RESUMEN
OBJECTIVES: Hemimegalencephaly (HME) is a rare congenital brain malformation presenting predominantly with drug-resistant epilepsy. Hemispheric disconnective surgery is the mainstay of treatment; however, little is known about how postoperative outcomes compare across techniques. Thus we present the largest single-center cohort of patients with HME who underwent epilepsy surgery and characterize outcomes. METHODS: This observational study included patients with HME at University of California Los Angeles (UCLA) from 1984 to 2021. Patients were stratified by surgical intervention: anatomic hemispherectomy (AH), functional hemispherectomy (FH), or less-than-hemispheric resection (LTH). Seizure freedom, functional outcomes, and operative complications were compared across surgical approaches. Regression analysis identified clinical and intraoperative variables that predict seizure outcomes. RESULTS: Of 56 patients, 43 (77%) underwent FH, 8 (14%) underwent AH, 2 (4%) underwent LTH, 1 (2%) underwent unknown hemispherectomy type, and 2 (4%) were managed non-operatively. At median last follow-up of 55 months (interquartile range [IQR] 20-92 months), 24 patients (49%) were seizure-free, 17 (30%) required cerebrospinal fluid (CSF) shunting for hydrocephalus, 9 of 43 (21%) had severe developmental delay, 8 of 38 (21%) were non-verbal, and 15 of 38 (39%) were non-ambulatory. There was one (2%) intraoperative mortality due to exsanguination earlier in this cohort. Of 12 patients (29%) requiring revision surgery, 6 (50%) were seizure-free postoperatively. AH, compared to FH, was not associated with statistically significant improved seizure freedom (hazard ratio [HR] = .48, p = .328), although initial AH trended toward greater odds of seizure freedom (75% vs 46%, p = .272). Younger age at seizure onset (HR = .29, p = .029), lack of epilepsia partialis continua (EPC) (HR = .30, p = .022), and no contralateral seizures on electroencephalography (EEG) (HR = .33, p = .039) independently predicted longer duration of seizure freedom. SIGNIFICANCE: This study helps inform physicians and parents of children who are undergoing surgery for HME by demonstrating that earlier age at seizure onset, absence of EPC, and no contralateral EEG seizures were associated with longer postoperative seizure freedom. At our center, initial AH for HME may provide greater odds of seizure freedom with complications and functional outcomes comparable to those of FH.
Asunto(s)
Epilepsia , Hemimegalencefalia , Hemisferectomía , Niño , Humanos , Hemimegalencefalia/complicaciones , Hemimegalencefalia/cirugía , Resultado del Tratamiento , Epilepsia/tratamiento farmacológico , Hemisferectomía/métodos , Convulsiones/complicaciones , Electroencefalografía/efectos adversosRESUMEN
BACKGROUND: Limited information exists in the prenatal literature regarding the neuroimaging features of fetal hemimegalencephaly. SUMMARY: This report describes ultrasound and magnetic resonance imaging (MRI) findings in a second-trimester fetus with an isolated, severe form of hemimegalencephaly. The most prominent imaging findings included unilateral enlarged cerebral hemisphere and ipsilateral ventriculomegaly causing cerebral asymmetry, midline shift, and macrocephaly. Abnormal cortical development imaging signs were also evident. A literature review encompassing 23 reports describing 36 cases, including ours, is presented. KEY MESSAGES: Characteristic ultrasound findings for the diagnosis of hemimegalencephaly are not always apparent prenatally. Asymmetric ventriculomegaly emerges as the most common but nonspecific presenting feature during routine second- or third-trimester ultrasound scans. Subsequent high-resolution prenatal neurosonography and fetal MRI facilitate definitive prenatal diagnosis, showcasting associated features primarily related to cortical migration, differentiation, and maturation. Postnatally, the prognosis is poor due to intractable seizures, hemiplegia, and progressive neurodevelopmental delay.
Asunto(s)
Hemimegalencefalia , Hidrocefalia , Malformaciones del Sistema Nervioso , Embarazo , Femenino , Humanos , Hemimegalencefalia/patología , Ultrasonografía Prenatal/métodos , Diagnóstico Prenatal/métodos , Feto/patología , Hidrocefalia/patología , Imagen por Resonancia Magnética/métodos , NeuroimagenRESUMEN
We represent the case of a premature twin neonate born from uncomplicated pregnancy who developed seizures at the age of 24 h. Two-dimensional ultrasound and magnetic resonance imaging revealed left-sided hemimegalencephaly. Further extensive diagnostic evaluation revealed a diagnosis of Ohtahara syndrome. Resistance of the seizures to antiepileptic therapy led to hemispherotomy that was performed at the age of 10 months. Our patient is now a 4-year-old child, walking, eating without a nasogastric tube, still with right hemiparesis and lateral strabismus but without seizures.
Asunto(s)
Hemimegalencefalia , Espasmos Infantiles , Preescolar , Humanos , Lactante , Recién Nacido , Hemimegalencefalia/diagnóstico , Hemimegalencefalia/cirugía , Hemimegalencefalia/complicaciones , Imagen por Resonancia Magnética , Convulsiones , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/cirugía , Espasmos Infantiles/complicaciones , Resultado del TratamientoRESUMEN
Lesional epilepsy is a common and severe disease commonly associated with malformations of cortical development, including focal cortical dysplasia and hemimegalencephaly. Recent advances in sequencing and variant calling technologies have identified several genetic causes, including both short/single nucleotide and structural somatic variation. In this review, we aim to provide a comprehensive overview of the methodological advancements in this field while highlighting the unresolved technological and computational challenges that persist, including ultra-low variant allele fractions in bulk tissue, low availability of paired control samples, spatial variability of mutational burden within the lesion, and the issue of false-positive calls and validation procedures. Information from genetic testing in focal epilepsy may be integrated into clinical care to inform histopathological diagnosis, postoperative prognosis, and candidate precision therapies.
Asunto(s)
Epilepsia , Hemimegalencefalia , Malformaciones del Desarrollo Cortical , Humanos , Encéfalo/patología , Mosaicismo , Mutación , Epilepsia/genética , Epilepsia/patología , Hemimegalencefalia/genética , Hemimegalencefalia/patología , Malformaciones del Desarrollo Cortical/genéticaRESUMEN
Focal malformations of cortical development including focal cortical dysplasia, hemimegalencephaly and megalencephaly, are a spectrum of neurodevelopmental disorders associated with brain overgrowth, cellular and architectural dysplasia, intractable epilepsy, autism and intellectual disability. Importantly, focal cortical dysplasia is the most common cause of focal intractable paediatric epilepsy. Gain and loss of function variants in the PI3K-AKT-MTOR pathway have been identified in this spectrum, with variable levels of mosaicism and tissue distribution. In this study, we performed deep molecular profiling of common PI3K-AKT-MTOR pathway variants in surgically resected tissues using droplet digital polymerase chain reaction (ddPCR), combined with analysis of key phenotype data. A total of 159 samples, including 124 brain tissue samples, were collected from 58 children with focal malformations of cortical development. We designed an ultra-sensitive and highly targeted molecular diagnostic panel using ddPCR for six mutational hotspots in three PI3K-AKT-MTOR pathway genes, namely PIK3CA (p.E542K, p.E545K, p.H1047R), AKT3 (p.E17K) and MTOR (p.S2215F, p.S2215Y). We quantified the level of mosaicism across all samples and correlated genotypes with key clinical, neuroimaging and histopathological data. Pathogenic variants were identified in 17 individuals, with an overall molecular solve rate of 29.31%. Variant allele fractions ranged from 0.14 to 22.67% across all mutation-positive samples. Our data show that pathogenic MTOR variants are mostly associated with focal cortical dysplasia, whereas pathogenic PIK3CA variants are more frequent in hemimegalencephaly. Further, the presence of one of these hotspot mutations correlated with earlier onset of epilepsy. However, levels of mosaicism did not correlate with the severity of the cortical malformation by neuroimaging or histopathology. Importantly, we could not identify these mutational hotspots in other types of surgically resected epileptic lesions (e.g. polymicrogyria or mesial temporal sclerosis) suggesting that PI3K-AKT-MTOR mutations are specifically causal in the focal cortical dysplasia-hemimegalencephaly spectrum. Finally, our data suggest that ultra-sensitive molecular profiling of the most common PI3K-AKT-MTOR mutations by targeted sequencing droplet digital polymerase chain reaction is an effective molecular approach for these disorders with a good diagnostic yield when paired with neuroimaging and histopathology.
Asunto(s)
Epilepsia Refractaria , Epilepsia , Hemimegalencefalia , Malformaciones del Desarrollo Cortical , Encéfalo/patología , Niño , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Epilepsia Refractaria/metabolismo , Epilepsia/genética , Hemimegalencefalia/genética , Hemimegalencefalia/metabolismo , Hemimegalencefalia/patología , Humanos , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/genética , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Post-zygotically acquired genetic variants, or somatic variants, that arise during cortical development have emerged as important causes of focal epilepsies, particularly those due to malformations of cortical development. Pathogenic somatic variants have been identified in many genes within the PI3K-AKT-mTOR-signalling pathway in individuals with hemimegalencephaly and focal cortical dysplasia (type II), and more recently in SLC35A2 in individuals with focal cortical dysplasia (type I) or non-dysplastic epileptic cortex. Given the expanding role of somatic variants across different brain malformations, we sought to delineate the landscape of somatic variants in a large cohort of patients who underwent epilepsy surgery with hemimegalencephaly or focal cortical dysplasia. We evaluated samples from 123 children with hemimegalencephaly (n = 16), focal cortical dysplasia type I and related phenotypes (n = 48), focal cortical dysplasia type II (n = 44), or focal cortical dysplasia type III (n = 15). We performed high-depth exome sequencing in brain tissue-derived DNA from each case and identified somatic single nucleotide, indel and large copy number variants. In 75% of individuals with hemimegalencephaly and 29% with focal cortical dysplasia type II, we identified pathogenic variants in PI3K-AKT-mTOR pathway genes. Four of 48 cases with focal cortical dysplasia type I (8%) had a likely pathogenic variant in SLC35A2. While no other gene had multiple disease-causing somatic variants across the focal cortical dysplasia type I cohort, four individuals in this group had a single pathogenic or likely pathogenic somatic variant in CASK, KRAS, NF1 and NIPBL, genes previously associated with neurodevelopmental disorders. No rare pathogenic or likely pathogenic somatic variants in any neurological disease genes like those identified in the focal cortical dysplasia type I cohort were found in 63 neurologically normal controls (P = 0.017), suggesting a role for these novel variants. We also identified a somatic loss-of-function variant in the known epilepsy gene, PCDH19, present in a small number of alleles in the dysplastic tissue from a female patient with focal cortical dysplasia IIIa with hippocampal sclerosis. In contrast to focal cortical dysplasia type II, neither focal cortical dysplasia type I nor III had somatic variants in genes that converge on a unifying biological pathway, suggesting greater genetic heterogeneity compared to type II. Importantly, we demonstrate that focal cortical dysplasia types I, II and III are associated with somatic gene variants across a broad range of genes, many associated with epilepsy in clinical syndromes caused by germline variants, as well as including some not previously associated with radiographically evident cortical brain malformations.
Asunto(s)
Epilepsia , Hemimegalencefalia , Malformaciones del Desarrollo Cortical , Cadherinas , Proteínas de Ciclo Celular , Femenino , Humanos , Malformaciones del Desarrollo Cortical de Grupo I , Mutación , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Protocadherinas , Serina-Treonina Quinasas TORRESUMEN
It is known that somatic activation of PI3K-AKT-MTOR signaling causes malformations of cortical development varying from hemimegalencephaly to focal cortical dysplasia. However, there have been few reports of fetal cases. Here we report two fetal cases of hemimegalencephaly, one associated with mosaic mutations in PIK3CA and another in AKT1. Both brains showed polymicrogyria, multiple subarachnoidal, subcortical, and subventricular heterotopia resulting from abnormal proliferation of neural stem/progenitor cells, cell differentiation, and migration of neuroblasts. Scattered cell nests immunoreactive for phosphorylated-S6 ribosomal protein (P-RPS6) (Ser240/244) were observed in the polymicrogyria-like cortical plate, intermediate zone, and arachnoid space, suggesting that the PI3K-AKT-MTOR pathway was actually activated in these cells. Pathological analyses could shed light on the mechanisms involved in disrupted brain development in the somatic mosaicism of the PI3K-AKT-MTOR pathway.
Asunto(s)
Hemimegalencefalia , Polimicrogiria , Humanos , Hemimegalencefalia/genética , Hemimegalencefalia/metabolismo , Hemimegalencefalia/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Polimicrogiria/metabolismo , Polimicrogiria/patología , Mosaicismo , Serina-Treonina Quinasas TOR/metabolismo , Encéfalo/patología , MutaciónRESUMEN
We report an unusual case of facial infiltrating lipomatosis with hemimegalencephaly and lymphatic malformations. In addition to the clinical data and imaging findings, detection of a heterozygous PIK3CA nonhotspot known pathogenic variant C420R in a facial epidermal nevus provided novel insight into the pathogenic effect of somatic PIK3CA mutations.
Asunto(s)
Hemimegalencefalia , Lipomatosis , Humanos , Fosfatidilinositol 3-Quinasa/genética , Dominio Catalítico , Lipomatosis/complicaciones , Lipomatosis/genética , Lipomatosis/diagnóstico , MutaciónRESUMEN
Phosphatase and tensin homologue (PTEN) regulates cell growth and survival through inhibition of the mammalian target of rapamycin (MTOR) signalling pathway. Germline genetic variation of PTEN is associated with autism, macrocephaly and PTEN hamartoma tumour syndromes. The effect of developmental PTEN somatic mutations on nervous system phenotypes is not well understood, although brain somatic mosaicism of MTOR pathway genes is an emerging cause of cortical dysplasia and epilepsy in the paediatric population. Here we report two somatic variants of PTEN affecting a single patient presenting with intractable epilepsy and hemimegalencephaly that varied in clinical severity throughout the left cerebral hemisphere. High-throughput sequencing analysis of affected brain tissue identified two somatic variants in PTEN. The first variant was present in multiple cell lineages throughout the entire hemisphere and associated with mild cerebral overgrowth. The second variant was restricted to posterior brain regions and affected the opposite PTEN allele, resulting in a segmental region of more severe malformation, and the only neurons in which it was found by single-nuclei RNA-sequencing had a unique disease-related expression profile. This study reveals brain mosaicism of PTEN as a disease mechanism of hemimegalencephaly and furthermore demonstrates the varying effects of single- or bi-allelic disruption of PTEN on cortical phenotypes.
Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Variación Genética/genética , Hemimegalencefalia/diagnóstico por imagen , Hemimegalencefalia/genética , Mutación/genética , Fosfohidrolasa PTEN/genética , Corteza Cerebral/cirugía , Hemimegalencefalia/cirugía , Humanos , Lactante , MasculinoRESUMEN
The aim of this report is to present a unique case of hemimegalencephaly and concomitant tuberous sclerosis complex (TSC1 mutation) with severe neonatal-onset epilepsy, which successfully underwent an anatomical hemispherectomy at 6.5 weeks of age for refractory seizures. Genetic testing confirmed a rare pathogenic, sporadic, heterozygous c.2041 + 1G > A gene mutation in intron 16 of the TSC1 gene, diagnostic for tuberous sclerosis. Post-operatively, the infant remained seizure free for at least 1 year. Following recurrence of her seizures, she has continued on multiple anti-seizure medications and everolimus therapy. We review the pathological and molecular features of this condition and highlight the ethics of intervention and steps taken toward safe neurosurgical intervention in this very young infant.
Asunto(s)
Epilepsia , Hemimegalencefalia , Hemisferectomía , Esclerosis Tuberosa , Epilepsia/cirugía , Femenino , Hemimegalencefalia/complicaciones , Hemimegalencefalia/diagnóstico por imagen , Hemimegalencefalia/genética , Humanos , Lactante , Recién Nacido , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/cirugíaRESUMEN
Single germline or somatic activating mutations of mammalian target of rapamycin (mTOR) pathway genes are emerging as a major cause of type II focal cortical dysplasia (FCD), hemimegalencephaly (HME) and tuberous sclerosis complex (TSC). A double-hit mechanism, based on a primary germline mutation in one allele and a secondary somatic hit affecting the other allele of the same gene in a small number of cells, has been documented in some patients with TSC or FCD. In a patient with HME, severe intellectual disability, intractable seizures and hypochromic skin patches, we identified the ribosomal protein S6 (RPS6) p.R232H variant, present as somatic mosaicism at ~15.1% in dysplastic brain tissue and ~11% in blood, and the MTOR p.S2215F variant, detected as ~8.8% mosaicism in brain tissue, but not in blood. Overexpressing the two variants independently in animal models, we demonstrated that MTOR p.S2215F caused neuronal migration delay and cytomegaly, while RPS6 p.R232H prompted increased cell proliferation. Double mutants exhibited a more severe phenotype, with increased proliferation and migration defects at embryonic stage and, at postnatal stage, cytomegalic cells exhibiting eccentric nuclei and binucleation, which are typical features of balloon cells. These findings suggest a synergistic effect of the two variants. This study indicates that, in addition to single activating mutations and double-hit inactivating mutations in mTOR pathway genes, severe forms of cortical dysplasia can also result from activating mutations affecting different genes in this pathway. RPS6 is a potential novel disease-related gene.
Asunto(s)
Hemimegalencefalia/genética , Proteína S6 Ribosómica/genética , Serina-Treonina Quinasas TOR/genética , Animales , Encéfalo/metabolismo , Niño , Epilepsia Refractaria/genética , Epilepsia Refractaria/metabolismo , Epilepsia/genética , Femenino , Humanos , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/metabolismo , Malformaciones del Desarrollo Cortical de Grupo I/genética , Ratones , Mosaicismo , Mutación , Neuronas/metabolismo , Proteína S6 Ribosómica/metabolismo , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Hemimegalencephaly (HME) is a rare hamartomatous congenital malformation of the brain characterized by dysplastic overgrowth of either one of the cerebral hemispheres. HME is associated with early onset seizures, abnormal neurological findings, and with subsequent cognitive and behavioral disabilities. Seizures associated with HME are often refractory to antiepileptic medications. Hemispherectomy is usually necessary to provide effective seizure control. The exact etiology of HME is not fully understood, but involves a disturbance in early brain development and likely involves genes responsible for patterning and symmetry of the brain. We present a female newborn who had refractory seizures due to HME. Whole genome sequencing revealed a novel, likely pathogenic, maternally inherited, 3Kb deletion encompassing exon 5 of the NPRL3 gene (chr16:161898-164745x1). The NPRL3 gene encodes for a nitrogen permease regulator 3-like protein, a subunit of the GATOR complex, which regulates the mTOR signaling pathway. A trial of mTOR inhibitor drug, Sirolimus, did not improve her seizure control. Functional hemispherectomy at 3 months of age resulted in total abatement of clinical seizures.
Asunto(s)
Epilepsia/genética , Proteínas Activadoras de GTPasa/genética , Hemimegalencefalia/genética , Convulsiones/genética , Serina-Treonina Quinasas TOR/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Epilepsia/patología , Femenino , Predisposición Genética a la Enfermedad , Hemimegalencefalia/tratamiento farmacológico , Hemimegalencefalia/patología , Humanos , Recién Nacido , Convulsiones/patología , Sirolimus/administración & dosificación , Serina-Treonina Quinasas TOR/antagonistas & inhibidoresRESUMEN
OBJECTIVE: Hemispheric surgeries are an effective treatment option to control seizures for children with hemimegalencephaly (HME); however, not enough is known about their cognitive outcomes. This study aimed to delineate the cognitive and language outcomes after hemispherectomy for HME and identify the clinical characteristics associated with cognition and language. METHODS: Data came from the Global Pediatric Epilepsy Surgery Registry, a patient-driven web-based registry for epilepsy surgery. We focused on children's functional status, assessed through parent-reports of cognitive and language skills. Parents also reported on their satisfaction with surgery, their child's quality of life, and various demographic, clinical, and surgery characteristics. RESULTS: Parents of 45 children (40% female) participated. Children were aged 2.6 (SD 6.5) months at seizure onset, 10.8 (SD 12.7) months at hemispherectomy, and 8.7 (SD 4.8) years at follow-up, at which point 68% were seizure-free. We found that at follow-up, 43% had average or mildly impaired cognition, 26% could speak age appropriately, and 21% had satisfactory reading skills. A total of 55%, 43%, and 17% of children first babbled, spoke their first words, and started speaking in sentences at an age-appropriate period, respectively. Children who had undergone a right hemisphere resection and those who were older at epilepsy onset were more likely to have better cognitive and language outcomes. SIGNIFICANCE: Children with HME have delayed language milestones and continue to require significant language and literacy support long-term after cerebral hemispherectomy.
Asunto(s)
Epilepsia , Hemimegalencefalia , Hemisferectomía , Niño , Cognición , Epilepsia/tratamiento farmacológico , Epilepsia/cirugía , Femenino , Hemimegalencefalia/cirugía , Humanos , Lenguaje , Masculino , Calidad de Vida , Convulsiones/cirugía , Resultado del TratamientoRESUMEN
Hemispherectomy is a unique epilepsy surgery procedure that has undergone significant modification and evolution since Dandy's early description. This procedure is mainly indicated to treat early childhood and infancy medically intractable epilepsy. Various epileptic syndromes have been treated with this procedure, including hemimegalencephaly (HME), Rasmussen's encephalitis, Sturge-Weber syndrome (SWS), perinatal stroke, and hemispheric cortical dysplasia. In terms of seizure reduction, hemispherectomy remains one of the most successful epilepsy surgery procedures. The modification of this procedure over many years has resulted in lower mortality and morbidity rates. HME might increase morbidity and lower the success rate. Future studies should identify the predictors of outcomes based on the pathology and the type of hemispherectomy. Here, based on a literature review, we discuss the evolution of hemispherectomy techniques and their outcomes and complications.
Asunto(s)
Epilepsia , Hemimegalencefalia , Hemisferectomía , Malformaciones del Desarrollo Cortical , Preescolar , Epilepsia/cirugía , Humanos , Resultado del TratamientoRESUMEN
The tuberous sclerosis complex (TSC), focal cortical dysplasia IIB (FCD IIB), and hemimegalencephaly (HME) exhibit similar molecular features that are dependent on the hyperactivation of the mTOR pathway. They are all associated with refractory epilepsy and the need for surgical resection with varying outcomes. The phosphorylated protein S6 (pS6) is a downstream target of mTOR, whose increased expression might indicate mTOR hyperactivation, but which is also present when there is no alteration in the pathway (such as in FCD type I). We have performed immunohistochemical marking and quantification of pS6 in resected brain specimens of 26 patients clinically and histologically diagnosed with TSC, FCD IIB, or HME and compared this data to a control group of 25 patients, to measure the extent of pS6 positivity and its correlation with clinical aspects. Our results suggest that pS6 may serve as a reliable biomarker in epilepsy and that a greater percentage of pS6 marking can relate to more severe forms of mTOR-dependent brain anomalies.
Asunto(s)
Biomarcadores/metabolismo , Epilepsia Refractaria/metabolismo , Proteína S6 Ribosómica/metabolismo , Adolescente , Niño , Preescolar , Epilepsia Refractaria/etiología , Epilepsia Refractaria/cirugía , Epilepsia/complicaciones , Epilepsia/metabolismo , Epilepsia/cirugía , Femenino , Hemimegalencefalia/complicaciones , Hemimegalencefalia/metabolismo , Hemimegalencefalia/cirugía , Humanos , Lactante , Masculino , Malformaciones del Desarrollo Cortical de Grupo I/complicaciones , Malformaciones del Desarrollo Cortical de Grupo I/metabolismo , Malformaciones del Desarrollo Cortical de Grupo I/cirugía , Fosforilación , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/cirugíaRESUMEN
PURPOSE: To investigate the gross white matter abnormalities in the structural brain MR imaging as well as white matter microstructural alterations using tract-based spatial statistics (TBSS) analysis of diffusion tensor imaging (DTI) in both affected and contralateral cerebral hemispheres of children with hemimegalencephaly (HMEG). METHODS: From 2003 to 2019, we retrospectively reviewed brain MR images in 20 children (11 boys, 2 days-16.5 years) with HMEG, focusing on gross white matter abnormalities. DTI was evaluated in 12 patients (8 boys, 3 months-16.5 years) with HMEG and 12 age-, sex-, and magnetic field strength-matched control subjects. TBSS analysis was performed to analyze main white matter tracts. Regions of significant differences in fractional anisotropy (FA) were determined between HMEG and control subjects and between affected and contralateral hemispheres of HMEG. RESULTS: Gross white matter abnormalities were noted in both affected (n = 20, 100%) and contralateral hemisphere (n = 4, 20%) of HMEG. FA values were significantly decreased in both hemispheres of HMEG, compared with control subjects (P < 0.05). Contralateral hemispheres of HMEG showed regions with significantly decreased FA values compared with affected hemispheres (P < 0.05). CONCLUSIONS: In addition to gross white matter abnormalities particularly evident in affected hemispheres, DTI analysis detected widespread microstructural alterations in both affected and contralateral hemispheres in HMEG suggesting HMEG may involve broader abnormalities in neuronal networks.
Asunto(s)
Imagen de Difusión Tensora/métodos , Hemimegalencefalia/diagnóstico por imagen , Hemimegalencefalia/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Adolescente , Anisotropía , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Estudios RetrospectivosRESUMEN
INTRODUCTION: Drug-resistant seizures due to hemimegalencephaly in neonates and infants are a unique surgical and anesthesia challenge. While early surgery in these patients may predict a better seizure control, a lower body weight, limited blood volume, and surgical blood loss may make hemispherectomy prohibitive. METHODS: Two infants (weight, 8.7 kg and 3.7 kg) underwent interhemispheric vertical hemispherotomy with endoscope assistance. In the first case, during the lateral disconnection, excessive bleeding prompted the surgeon to coagulate the lenticulostriate arteries at the origin from the middle cerebral artery to reduce bleeding. In the second infant, the lenticulostriate arteries were coagulated before initiating the lateral disconnection. RESULTS: In both infants, the blood loss from lateral dissection was reduced by coagulation of lenticulostriate arteries. CONCLUSION: The authors suggest that early coagulation of the lenticulostriate arteries is a useful strategy to minimize blood loss in low-weight infants undergoing hemispherotomy.
Asunto(s)
Hemimegalencefalia , Hemisferectomía , Hemimegalencefalia/etiología , Hemimegalencefalia/cirugía , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Convulsiones/etiología , Resultado del TratamientoRESUMEN
Genetic malformations of cortical development (MCDs), such as mild MCDs (mMCD), focal cortical dysplasia (FCD), and hemimegalencephaly (HME), are major causes of severe pediatric refractory epilepsies subjected to neurosurgery. FCD2 are characterized by neuropathological hallmarks that include enlarged dysmorphic neurons (DNs) and balloon cells (BCs). Here, we provide a comprehensive assessment of the contribution of germline and somatic variants in a large cohort of surgical MCD cases. We enrolled in a monocentric study 80 children with drug-resistant epilepsy and a postsurgical neuropathological diagnosis of mMCD, FCD1, FCD2, or HME. We performed targeted gene sequencing ( ≥ 2000X read depth) on matched blood-brain samples to search for low-allele frequency variants in mTOR pathway and FCD genes. We were able to elucidate 29% of mMCD/FCD1 patients and 63% of FCD2/HME patients. Somatic loss-of-function variants in the N-glycosylation pathway-associated SLC35A2 gene were found in mMCD/FCD1 cases. Somatic gain-of-function variants in MTOR and its activators (AKT3, PIK3CA, RHEB), as well as germline, somatic and two-hit loss-of-function variants in its repressors (DEPDC5, TSC1, TSC2) were found exclusively in FCD2/HME cases. We show that panel-negative FCD2 cases display strong pS6-immunostaining, stressing that all FCD2 are mTORopathies. Analysis of microdissected cells demonstrated that DNs and BCs carry the pathogenic variants. We further observed a correlation between the density of pathological cells and the variant-detection likelihood. Single-cell microdissection followed by sequencing of enriched pools of DNs unveiled a somatic second-hit loss-of-heterozygosity in a DEPDC5 germline case. In conclusion, this study indicates that mMCD/FCD1 and FCD2/HME are two distinct genetic entities: while all FCD2/HME are mosaic mTORopathies, mMCD/FCD1 are not caused by mTOR-pathway-hyperactivating variants, and ~ 30% of the cases are related to glycosylation defects. We provide a framework for efficient genetic testing in FCD/HME, linking neuropathology to genetic findings and emphasizing the usefulness of molecular evaluation in the pediatric epileptic neurosurgical population.
Asunto(s)
Encéfalo/patología , Epilepsia/patología , Hemimegalencefalia/patología , Malformaciones del Desarrollo Cortical/patología , Adolescente , Niño , Preescolar , Estudios de Cohortes , Epilepsia/genética , Femenino , Hemimegalencefalia/genética , Humanos , Lactante , Masculino , Malformaciones del Desarrollo Cortical/genética , Mutación/genética , Neuronas/patologíaRESUMEN
The activation of phosphatidylinositol 3-kinase-AKTs-mammalian target of rapamycin cell signaling pathway leads to cell overgrowth and abnormal migration and results in various types of cortical malformations, such as hemimegalencephaly (HME), focal cortical dysplasia, and tuberous sclerosis complex. However, the pathomechanism underlying abnormal cell migration remains unknown. With the use of fetal mouse brain, we performed causative gene analysis of the resected brain tissues from a patient with HME and investigated the pathogenesis. We obtained a novel somatic mutation of the MTOR gene, having approximately 11% and 7% mutation frequency in the resected brain tissues. Moreover, we revealed that the MTOR mutation resulted in hyperphosphorylation of its downstream molecules, S6 and 4E-binding protein 1, and delayed cell migration on the radial glial fiber and did not affect other cells. We suspect cell-autonomous migration arrest on the radial glial foot by the active MTOR mutation and offer potential explanations for why this may lead to cortical malformations such as HME.
Asunto(s)
Epilepsia Refractaria/genética , Hemimegalencefalia/genética , Malformaciones del Desarrollo Cortical del Grupo II/genética , Serina-Treonina Quinasas TOR/genética , Animales , Células Cultivadas , Epilepsia Refractaria/cirugía , Electroencefalografía , Femenino , Hemimegalencefalia/cirugía , Humanos , Lactante , Malformaciones del Desarrollo Cortical del Grupo II/cirugía , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Serina-Treonina Quinasas TOR/metabolismo , Transfección , Regulación hacia ArribaRESUMEN
PIK3CA-related overgrowth spectrum, caused by mosaic mutations in the PIK3CA gene, is associated with regional or generalized asymmetric overgrowth of the body or a body part in addition to other clinical findings. Three-dimensional ultrasonography (3-D US) has the capability to display structural abnormalities in soft tissues or other organs, thereby facilitating identification of segmental overgrowth lesions. We present a case suspected of having a segmental overgrowth disorder based on 3-D US, whose chromosomal microarray result was abnormal, but apparently was not the cause of the majority of the fetus's clinical features.