA) made up the composition. Outcomes included body mass index (BMI), waist circumference, HDL cholesterol, total:HDL cholesterol ratio, triglycerides, and glycated haemoglobin (HbA1c). Compositional linear regression examined associations between compositions and outcomes, including modelling time reallocation between behaviours. RESULTS: The average daily composition of the sample (age: 53.7 ± 9.7 years; 54.7% female) was 7.7 h sleeping, 10.4 h sedentary, 3.1 h standing, 1.5 h LIPA, and 1.3 h MVPA. A greater MVPA proportion and smaller SB proportion were associated with better outcomes. Reallocating time from SB, standing, LIPA, or sleep into MVPA resulted in better scores across all outcomes. For example, replacing 30 min of SB, sleep, standing, or LIPA with MVPA was associated with -0.63 (95% confidence interval -0.48, -0.79), -0.43 (-0.25, -0.59), -0.40 (-0.25, -0.56), and -0.15 (0.05, -0.34) kg/m2 lower BMI, respectively. Greater relative standing time was beneficial, whereas sleep had a detrimental association when replacing LIPA/MVPA and positive association when replacing SB. The minimal displacement of any behaviour into MVPA for improved cardiometabolic health ranged from 3.8 (HbA1c) to 12.7 (triglycerides) min/day. CONCLUSIONS: Compositional data analyses revealed a distinct hierarchy of behaviours. Moderate-vigorous physical activity demonstrated the strongest, most time-efficient protective associations with cardiometabolic outcomes. Theoretical benefits from reallocating SB into sleep, standing, or LIPA required substantial changes in daily activity.


Asunto(s)
Enfermedades Cardiovasculares , Sedestación , Humanos , Femenino , Adulto , Persona de Mediana Edad , Masculino , HDL-Colesterol , Hemoglobina Glucada , Estudios Transversales , Estudios Prospectivos , Ejercicio Físico , Triglicéridos , Sueño , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control
17.
Eur Heart J ; 45(27): 2410-2418, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38700053

RESUMEN

BACKGROUND AND AIMS: Despite growing evidence that apolipoprotein B (apoB) is the most accurate marker of atherosclerotic cardiovascular disease (ASCVD) risk, its adoption in clinical practice has been low. This investigation sought to determine whether low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (HDL-C), and triglycerides are sufficient for routine cardiovascular care. METHODS: A sample of 293 876 UK Biobank adults (age: 40-73 years, 42% men), free of cardiovascular disease, with a median follow-up for new-onset ASCVD of 11 years was included. Distribution of apoB at pre-specified levels of LDL-C, non-HDL-C, and triglycerides was examined graphically, and 10-year ASCVD event rates were compared for high vs. low apoB. Residuals of apoB were constructed after regressing apoB on LDL-C, non-HDL-C, and log-transformed triglycerides and used as predictors in a proportional hazards regression model for new-onset ASCVD adjusted for standard risk factors, including HDL-C. RESULTS: ApoB was highly correlated with LDL-C and non-HDL-C (Pearson's r = .96, P < .001 for both) but less so with log triglycerides (r = .42, P < .001). However, apoB ranges necessary to capture 95% of all observations at pre-specified levels of LDL-C, non-HDL-C, or triglycerides were wide, spanning 85.8-108.8 md/dL when LDL-C 130 mg/dL, 88.3-112.4 mg/dL when non-HDL-C 160 mg/dL, and 67.8-147.4 md/dL when triglycerides 115 mg/dL. At these levels (±10 mg/dL), 10-year ASCVD rates for apoB above mean + 1 SD vs. below mean - 1 SD were 7.3 vs. 4.0 for LDL-C, 6.4 vs. 4.6 for non-HDL-C, and 7.0 vs. 4.6 for triglycerides (all P < .001). With 19 982 new-onset ASCVD events on follow-up, in the adjusted model, residual apoB remained statistically significant after accounting for LDL-C and HDL-C (hazard ratio 1.06, 95% confidence interval 1.0-1.07), after accounting for non-HDL-C and HDL-C (hazard ratio 1.04, 95% confidence interval 1.03-1.06), and after accounting for triglycerides and HDL-C (hazard ratio 1.13, 95% confidence interval 1.12-1.15). None of the residuals of LDL-C, non-HDL-C, or of log triglycerides remained significant when apoB was included in the model. CONCLUSIONS: High variability of apoB at individual levels of LDL-C, non-HDL-C, and triglycerides coupled with meaningful differences in 10-year ASCVD rates and significant residual information contained in apoB for prediction of new-onset ASCVD events demonstrate that LDL-C, non-HDL-C, and triglycerides are not adequate proxies for apoB in clinical care.


Asunto(s)
Apolipoproteínas B , Biomarcadores , LDL-Colesterol , Triglicéridos , Humanos , Triglicéridos/sangre , Persona de Mediana Edad , Femenino , Masculino , Anciano , Adulto , LDL-Colesterol/sangre , Biomarcadores/sangre , Apolipoproteínas B/sangre , HDL-Colesterol/sangre , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/epidemiología
18.
Gut ; 73(3): 521-532, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-37945330

RESUMEN

OBJECTIVE: Different serum lipids and lipid-modifying targets should affect the risk of cholelithiasis differently, however, whether such effects are causal is still controversial and we aimed to answer this question. DESIGN: We prospectively estimated the associations of four serum lipids with cholelithiasis in UK Biobank using the Cox proportional hazard model, including total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG). Furthermore, we estimated the causal associations of the genetically predicted serum lipids with cholelithiasis in Europeans using the Mendelian randomisation (MR) design. Finally, both drug-target MR and colocalisation analyses were performed to estimate the lipid-modifying targets' effects on cholelithiasis, including HMGCR, NPC1L1, PCSK9, APOB, LDLR, ACLY, ANGPTL3, MTTP, PPARA, PPARD and PPARG. RESULTS: We found that serum levels of LDL-C and HDL-C were inversely associated with cholelithiasis risk and such associations were linear. However, the serum level of TC was non-linearly associated with cholelithiasis risk where lower TC was associated with higher risk of cholelithiasis, and the serum TG should be in an inverted 'U-shaped' relationship with it. The MR analyses supported that lower TC and higher TG levels were two independent causal risk factors. The drug-target MR analysis suggested that HMGCR inhibition should reduce the risk of cholelithiasis, which was corroborated by colocalisation analysis. CONCLUSION: Lower serum TC can causally increase the risk of cholelithiasis. The cholelithiasis risk would increase with the elevation of serum TG but would decrease when exceeding 2.57 mmol/L. The use of HMGCR inhibitors should prevent its risk.


Asunto(s)
Colelitiasis , Proproteína Convertasa 9 , Humanos , LDL-Colesterol , Triglicéridos , HDL-Colesterol , Proteína 3 Similar a la Angiopoyetina
19.
Curr Opin Lipidol ; 35(1): 25-32, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37788374

RESUMEN

PURPOSE OF REVIEW: Cardiovascular diseases (CVD) pose a significant public health challenge, contributing to 422 million disability-adjusted life years in 2021. The role of high-density lipoproteins (HDL) and alcohol consumption, one of their major modifiable determinants, remains controversial. The objective of this review is to provide a comprehensive narrative overview of HDL functionality and its predictive value for CVD in relation to patterns of alcohol consumption. RECENT FINDINGS: HDL phenotypes beyond HDL-cholesterol (HDL-c) such as distribution of HDL subspecies, HDL particle abundance, and reverse cholesterol transport capacity are promising indicators of atherosclerotic CVD risk. Low-to-moderate alcohol consumption seems to improve HDL functionality and reduce the incidence of CVD among primarily middle-aged men and postmenopausal women. Advancements in our understanding of HDL biogenesis, structure, and function hold promise for improving HDL-related measures and their predictive value for cardiovascular health. SUMMARY: Low-to-moderate alcohol consumption appears to not only increase HDL-c concentration found in the HDL fraction of plasma but also enhance HDL functionality, providing insights into the underlying mechanisms linking alcohol exposure and cardiovascular health benefits. However, rigorous, well designed intervention trials of alcohol consumption on hard cardiovascular outcomes are needed to identify robust causal associations of HDL phenotypes and alcohol consumption with cardiovascular risk.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Masculino , Persona de Mediana Edad , Humanos , Femenino , Lipoproteínas HDL , Consumo de Bebidas Alcohólicas/efectos adversos , HDL-Colesterol , Enfermedades Cardiovasculares/epidemiología
20.
J Lipid Res ; 65(1): 100482, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38052254

RESUMEN

Excess cholesterol originating from nonhepatic tissues is transported within HDL particles to the liver for metabolism and excretion. Cholesterol efflux is initiated by lipid-free or lipid-poor apolipoprotein A1 interacting with the transmembrane protein ABCA1, a key player in cholesterol homeostasis. Defective ABCA1 results in reduced serum levels of HDL cholesterol, deposition of cholesterol in arteries, and an increased risk of early onset CVD. Over 300 genetic variants in ABCA1 have been reported, many of which are associated with reduced HDL cholesterol levels. Only a few of these have been functionally characterized. In this study, we have analyzed 51 previously unclassified missense variants affecting the extracellular domains of ABCA1 using a sensitive, easy, and low-cost fluorescence-based assay. Among these, only 12 variants showed a distinct loss-of-function phenotype, asserting their direct association with severe HDL disorders. These findings emphasize the crucial role of functional characterization of genetic variants in pathogenicity assessment and precision medicine. The functional rescue of ABCA1 loss-of-function variants through proteasomal inhibition or by the use of the chemical chaperone 4-phenylbutyric acid was genotype specific. Genotype-specific responses were also observed for the ability of apolipoprotein A1 to stabilize the different ABCA1 variants. In view of personalized medicine, this could potentially form the basis for novel therapeutic strategies.


Asunto(s)
Apolipoproteína A-I , Colesterol , HDL-Colesterol , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Fluorescencia , Transportador 1 de Casete de Unión a ATP/genética , Colesterol/metabolismo , Mutación Missense
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda