Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Pestic Biochem Physiol ; 200: 105835, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582597

RESUMEN

Octanal was found to be able to reduce green mold incidence in citrus fruit by a defense response mechanism. However, the underlying mechanism remains largely unclear. Herein, the metabolomics, RNA-seq and biochemical analyses were integrated to explore the effect of octanal on disease resistance in harvested citrus fruit. Results showed that octanal fumigation at 40 µL L-1 was effective in controlling citrus green mold. Metabolomics analysis showed that octanal mainly led to the accumulation of some plant hormones including methyl jasmonate, abscisic acid, indole-3-butyric acid, indoleacetic acid (IAA), salicylic acid, and gibberellic acid and many phenylpropanoid metabolites including cinnamyl alcohol, hesperidin, dihydrokaempferol, vanillin, quercetin-3-O-malonylglucoside, curcumin, naringin, chrysin, coniferin, calycosin-7-O-ß-D-glucoside, trans-cinnamaldehyde, and 4',5,7-trihydroxy-3,6-dimethoxyflavone. Particularly, IAA and hesperidin were dramatically accumulated in the peel, which might be the contributors to the resistance response. Additionally, transcriptome analysis showed that octanal greatly activated the biosynthesis and metabolism of aromatic amino acids. This was further verified by the accumulation of some metabolites (shikimic acid, tryptophan, tyrosine, phenylalanine, IAA, total phenolics, flavonoids and lignin), increase in some enzyme activities (phenylalanine ammonia-lyase, tyrosine ammonia-lyase, 4-coumarate CoA ligase, cinnamic acid 4-hydroxylase, polyphenol oxidase, and peroxidase), up-regulation of some genes (tryptophan pyruvate aminotransferase, aldehyde dehydrogenase, shikimate kinase and shikimate dehydrogenase) expressions and molecular docking results. Thus, these results indicate that octanal is an efficient strategy for the control of postharvest green mold by triggering the defense response in citrus fruit.


Asunto(s)
Aldehídos , Citrus , Hesperidina , Citrus/química , Citrus/genética , Citrus/metabolismo , Aminoácidos Aromáticos/metabolismo , Resistencia a la Enfermedad , Hesperidina/análisis , Hesperidina/metabolismo , Hesperidina/farmacología , Triptófano/metabolismo , Simulación del Acoplamiento Molecular , Frutas
2.
Microb Pathog ; 177: 106029, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36775212

RESUMEN

Plant-derived phytocompounds are effective in treating a variety of ailments and disorders, the most common of which are bacterial infections in humans, which are a major public health concern. Flavonoids, one of the groups of phytocompounds, are known to have significant antimicrobial and anti-infective properties. Hence, the current study investigates the efficacy of the citrus flavonoid hesperidin methylchalcone (HMC) in addressing this major issue. The results of this study indicate that the anti-quorum sensing (anti-QS) action against Aeromonas hydrophila infections is exhibited with a decrease in biofilm development and virulence factors production through in vitro and in silico analyses. In addition, the qPCR findings indicate that HMC has antivirulence action on A. hydrophila by reducing the expression of QS-related virulence genes, including ahyR, ahyB, ahh1, aerA, and lip. Interestingly, HMC significantly rescued the A. hydrophila-infected zebrafish by reducing the internal colonization, demonstrating the in vivo anti-infective potential of HMC against A. hydrophila infection. Based on these results, this study recommends that HMC could be employed as a possible therapeutic agent to treat A. hydrophila-related infections in humans.


Asunto(s)
Chalconas , Hesperidina , Animales , Humanos , Chalconas/farmacología , Hesperidina/farmacología , Hesperidina/metabolismo , Aeromonas hydrophila , Pez Cebra , Flavonoides/farmacología , Flavonoides/metabolismo , Biopelículas , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Crit Rev Food Sci Nutr ; 63(9): 1187-1207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34378460

RESUMEN

Citrus fruits contain numerous antioxidative biomolecules including phenolic acids, flavonols, flavanones, polymethoxyflavones (PMFs), and their derivatives. Previous in vitro and in vivo studies thoroughly investigated the antioxidant and therapeutic potential of bioflavonoids extracted from different citrus varieties and fruit fractions. Major bioflavonoids such as hesperidin, naringin, naringenin, and PMFs, had restricted their incorporation into food and health products due to their poor solubility, chemical stability and bioavailability. Considering these limitations, modern encapsulation methodologies such as hydrogelation, liposomal interactions, emulsifications, and nanoparticles have been designed to shield bioflavonoids with improved target distribution for therapeutic enhancements. The size, durability, and binding efficiency of bioflavonoid-loaded encapsulates were acquired by the optimized chemical and instrumental parameters such as solubility, gelation, dispersion, extrusion, and drying. Bioflavonoid-enriched encapsulates have been also proven to be effective against cancer, inflammation, neurodegeneration, and various other illnesses. However, in the future, newer natural binding agents with higher binding capacity might accelerate the encapsulating potential, controlled release, and enhanced bioavailability of citrus bioflavonoids. Overall, these modern encapsulation systems are currently leading to a new era of diet-based medicine, as demand for citrus fruit-based nutritional supplements and edibles grows.


Asunto(s)
Citrus , Flavanonas , Flavonas , Hesperidina , Antioxidantes/metabolismo , Citrus/química , Flavonoides/metabolismo , Hesperidina/metabolismo
4.
Ultrastruct Pathol ; 47(4): 304-323, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36988127

RESUMEN

This study was performed to explore in detail the toxic effects of Tributyltin Chloride (TBT) on the pituitary-testicular axis and the possible amelioration with Hesperidin. Seventy-two adult male albino rats were divided into four groups: Control group (I), TBT-treated group (II), TBT+Hesperidin group (III), and Recovery group (IV). Body and testicular weights were measured. Blood samples were taken to estimate serum levels of testosterone, FSH and LH hormones by enzyme-linked immunosorbent assay (ELISA). Malondialdehyde (MDA) level was measured in testes homogenates. Tissue samples from the pituitary glands and testes were processed for light, electron microscope examination, and immunohistochemical detection of anti-FSH, and Ki67 proteins. Results showed a statistically significant decrease in testicular weight, serum testosterone, FSH and LH levels and a significant increase in tissue MDA in the TBT group when compared to the control group. TBT treatment caused severe histopathological changes with decreased area percent of PAS-stained basophils, and anti FSH immuno-stained gonadotrophs in the pituitary gland. The testes of group II also showed marked tissue damage, cell loss with decreased epithelial height and decreased number of proliferating spermatogenic cells. Hesperidin supplementation with TBT proved significant amelioration of the previously mentioned parameters in both glands which could improve male fertility. In conclusion: The flavonoid Hesperidin has the potential to protect against the reproductive damage induced by TBT in susceptible individuals.


Asunto(s)
Hesperidina , Testículo , Humanos , Adulto , Masculino , Ratas , Hesperidina/farmacología , Hesperidina/metabolismo , Hipófisis/metabolismo , Testosterona , Animales
5.
Molecules ; 28(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37836830

RESUMEN

Osteoporosis (OP) is distinguished by a reduction in bone mass and degradation of bone micro-structure, frequently resulting in fractures. As the geriatric demographic expands, the incidence of affected individuals progressively rises, thereby exerting a significant impact on the quality of life experienced by individuals. The flavonoid compound hesperidin has been subject to investigation regarding its effects on skeletal health, albeit the precise mechanisms through which it operates remain ambiguous. This study utilized network pharmacology to predict the core targets and signaling pathways implicated in the anti-OP properties of hesperidin. Molecular docking and molecular dynamics simulations were employed to confirm the stability of the interaction between hesperidin and the core targets. The effects of hesperidin on osteoblastic cells MC3T3-E1 were assessed using MTT, ELISA, alkaline phosphatase assay, and RT-qPCR techniques. Furthermore, in vivo experiments were conducted to determine the potential protective effects of hesperidin on zebrafish bone formation and oxidative stress response. The results demonstrate that network pharmacology has identified 10 key target points, significantly enriched in the estrogen signaling pathway. Hesperidin exhibits notable promotion of MC3T3-E1 cell proliferation and significantly enhances ALP activity. ELISA measurements indicate an elevation in NO levels and a reduction in IL-6 and TNF-α. Moreover, RT-qPCR analysis consistently reveals that hesperidin significantly modulates the mRNA levels of ESR1, SRC, AKT1, and NOS3 in MC3T3-E1 cells. Hesperidin promotes osteogenesis and reduces oxidative stress in zebrafish. Additionally, we validate the stable and tight binding of hesperidin with ESR1, SRC, AKT1, and NOS3 through molecular dynamics simulations. In conclusion, our comprehensive analysis provides evidence that hesperidin may exert its effects on alleviating OP through the activation of the estrogen signaling pathway via ESR1. This activation leads to the upregulation of SRC, AKT, and eNOS, resulting in an increase in NO levels. Furthermore, hesperidin promotes osteoblast-mediated bone formation and inhibits pro-inflammatory cytokines, thereby alleviating oxidative stress associated with OP.


Asunto(s)
Hesperidina , Osteoporosis , Animales , Humanos , Anciano , Hesperidina/farmacología , Hesperidina/metabolismo , Pez Cebra , Diferenciación Celular , Simulación del Acoplamiento Molecular , Calidad de Vida , Transducción de Señal , Osteogénesis , Osteoblastos , Estrógenos/farmacología , Osteoporosis/metabolismo
6.
Biomarkers ; 27(4): 349-360, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35254184

RESUMEN

CONTEXT: Nanotechnology is widely used nowadays in several fields of industry, engineering, and medicine, the biological action mechanisms of AgNPs, which mainly involve the release of silver ions (Ag+), generation of reactive oxygen species (ROS). OBJECTIVE: The potential toxicity AgNPs of damages to hepatic cells, hesperidin, and naringin role for their protective effect against the increase of ROS due to AgNPs toxicity. They can be restored, most cellular biochemical parameters, genotoxicity, mutagenicity, and histopathological analysis. MATERIALS AND METHODS: Toxicity was induced by an oral dose of Ag NPs of (20-100 nm) for one month, after that treated with hesperidin, naringin (100 mg/kg) for three weeks, malondialdehyde (MDA) levels, nitric oxide (NO), glutathione (GSH) and catalase were estimated. Also, aminotransferases (AST and ALT), alkaline phosphatase (ALP), γ-glutamyltransferase (GGT), albumin, and total bilirubin were determined, following Chromosomal aberrations, DNA breaks, and histological analyses. RESULTS: hesperidin, and naringin treatment, recorded amelioration in most biochemical, genetic, and spermatogenesis disturbances Also, histological Investigations were improved. CONCLUSION: Their biological safety problems, such as potential toxicity on cells, tissue, and organs should be paid enough attention, hesperidin and naringin amelioration fundamental alterations, as hepatic architectural and DNA damage, related to its role as an antioxidant and anti-inflammatory agent.


Asunto(s)
Hesperidina , Nanopartículas del Metal , Animales , Aberraciones Cromosómicas , Daño del ADN , Glutatión/metabolismo , Hesperidina/metabolismo , Hesperidina/farmacología , Humanos , Hígado/metabolismo , Masculino , Nanopartículas del Metal/toxicidad , Ratones , Estrés Oxidativo , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo , Plata/metabolismo , Plata/toxicidad
7.
Andrologia ; 54(10): e14562, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35985655

RESUMEN

Bisphenol A (BPA) is one of the chemicals that cause dysfunction and infertility in testicles. Therefore, it is crucial to develop effective treatments against this damage. In this study, the effects of Hesperidin (HESP), a flavonoid in testicular toxicity induced by BPA in rats, on oxidative stress, inflammation, apoptosis, histological damage, spermatogenesis, steroidogenic enzymes and reproductive hormones were investigated. Our study used 52 Sprague Dawley male rats weighing 250-300 g, and four experimental groups were formed. From the experimental groups, 1 ml of olive oil was administered to the control group, HESP at a dose of 50 mg/kg to the HESP group, BPA at a dose of 100 mg/kg to the BPA group, HESP at a dose of 50 mg/kg to the BPA + HESP group and 100 mg/kg BPA was administered intragastrically (ig) for 14 days. We determined that BPA administration causes apoptosis, histological damage, inflammation, oxidative stress and toxic effects on spermatogenesis and steroidogenic enzymes in testicles. We observed that the administration of HESP with BPA attenuated oxidative stress, inflammation and apoptosis resulting in therapeutic effects on both steroidogenic enzymes and spermatogenesis and reproductive hormones (FSH, LH and testosterone). Our findings from this study clearly showed that while HESP treatment alleviates oxidative damage, inflammation and apoptosis in testicles of rats treated with BPA, it has regulatory effects on steroidogenic enzymes, spermatogenesis and serum reproductive hormones.


Asunto(s)
Hesperidina , Testículo , Animales , Compuestos de Bencidrilo/toxicidad , Hormona Folículo Estimulante , Hesperidina/metabolismo , Hesperidina/farmacología , Inflamación/metabolismo , Masculino , Aceite de Oliva , Estrés Oxidativo , Fenoles , Ratas , Ratas Sprague-Dawley , Testosterona
8.
Molecules ; 27(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35956749

RESUMEN

Particulate matter 2.5 (PM2.5) exposure can trigger adverse health outcomes in the human skin, such as skin aging, wrinkles, pigment spots, and atopic dermatitis. PM2.5 is associated with mitochondrial damage and the generation of reactive oxygen species (ROS). Hesperidin is a bioflavonoid that exhibits antioxidant and anti-inflammatory properties. This study aimed to determine the mechanism underlying the protective effect of hesperidin on human HaCaT keratinocytes against PM2.5-induced mitochondrial damage, cell cycle arrest, and cellular senescence. Human HaCaT keratinocytes were pre-treated with hesperidin and then treated with PM2.5. Hesperidin attenuated PM2.5-induced mitochondrial and DNA damage, G0/G1 cell cycle arrest, and SA-ßGal activity, the protein levels of cell cycle regulators, and matrix metalloproteinases (MMPs). Moreover, treatment with a specific c-Jun N-terminal kinase (JNK) inhibitor, SP600125, along with hesperidin markedly restored PM2.5-induced cell cycle arrest and cellular senescence. In addition, hesperidin significantly reduced the activation of MMPs, including MMP-1, MMP-2, and MMP-9, by inhibiting the activation of activator protein 1. In conclusion, hesperidin ameliorates PM2.5-induced mitochondrial damage, cell cycle arrest, and cellular senescence in human HaCaT keratinocytes via the ROS/JNK pathway.


Asunto(s)
Hesperidina , Apoptosis , Puntos de Control del Ciclo Celular , Senescencia Celular , Hesperidina/metabolismo , Hesperidina/farmacología , Humanos , Queratinocitos , Material Particulado/metabolismo , Material Particulado/toxicidad , Especies Reactivas de Oxígeno/metabolismo
9.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(5): 777-784, 2022 Oct.
Artículo en Zh | MEDLINE | ID: mdl-36325774

RESUMEN

Objective To explore the effect and mechanism of hesperidin in treating the lung injury in the mouse model of respiratory syncytial virus (RSV)-induced bronchiolitis. Methods A mouse model of RSV-induced bronchiolitis was established,and 60 BALB/c mice were assigned into a control group,a model group,a low-dose hesperidin (18 mg/kg) group,a high-dose hesperidin (36 mg/kg) group,and a high-dose hesperidin (36 mg/kg)+Jagged1(1 mg/kg) group by random number table method,with 12 mice in each group. Corresponding doses of drugs were administrated for intervention,and the control group and model group were administrated with the same amount of saline.The bronchoalveolar lavage fluid (BALF) samples were collected and alveolar macrophages were isolated.ELISA was employed to detect the levels of interleukin (IL)-4,IL-6,tumor necrosis factor-α (TNF-α),and IL-10 in BALF,and flow cytometry to detect the M1/M2 polarization of macrophages.qRT-PCR and Western blotting were respectively conducted to detect the mRNA and protein levels of inducible nitric oxide synthase (iNOS),arginase 1 (Arg-1),Jagged1,and Notch1 in the lung tissue. Results Compared with the control group,the modeling of RSV-induced bronchiolitis elevated the IL-4,IL-6,and TNF-α levels,increased the proportion of M1-type macrophages and the lung inflammation and mucus secretion scores,and up-regulated the mRNA and protein levels of iNOS,Jagged1,and Notch1 in BALF (all P<0.001).Meanwhile,the modeling lowered the IL-10 level,decreased the proportion of M2-type macrophages,and down-regulated the mRNA and protein levels of Arg-1 (all P<0.001).Compared with the model group,low- and high-dose hesperidin lowered the IL-4,IL-6,TNF-α levels,decreased the proportion of M1-type macrophages and the lung inflammation and mucus secretion scores,and down-regulated the mRNA and protein levels of iNOS,Jagged1,and Notch1 in BALF (all P<0.05).Moreover,hesperidin elevated the IL-10 level,increased the proportion of M2-type macrophages,and up-regulated the mRNA and protein levels of Arg-1 (all P<0.001).Using recombinant Jagged1 protein to activate Notch1 signaling pathway can significantly attenuate the promotion of high-dose hesperidin on M2 macrophage polarization and amelioration of lung inflammation damage (all P<0.01). Conclusion Hesperidin may alleviate the lung inflammation damage in mice with RSV-induced bronchiolitis by inhibiting the Jagged1/Notch1 signaling pathway and promoting the M2-type polarization of macrophages.


Asunto(s)
Bronquiolitis , Hesperidina , Lesión Pulmonar , Animales , Ratones , Bronquiolitis/metabolismo , Hesperidina/farmacología , Hesperidina/uso terapéutico , Hesperidina/metabolismo , Interleucina-10/metabolismo , Interleucina-10/farmacología , Interleucina-4/metabolismo , Interleucina-4/farmacología , Interleucina-6/metabolismo , Proteína Jagged-1/metabolismo , Proteína Jagged-1/farmacología , Lesión Pulmonar/metabolismo , Macrófagos , Ratones Endogámicos BALB C , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
10.
J Sep Sci ; 44(11): 2189-2205, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33784419

RESUMEN

Fructus Aurantii is a traditional medicated diet in East Asia. To determine the underlying chemical markers responsible for the quality and efficacy of Fructus Aurantii, a sensitive metabolomic method was applied to distinguish Fructus Aurantii in Jiangxi Province from other two geographical locations (Hunan Province and Chongqing City) in China. In the present study, multivariate analyses were adopted to compare chemical compositions in 21 batches of Fructus Aurantii samples. Among three geographical origins, 23 differential compounds were structurally identified. Serum pharmacochemistry exhibited that 22 components could be detected in rat serum. Six differential and absorbed components were selected as six potential markers. Statistical analysis revealed that the content of six markers varied widely in three origins of Fructus Aurantii. Six differential and absorbed components were evaluated further by biological activity. Neohesperidin, naringin, and meranzin showed inhibitory effect on acetylcholinesterase that regulates gastrointestinal motility in vitro and in silico, suggesting that these three components may be determined as the active biomarkers of Fructus Aurantii. These findings demonstrate the potential of biomarkers for identification and quality control of Fructus Aurantii.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Citrus/química , Cumarinas/farmacología , Flavanonas/farmacología , Hesperidina/análogos & derivados , Metabolómica , Acetilcolinesterasa/metabolismo , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , China , Inhibidores de la Colinesterasa/sangre , Inhibidores de la Colinesterasa/metabolismo , Cumarinas/sangre , Cumarinas/metabolismo , Descubrimiento de Drogas , Flavanonas/sangre , Flavanonas/metabolismo , Hesperidina/sangre , Hesperidina/metabolismo , Hesperidina/farmacología , Masculino , Ratas , Ratas Sprague-Dawley
11.
Biotechnol Lett ; 43(11): 2161-2183, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34514540

RESUMEN

OBJECTIVES: In this study, 44 flavone synthases (FNS) and flavonol synthases (FLS) from different origins were collected. The instability index and conserved domain of the enzymes were analyzed through bioinformatics analysis, the results of which allowed us to screen suitable enzymes for constructing recombinant Escherichia coli. Defective enzymes were selected as controls. RESULTS: Native- and sodium dodecyl sulfate-polyacrylamide gel electrophoresis were conducted to isolate the heterologously expressed proteins. Liquid chromatography-mass spectrometry, 1H nuclear magnetic resonance, and ultra-performance liquid chromatography were performed to qualitatively and quantitatively analyze the products. The cellular transformation results showed that recombinant E. coli catalyzed the synthesis of diosmetin from hesperetin, and in vitro catalysis showed that heterologously expressed FNS/FLS played a catalytic role in this reaction. AnFNS (from Angelica archangelica) showed the highest substrate conversion (38.80% for cellular transformation, 12.93% for in vitro catalysis). CONCLUSIONS: The catalytic capacity of FNS/FLS from different origins exhibited the expected results, indicating that bioinformatics analysis is useful for screening enzymes. In addition, the catalytic properties of AnFNS and CaFLS (from Camellia sinensis) differed significantly, although these enzymes are structurally similar. Based on this difference, C-2 was predicted as the key site for FNS/FLS catalytic synthesis of diosmetin rather than C-3.


Asunto(s)
Flavonoides/metabolismo , Hesperidina/metabolismo , Oxigenasas de Función Mixta , Oxidorreductasas , Proteínas de Plantas , Angelica archangelica/enzimología , Angelica archangelica/genética , Camellia/enzimología , Camellia/genética , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Biología Sintética/métodos
12.
Bioprocess Biosyst Eng ; 44(2): 235-246, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32888093

RESUMEN

Microbial processes are being developed to transform flavonoid glycosides to varieties of metabolites with higher bioavailability. The aim of this study was to determine the metabolic activity and survival of five lactic acid bacteria (LAB) stains (L. rhamnosus LRa05, L. casei LC89, L. plantarum N13, L. acidophilus LA85, and L. brevis LB01) in two different citrus flavanone standards (hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside). The enzymatic activity, metabolites, antioxidant activities, and α-glucosidase inhibition property in the two standards were also investigated before and after incubated with LAB. The medium contained standards permitted survival of the five LAB stains. All strains exhibited ß-glucosidase activity. Of the five LAB strains tested, just L. plantarum N13 and L. brevis LB01 have the ability to metabolize hesperetin-7-O-rutinoside, only L. plantarum N13, L. acidophilus LA85, and L. brevis LB01 could metabolize naringenin-7-O-rutinoside, moreover, L. acidophilus LA85l was the strain with the highest biotransformation ratio of naringenin-7-O-rutinoside. L. acidophilus LA85 and L. plantarum N13 can degrade naringenin-7-O-rutinoside into naringenin. L. brevis LB01 can degrade hesperetin-7-O-rutinoside into hesperetin, 3-(4'-hydroxyphenyl)-2-propenoic acid, 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid, and 3-(4'-hydroxyphenyl)propionic acid. Incubation of L. acidophilus LA85 in naringenin-7-O-rutinoside solution supposed no apparent influence in the biological activities that tested. L. acidophilus LA85 may potentially contribute to the bioavailability of citrus flavanones, and to be applied as functional cultures to obtain more bioavailable and bioactive metabolites in food products or in the human gastrointestinal tract.


Asunto(s)
Citrus/química , Flavanonas/metabolismo , Glucósidos/metabolismo , Hesperidina/metabolismo , Lactobacillus/metabolismo , Biotransformación , Flavanonas/química , Glucósidos/química , Hesperidina/química
13.
Xenobiotica ; 50(11): 1311-1322, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30654682

RESUMEN

Hesperidin (HPD) and hesperetin (HPT), as a kind of flavonone compounds, are abundant in citrus fruits with various pharmacological effects. HPD and HPT are not always consistent in some biological activities, even if they have the same skeletal structure. The aim of this study was to screen and identify HPT and HPD metabolites in rats using UHPLC-LTQ-Orbitrap MS n , compare the possible metabolism and provide the research basis for further understanding the similarities and differences in pharmacodynamics and pharmacokinetics of HPT and HPD. A total of 17 and 52 metabolites were identified in rats after oral administration of HPT or HPD, respectively. Three of HPT and HPD metabolites, glucuronidation, sulfation and diglucuronidation of HPT, were the same and could be the active components for the same pharmacodynamic action of them. We could find prototype in the urine sample of HPD group, but no prototypes in any samples of HPT group. There were hardly any general phase I metabolites of HPT, while 33 phase I metabolites of HPD could be identified. These data suggested that the poorer bioavailability of HPD compared with HPT.


Asunto(s)
Medicamentos Herbarios Chinos/metabolismo , Hesperidina/metabolismo , Administración Oral , Animales , Disponibilidad Biológica , Cromatografía Líquida de Alta Presión , Ratas
14.
Parasitol Res ; 119(7): 2351-2358, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32451717

RESUMEN

Naegleria fowleri causes a deadly infection known as primary amoebic meningoencephalitis (PAM). To our knowledge, there are very few transcriptome studies conducted on these brain-eating amoebae, despite rise in the number of cases. Although the Naegleria genome has been sequenced, currently, it is not well annotated. Transcriptome level studies are needed to help understand the pathology and biology of this fatal parasitic infection. Recently, we showed that nanoparticles loaded with the flavonoid Hesperidin (HDN) are potential novel antimicrobial agents. N. fowleri trophozoites were treated with and without HDN-conjugated with silver nanoparticles (AgNPs) and silver only, and then, 50% minimum inhibitory concentration (MIC) was determined. The results revealed that the MIC of HDN-conjugated AgNPs was 12.5 microg/mL when treated for 3 h. As no reference genome exists for N. fowleri, de novo RNA transcriptome analysis using RNA-Seq and differential gene expression analysis was performed using the Trinity software. Analysis revealed that more than 2000 genes were differentially expressed in response to N. fowleri treatment with HDN-conjugated AgNPs. Some of the genes were linked to oxidative stress response, DNA repair, cell division, cell signalling and protein synthesis. The downregulated genes were linked with processes such as protein modification, synthesis of aromatic amino acids, when compared with untreated N. fowleri. Further transcriptome studies will lead to understanding of genetic mechanisms of the biology and pathogenesis and/or the identification of much needed drug candidates.


Asunto(s)
Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Hesperidina/farmacocinética , Naegleria fowleri/genética , Plata/farmacología , Transcriptoma/genética , Animales , División Celular/genética , Reparación del ADN/genética , Perfilación de la Expresión Génica , Hesperidina/metabolismo , Humanos , Nanopartículas del Metal , Estrés Oxidativo/genética , Pruebas de Sensibilidad Parasitaria , RNA-Seq , Plata/metabolismo
15.
Chem Biodivers ; 17(6): e2000122, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32274851

RESUMEN

Ba-Wei-Long-Zuan granule (BWLZ) is a traditional herbal preparation. It has been widely used for the treatment of rheumatoid arthritis (RA). However, its active ingredients and mechanisms of action are still unclear. The present study aims to reveal the active compounds and anti-arthritic mechanisms of BWLZ against collagen-induced arthritis (CIA) by using 1 H-NMR-based metabolomics, molecular docking and network pharmacology methods. After 30 days of administration, BWLZ could effectively improve the metabolic disorders in CIA rats. The anti-arthritic effect of BWLZ was related to its restoration of 16 disturbed serum metabolites. Molecular docking and network analysis showed that 20 compounds present in BWLZ could act on multiple targets. Among them, coclaurine and hesperidin showed the highest hit rates for target proteins related to both metabolic regulation and RA, indicating that these two compounds might be potential active ingredients of BWLZ. Moreover, pathway enrichment analysis suggested that the anti-arthritic mechanisms of BWLZ might be attributed to its network regulation of several biological processes, such as steroid hormone biosynthesis, mTOR signaling pathway, alanine, aspartate and glutamate metabolism, and synthesis and degradation of ketone bodies. These results provide further evidence for the anti-arthritic properties of BWLZ and are beneficial for its quality control and clinical application. The potential targets and biological processes found in this study may provide valuable information for further studying the molecular mechanisms of BWLZ against RA. In addition, our work provides new insights for revealing the active ingredients and regulatory mechanisms of complex herbal preparations.


Asunto(s)
Antirreumáticos/química , Medicamentos Herbarios Chinos/química , Metabolómica , Animales , Antirreumáticos/metabolismo , Antirreumáticos/farmacología , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Sitios de Unión , Biomarcadores/sangre , Biomarcadores/metabolismo , Citocromo P-450 CYP1A2/química , Citocromo P-450 CYP1A2/metabolismo , Análisis Discriminante , Medicamentos Herbarios Chinos/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Hesperidina/química , Hesperidina/metabolismo , Hesperidina/uso terapéutico , Isoquinolinas/química , Isoquinolinas/metabolismo , Isoquinolinas/uso terapéutico , Espectroscopía de Resonancia Magnética , Masculino , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Análisis de Componente Principal , Estructura Terciaria de Proteína , Ratas , Ratas Wistar
16.
Molecules ; 25(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962056

RESUMEN

In this research, novel biorefinery processes for obtaining value-added chemicals such as biosugar and hesperidin from mandarin peel waste (MPW) are described. Herein, three different treatment methods were comparatively evaluated to obtain high yields of biosugar and hesperidin from MPW. Each method was determined by changes in the order of three processing steps, i.e., oil removal, hesperidin extraction, and enzymatic hydrolysis. The order of the three steps was found to have a significant influence on the production yields. Biosugar and hesperidin production yields were highest with method II, where the processing steps were performed in the following order: oil removal, enzymatic hydrolysis, and hesperidin extraction. The maximum yields obtained with method II were 34.46 g of biosugar and 6.48 g of hesperidin per initial 100 g of dry MPW. Therefore, the methods shown herein are useful for the production of hesperidin and biosugar from MPW. Furthermore, the utilization of MPWs as sources of valuable materials may be of considerable economic benefits and has become increasingly attractive.


Asunto(s)
Citrus/metabolismo , Hesperidina/metabolismo , Azúcares/metabolismo , Biomasa , Celulasas/metabolismo , Citrus/química , Frutas/química , Frutas/metabolismo , Hesperidina/química , Hesperidina/aislamiento & purificación , Hidrólisis , Extracción Líquido-Líquido , Espectroscopía de Resonancia Magnética
17.
Fish Shellfish Immunol ; 93: 116-123, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31302287

RESUMEN

Hesperetin is a natural flavanone compound, which mainly exists in lemons and oranges, and has potential antiviral and anticancer activities. In this study, hesperetin was used in a crayfish pathogen challenge to discover its effects on the innate immune system of invertebrates. The crayfish Procambarus clarkii was used as an experimental model and challenged with white spot syndrome virus (WSSV). Pathogen challenge experiments showed that hesperetin treatment significantly reduced the mortality caused by WSSV infection, while the VP28 copies of WSSV were also reduced. Quantitative reverse transcriptase polymerase chain reaction revealed that hesperetin increased the expression of several innate immune-related genes, including NF-kappaB and C-type lectin. Further analysis showed that hesperetin treatment plays a positive effects on three immune parameters like total hemocyte count, phenoloxidase and superoxide dismutase activity. Nevertheless, whether or not infected with WSSV, hesperetin treatment would significantly increase the hemocyte apoptosis rates in crayfish. These results indicated that hesperetin could regulate the innate immunity of crayfish, and delaying and reducing the mortality after WSSV challenge. Therefore, the present study provided novel insights into the potential therapeutic or preventive functions associated with hesperetin to regulate crayfish immunity and protect crayfish against WSSV infection, provide certain theoretical basis for production practice.


Asunto(s)
Astacoidea/efectos de los fármacos , Hesperidina/metabolismo , Inmunidad Innata/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Alimentación Animal/análisis , Animales , Astacoidea/inmunología , Astacoidea/virología , Dieta , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Hesperidina/administración & dosificación , Longevidad/efectos de los fármacos , Virus del Síndrome de la Mancha Blanca 1/efectos de los fármacos , Virus del Síndrome de la Mancha Blanca 1/fisiología
18.
Med Sci Monit ; 25: 107-114, 2019 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-30608918

RESUMEN

BACKGROUND Sepsis-induced lung injury is associated with high mortality. The present investigation evaluated the protective effect of hesperidin against sepsis-induced lung injury and also postulates the possible mechanism of its action. MATERIAL AND METHODS Lung injury was induced by sepsis in all animals, in which sepsis was produced by cecal ligation and puncture (CLP). Animals were treated with hesperidin 10 and 20 mg/kg i.v. 30 min after the surgery. Oxygenation index and lung injury score were determined and levels of pro-inflammatory mediators and markers of oxidative stress were also estimated in the lung tissues. Moreover, expression of caspase-3, B-cell lymphoma (Bcl-2), Toll-like receptor 4 (TLR4), heat-stable protein 70 (Hsp70) and myeloid differentiation primary response 88 (MyD88) protein was estimated by Western blot assay and immunofluorescence assay. RESULTS Hesperidin attenuated the partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio and lung injury score in CLP-induced lung injury mice. There was a significant (p<0.01) decrease in the level of pro-inflammatory mediators in the lung tissue of CLP-induced lung injury mice. Moreover, markers of oxidative stress were attenuated in the hesperidin-treated group. Treatment with hesperidin attenuated the expression of caspase-3, Bcl-2, TLR4, Hsp70, and MyD88 protein in the lung tissue of CLP-induced lung injury mice. CONCLUSIONS Hesperidin protects against lung injury by attenuating the Hsp70/TLR4/MyD88 pathway in CLP-induced lung injury mice.


Asunto(s)
Hesperidina/farmacología , Lesión Pulmonar/prevención & control , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Ciego/patología , Proteínas HSP70 de Choque Térmico/metabolismo , Hesperidina/metabolismo , Pulmón/patología , Lesión Pulmonar/tratamiento farmacológico , Masculino , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Sepsis/inducido químicamente , Sepsis/complicaciones , Transducción de Señal , Receptor Toll-Like 4/metabolismo
19.
Molecules ; 24(16)2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31426346

RESUMEN

Daidzein is a common isoflavone, having multiple biological effects such as anti-inflammation, anti-allergy, and anti-aging. α-Tocopherol is the tocopherol isoform with the highest vitamin E activity including anti-allergic activity and anti-cancer activity. Hesperetin is a flavone, which shows potent anti-inflammatory effects. These compounds have shortcomings, i.e., water-insolubility and poor absorption after oral administration. The glycosylation of bioactive compounds can enhance their water-solubility, physicochemical stability, intestinal absorption, and biological half-life, and improve their bio- and pharmacological properties. They were transformed by cultured Nicotiana tabacum cells to 7-ß-glucoside and 7-ß-gentiobioside of daidzein, and 3'- and 7-ß-glucosides, 3',7-ß-diglucoside, and 7-ß-gentiobioside of hesperetin. Daidzein and α-tocopherol were glycosylated by galactosylation with ß-glucosidase to give 4'- and 7-ß-galactosides of daidzein, which were new compounds, and α-tocopherol 6-ß-galactoside. These nine glycosides showed higher anti-allergic activity, i.e., inhibitory activity toward histamine release from rat peritoneal mast cells, than their respective aglycones. In addition, these glycosides showed higher tyrosinase inhibitory activity than the corresponding aglycones. Glycosylation of daidzein, α-tocopherol, and hesperetin greatly improved their biological activities.


Asunto(s)
Antialérgicos/síntesis química , Cosméticos/síntesis química , Glicósidos/síntesis química , Hesperidina/síntesis química , Isoflavonas/síntesis química , alfa-Tocoferol/síntesis química , Animales , Antialérgicos/metabolismo , Biocatálisis , Técnicas de Cultivo de Célula , Cosméticos/metabolismo , Alimentos Funcionales/análisis , Glicósidos/metabolismo , Glicosilación , Hesperidina/metabolismo , Humanos , Isoflavonas/metabolismo , Masculino , Mastocitos/citología , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Células Vegetales/metabolismo , Cultivo Primario de Células , Ratas , Ratas Wistar , Solubilidad , Nicotiana/citología , Nicotiana/metabolismo , alfa-Tocoferol/metabolismo
20.
J Sci Food Agric ; 99(1): 343-349, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29882326

RESUMEN

BACKGROUND: Dietary supplementation of sheep with bioactive compounds such as citrus flavonoids appears as a great alternative for improving meat antioxidant capacity and could also have beneficial effects on growth performance, carcass traits and meat quality characteristics. An experiment was therefore conducted to examine the effects of hesperidin or naringin dietary supplementation on lambs' growth performance, antioxidant status and meat quality characteristics. Forty-four male 3-month-old Chios lambs were randomly assigned to four groups: C, fed with a basal diet, or H or N or VE offered the same diet further supplemented with hesperidin at 2500 mg or naringin at 2500 mg or α-tocopheryl acetate (vitamin E) at 200 mg kg-1 feed respectively. At the end of the experiment (day 35), samples of longissimus thoracis muscle were collected for meat quality evaluation. RESULTS: Both flavonoids and vitamin E dietary supplementation reduced plasma malondialdehyde (MDA) levels on day 35 (P < 0.05). No significant differences were observed in performance traits and meat quality characteristics among the experimental groups (P > 0.05). Hesperidin and naringin also reduced MDA levels in meat stored at 4 °C for up to 8 days (P < 0.05), although to a lesser extent than α-tocopheryl acetate. CONCLUSION: Incorporation of flavonoids in sheep diets resulted in an improvement of plasma and meat antioxidant capacity. © 2018 Society of Chemical Industry.


Asunto(s)
Antioxidantes/metabolismo , Flavanonas/metabolismo , Hesperidina/metabolismo , Carne/análisis , Músculo Esquelético/química , Ovinos/metabolismo , alfa-Tocoferol/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Malondialdehído/análisis , Malondialdehído/sangre , Músculo Esquelético/metabolismo , Ovinos/sangre
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda