RESUMEN
Glucocorticoids are a major class of therapeutic anti-inflammatory and immunosuppressive drugs prescribed to patients with inflammatory diseases, to avoid transplant rejection, and as part of cancer chemotherapy. However, exposure to these drugs increases the risk of opportunistic infections such as with the fungus Aspergillus fumigatus, which causes mortality in >50% of infected patients. The mechanisms by which glucocorticoids increase susceptibility to A. fumigatus are poorly understood. In this article, we used a zebrafish larva Aspergillus infection model to identify innate immune mechanisms altered by glucocorticoid treatment. Infected larvae exposed to dexamethasone succumb to infection at a significantly higher rate than control larvae. However, both macrophages and neutrophils are still recruited to the site of infection, and dexamethasone treatment does not significantly affect fungal spore killing. Instead, the primary effect of dexamethasone manifests later in infection with treated larvae exhibiting increased invasive hyphal growth. In line with this, dexamethasone predominantly inhibits neutrophil function rather than macrophage function. Dexamethasone-induced mortality also depends on the glucocorticoid receptor. Dexamethasone partially suppresses NF-κB activation at the infection site by inducing the transcription of IκB via the glucocorticoid receptor. Independent CRISPR/Cas9 targeting of IKKγ to prevent NF-κB activation also increases invasive A. fumigatus growth and larval mortality. However, dexamethasone treatment of IKKγ crispant larvae further increases invasive hyphal growth and host mortality, suggesting that dexamethasone may suppress other pathways in addition to NF-κB to promote host susceptibility. Collectively, we find that dexamethasone acts through the glucocorticoid receptor to suppress NF-κB-mediated neutrophil control of A. fumigatus hyphae in zebrafish larvae.
Asunto(s)
Aspergilosis , Aspergillus fumigatus , Dexametasona , Glucocorticoides , FN-kappa B , Neutrófilos , Pez Cebra , Animales , Aspergillus fumigatus/inmunología , Neutrófilos/inmunología , Neutrófilos/efectos de los fármacos , Pez Cebra/inmunología , FN-kappa B/metabolismo , Aspergilosis/inmunología , Dexametasona/farmacología , Glucocorticoides/farmacología , Hifa/inmunología , Hifa/crecimiento & desarrollo , Hifa/efectos de los fármacos , Larva/inmunología , Larva/microbiología , Receptores de Glucocorticoides/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Modelos Animales de Enfermedad , Inmunidad Innata/efectos de los fármacos , HumanosRESUMEN
Ssn3, also known as Cdk8, is a member of the four protein Cdk8 submodule within the multi-subunit Mediator complex involved in the co-regulation of transcription. In Candida albicans, the loss of Ssn3 kinase activity affects multiple phenotypes including cellular morphology, metabolism, nutrient acquisition, immune cell interactions, and drug resistance. In these studies, we generated a strain in which Ssn3 was replaced with a functional variant of Ssn3 that can be rapidly and selectively inhibited by the ATP analog 3-MB-PP1. Consistent with ssn3 null mutant and kinase dead phenotypes, inhibition of Ssn3 kinase activity promoted hypha formation. Furthermore, the increased expression of hypha-specific genes was the strongest transcriptional signal upon inhibition of Ssn3 in transcriptomics analyses. Rapid inactivation of Ssn3 was used for phosphoproteomic studies performed to identify Ssn3 kinase substrates associated with filamentation potential. Both previously validated and novel Ssn3 targets were identified. Protein phosphorylation sites that were reduced specifically upon Ssn3 inhibition included two sites in Flo8 which is a transcription factor known to positively regulate C. albicans morphology. Mutation of the two Flo8 phosphosites (threonine 589 and serine 620) was sufficient to increase Flo8-HA levels and Flo8 dependent transcriptional and morphological changes, suggesting that Ssn3 kinase activity negatively regulates Flo8.Under embedded conditions, when ssn3Δ/Δ and efg1Δ/Δ mutants were hyperfilamentous, FLO8 was essential for hypha formation. Previous work has also shown that loss of Ssn3 activity leads to increased alkalinization of medium with amino acids. Here, we show that the ssn3Δ/Δ medium alkalinization phenotype, which is dependent on STP2, a transcription factor involved in amino acid utilization, also requires FLO8 and EFG1. Together, these data show that Ssn3 activity can modulate Flo8 and its direct and indirect interactions in different ways, and underscores the potential importance of considering Ssn3 function in the control of transcription factor activities.
Asunto(s)
Candida albicans/patogenicidad , Quinasa 8 Dependiente de Ciclina/genética , Proteómica/métodos , Purinas/farmacología , Factores de Transcripción/metabolismo , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Quinasa 8 Dependiente de Ciclina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Mutación con Pérdida de Función , Fosforilación , Factores de Transcripción/genéticaRESUMEN
Infections caused by Candida species, especially Candida albicans, threaten the public health and create economic burden. Shortage of antifungals and emergence of drug resistance call for new antifungal therapies while natural products were attractive sources for developing new drugs. In our study, fangchinoline, a bis-benzylisoquinoline alkaloid from Chinese herb Stephania tetrandra S. Moore, exerted antifungal effects on planktonic growth of several Candida species including C. albicans, with MIC no more than 50 µg/mL. In addition, results from microscopic, MTT and XTT reduction assays showed that fangchinoline had inhibitory activities against the multiple virulence factors of C. albicans, such as adhesion, hyphal growth and biofilm formation. Furthermore, this compound could also suppress the metabolic activity of preformed C. albicans biofilms. PI staining, followed by confocal laser scanning microscope (CLSM) analysis showed that fangchinoline can elevate permeability of cell membrane. DCFH-DA staining suggested its anti-Candida mechanism also involved overproduction of intracellular ROS, which was further confirmed by N-acetyl-cysteine rescue tests. Moreover, fangchinoline showed synergy with three antifungal drugs (amphotericin B, fluconazole and caspofungin), further indicating its potential use in treating C. albicans infections. Therefore, these results indicated that fangchinoline could be a potential candidate for developing anti-Candida therapies.
Asunto(s)
Antifúngicos , Bencilisoquinolinas , Biopelículas , Candida albicans , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Antifúngicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Bencilisoquinolinas/farmacología , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrolloRESUMEN
This study investigated the influence of bacterial cyclic lipopeptides (LP; surfactins, iturins, fengycins) on microbial interactions. The objective was to investigate whether the presence of bacteria inhibits fungal growth and whether this inhibition is due to the release of bacterial metabolites, particularly LP. Selected endophytic bacterial strains with known plant-growth promoting potential were cultured in the presence of Fusarium oxysporum f.sp. strigae (Fos), which was applied as model fungal organism. The extracellular metabolome of tested bacteria, with a focus on LP, was characterized, and the inhibitory effect of bacterial LP on fungal growth was investigated. The results showed that Bacillus velezensis GB03 and FZB42, as well as B. subtilis BSn5 exhibited the strongest antagonism against Fos. Paraburkholderia phytofirmans PsJN, on the other hand, tended to have a slight, though non-significant growth promotion effect. Crude LP from strains GB03 and FZB42 had the strongest inhibitory effect on Fos, with a significant inhibition of spore germination and damage of the hyphal structure. Liquid chromatography tandem mass spectrometry revealed the production of several variants of iturin, fengycin, and surfactin LP families from strains GB03, FZB42, and BSn5, with varying intensity. Using plate cultures, bacillomycin D fractions were detected in higher abundance in strains GB03, FZB42, and BSn5 in the presence of Fos. Additionally, the presence of Fos in dual plate culture triggered an increase in bacillomycin D production from the Bacillus strains. The study demonstrated the potent antagonistic effect of certain Bacillus strains (i.e., GB03, FZB42, BSn5) on Fos development. Our findings emphasize the crucial role of microbial interactions in shaping the co-existence of microbial assemblages.
Asunto(s)
Antibiosis , Antifúngicos , Bacillus , Fusarium , Lipopéptidos , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Lipopéptidos/farmacología , Lipopéptidos/metabolismo , Bacillus/metabolismo , Antifúngicos/farmacología , Péptidos Cíclicos/farmacología , Interacciones Microbianas , Burkholderiaceae/crecimiento & desarrollo , Burkholderiaceae/metabolismo , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrolloRESUMEN
Candida albicans is an opportunistic yeast accounting for about 50-90 % of all cases of candidiasis in humans, ranging from superficial to systemic potentially life-threatening infections. The presence of several virulence factors, including biofilm, hyphal transition, and proteolytic enzymes production, worsens the fungal infections burden on healthcare system resources. Hence, developing new bioactive compounds with antifungal activity is a pressing urgence for the scientific community. In this perspective, we evaluated the anti-Candida potential of the N-Nitroso-N-phenylhydroxylamine ammonium salt (cupferron) against standard and clinical C. albicans strains. Firstly, the in vitro cytotoxicity of cupferron was checked in the range 400-12.5 µg/mL against human microglial cells (HMC-3). Secondly, its antifungal spectrum was explored via disk diffusion test, broth-microdilution method, and time-killing curve analysis, validating the obtained results through scanning electron microscopy (SEM) observations. Additionally, we evaluated the cupferron impact on the main virulence determinants of Candida albicans. At non-toxic concentrations (100-12.5 µg/mL), the compound exerted interesting anti-Candida activity, registering a minimum inhibitory concentration (MIC) between 50 and 100 µg/mL against the tested strains, with a fungistatic effect until 100 µg/mL. Furthermore, cupferron was able to counteract fungal virulence at MIC and sub-MIC values (50-12.5 µg/mL). These findings may propose cupferron as a new potential antifungal option for the treatment of Candida albicans infections.
Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Pruebas de Sensibilidad Microbiana , Candida albicans/efectos de los fármacos , Antifúngicos/farmacología , Humanos , Biopelículas/efectos de los fármacos , Candidiasis/microbiología , Candidiasis/tratamiento farmacológico , Factores de Virulencia , Línea Celular , Hifa/efectos de los fármacos , Microscopía Electrónica de Rastreo , Virulencia/efectos de los fármacos , Proteínas Fúngicas/metabolismoRESUMEN
Early blight caused by Alternaria solani is a common foliar disease of potato around the world, and serious infections result in reduced yields and marketability due to infected tubers. The major aim of this study is to figure out the synergistic effect between microorganism and fungicides and to evaluate the effectiveness of Bacillus subtilis NM4 in the control of early blight in potato. Based on its colonial morphology and a 16S rRNA analysis, a bacterial antagonist isolated from kimchi was identified as B. subtilis NM4 and it has strong antifungal and anti-oomycete activity against several phytopathogenic fungi and oomycetes. The culture filtrate of strain NM4 with the fungicide effectively suppressed the mycelial growth of A. solani, with the highest growth inhibition rate of 83.48%. Although exposure to culture filtrate prompted hyphal alterations in A. solani, including bulging, combining it with the fungicide caused more severe hyphal damage with continuous bulging. Surfactins and fengycins, two lipopeptide groups, were isolated and identified as the main compounds in two fractions using LC-ESI-MS. Although the surfactin-containing fraction failed to inhibit growth, the fengycin-containing fraction, alone and in combination with chlorothalonil, restricted mycelial development, producing severe hyphal deformations with formation of chlamydospores. A pot experiment combining strain NM4, applied as a broth culture, with fungicide, at half the recommended concentration, resulted in a significant reduction in potato early blight severity. Our results indicate the feasibility of an integrated approach for the management of early blight in potato that can reduce fungicide application rates, promoting a healthy ecosystem in agriculture.
Asunto(s)
Alternaria , Bacillus subtilis , Fungicidas Industriales , Lipopéptidos , Nitrilos , Enfermedades de las Plantas , Solanum tuberosum , Solanum tuberosum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Alternaria/efectos de los fármacos , Alternaria/crecimiento & desarrollo , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/crecimiento & desarrollo , Fungicidas Industriales/farmacología , Nitrilos/farmacología , Lipopéptidos/farmacología , ARN Ribosómico 16S/genética , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Péptidos Cíclicos/farmacologíaRESUMEN
This study aimed to investigate the effect of hyphal formation in Yarrowia lipolytica and biochar addition on erythritol production by submerged fermentation. Hyphal formation significantly inhibited erythritol production by Y. lipolytica. Transcriptome analysis suggested that the impaired erythritol synthesis of hyphal cells was associated with the differential expression of genes involved in amino acid metabolism, lipid metabolism, and cell wall stability. Deletion of RAS2 responsible for yeast-to-hypha transition and EYD1 included in erythritol degradation blocked hyphal formation and improved erythritol production. Biochar prepared from corncob, sugarcane bagasse (SB), corn straw, peanut shell, coconut shell, and walnut shell (WS) had a positive effect on erythritol production, of which WS pyrolyzed at 500°C (WSc) performed the best in flask fermentation. In a 3.7 L bioreactor, 220.20 ± 10 g/L erythritol with a productivity of 2.30 ± 0.10 g/L/h was obtained in the presence of 1.4% (w/v) WSc and 0.7% SBc (SB pyrolyzed at 500°C) within 96 h. These results suggest that inhibition of hyphal formation together with biochar addition is an efficient way to promote erythritol production.
Asunto(s)
Carbón Orgánico , Eritritol , Hifa , Yarrowia , Eritritol/biosíntesis , Eritritol/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Hifa/genética , Hifa/efectos de los fármacos , Carbón Orgánico/farmacología , Carbón Orgánico/química , Fermentación , Reactores Biológicos/microbiologíaRESUMEN
Candida albicans has been listed in the critical priority group by the WHO in 2022 depending upon its contribution in invasive candidiasis and increased resistance to conventional drugs. Drug repurposing offers an efficient, rapid, and cost-effective solution to develop alternative therapeutics against pathogenic microbes. Alexidine dihydrochloride (AXD) and hexachlorophene (HCP) are FDA approved anti-cancer and anti-septic drugs, respectively. In this study, we have shown antifungal properties of AXD and HCP against the wild type (reference strain) and clinical isolates of C. albicans. The minimum inhibitory concentrations (MIC50) of AXD and HCP against C. albicans ranged between 0.34 and 0.69 µM and 19.66-24.58 µM, respectively. The biofilm inhibitory and eradication concentration of AXD was reported comparatively lower than that of HCP for the strains used in the study. Further investigations were performed to understand the antifungal mode of action of AXD and HCP by studying virulence features like cell surface hydrophobicity, adhesion, and yeast to hyphae transition, were also reduced upon exposure to both the drugs. Ergosterol content in cell membrane of the wild type strain was upregulated on exposure to AXD and HCP both. Biochemical analyses of the exposed biofilm indicated reduced contents of carbohydrate, protein, and e-DNA in the extracellular matrix of the biofilm when compared to the untreated control biofilm. AXD exposure downregulated activity of tissue invading enzyme, phospholipase in the reference strain. In wild type strain, ROS level, and activities of antioxidant enzymes were found elevated upon exposure to both drugs. FESEM analysis of the drug treated biofilms revealed degraded biofilm. This study has indicated mode of action of antifungal potential of alexidine dihydrochloride and hexachlorophene in C. albicans.
Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Reposicionamiento de Medicamentos , Pruebas de Sensibilidad Microbiana , Candida albicans/efectos de los fármacos , Candida albicans/genética , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Humanos , Amidinas/farmacología , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Ergosterol/metabolismo , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Virulencia/efectos de los fármacos , BiguanidasRESUMEN
The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C. albicans and molecular mode of actions are not well known. Present study shows that at 17.36 mM concentration butylITC inhibit planktonic growth. butylITC initially slowed the hyphal transition at 0.542 mM concentration. butylITC hampered biofilm development, and inhibits biofilm formation at 17.36 mM concentration which was analysed using metabolic assay (XTT assay) and Scanning Electron Microscopy (SEM). In addition, it was noted that butylITC inhibits ergosterol biosynthesis. The permeability of cell membranes was enhanced by butylITC treatment. Moreover, butylITC arrests cells at S-phase and induces intracellular Reactive Oxygen Species (ROS) accumulation in C. albicans. The results suggest that butylITC may have a dual mode of action, inhibit virulence factors and modulate cellular processes like inhibit ergosterol biosynthesis, cell cycle arrest, induces ROS production which leads to cell death in C. albicans.
Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Membrana Celular , Isotiocianatos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Biopelículas/efectos de los fármacos , Antifúngicos/farmacología , Isotiocianatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Sensibilidad Microbiana , Ciclo Celular/efectos de los fármacos , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Ergosterol/metabolismoRESUMEN
Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSV II were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. KEY POINTS: ⢠The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. ⢠Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. ⢠Bcsdr2 is involved in regulating B. cinerea virulence, growth and development.
Asunto(s)
Biopelículas , Botrytis , Fragaria , Proteínas Fúngicas , Hifa , Proteínas de la Membrana , Enfermedades de las Plantas , Botrytis/patogenicidad , Botrytis/genética , Botrytis/crecimiento & desarrollo , Botrytis/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Virulencia , Hifa/crecimiento & desarrollo , Hifa/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Fragaria/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Vitis/microbiología , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Eliminación de GenRESUMEN
Plant-pathogenic fungi produce toxins as virulence factors in many plant diseases. In Cercospora leaf blight of soybean caused by Cercospora cf. flagellaris, symptoms are a consequence of the production of a perylenequinone toxin, cercosporin, which is light-activated to produce damaging reactive oxygen species. Cercosporin is universally toxic to cells, except to the cells of the producer. The current model of self-resistance to cercosporin is largely attributed to the maintenance of cercosporin in a chemically reduced state inside hyphae, unassociated with cellular organelles. However, in another perylenequinone-producing fungus, Phaeosphaeria sp., the toxin was specifically sequestered inside lipid droplets (LDs) to prevent reactive oxygen species production. This study hypothesized that LD-based sequestration of cercosporin occurred in C. cf. flagellaris and that lipid-inhibiting fungicides could inhibit toxin production. Confocal microscopy using light-cultured C. cf. flagellaris indicated that 3-day-old hyphae contained two forms of cercosporin distributed in two types of hyphae. Reduced cercosporin was uniformly distributed in the cytoplasm of thick, primary hyphae, and, contrary to previous studies, active cercosporin was observed specifically in the LDs of thin, secondary hyphae. The production of hyphae of two different thicknesses, a characteristic of hemibiotrophic plant pathogens, has not been documented in C. cf. flagellaris. No correlation was observed between cercosporin production and total lipid extracted, and two lipid-inhibiting fungicides had little effect on fungal growth in growth-inhibition assays. This study lays a foundation for exploring the importance of pathogen lifestyle, toxin production, and LD content in the pathogenicity and symptomology of Cercospora.
Asunto(s)
Cercospora , Hifa , Perileno , Enfermedades de las Plantas , Perileno/análogos & derivados , Perileno/metabolismo , Enfermedades de las Plantas/microbiología , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Cercospora/metabolismo , Glycine max/microbiología , Ascomicetos/efectos de los fármacos , Ascomicetos/fisiología , Ascomicetos/crecimiento & desarrollo , Ascomicetos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fungicidas Industriales/farmacología , Gotas Lipídicas/metabolismo , Hojas de la Planta/microbiología , Microscopía ConfocalRESUMEN
Late blight, caused by the notorious pathogen Phytophthora infestans, poses a significant threat to potato (Solanum tuberosum) crops worldwide, impacting their quality as well as yield. Here, we aimed to investigate the potential use of cinnamaldehyde, carvacrol, and eugenol as control agents against P. infestans and to elucidate their underlying mechanisms of action. To determine the pathogen-inhibiting concentrations of these three plant essential oils (PEOs), a comprehensive evaluation of their effects using gradient dilution, mycelial growth rate, and spore germination methods was carried out. Cinnamaldehyde, carvacrol, and eugenol were capable of significantly inhibiting P. infestans by hindering its mycelial radial growth, zoospore release, and sporangium germination; the median effective inhibitory concentration of the three PEOs was 23.87, 8.66, and 89.65 µl/liter, respectively. Scanning electron microscopy revealed that PEOs caused the irreversible deformation of P. infestans, resulting in hyphal shrinkage, distortion, and breakage. Moreover, propidium iodide staining and extracellular conductivity measurements demonstrated that all three PEOs significantly impaired the integrity and permeability of the pathogen's cell membrane in a time- and dose-dependent manner. In vivo experiments confirmed the dose-dependent efficacy of PEOs in reducing the lesion diameter of potato late blight. Altogether, these findings provide valuable insight into the antifungal mechanisms of PEOs vis-à-vis late blight-causing P. infestans. By utilizing the inherent capabilities of these natural compounds, we could effectively limit the harmful impacts of late blight on potato crops, thereby enhancing agricultural practices and ensuring the resilience of global potato food production.
Asunto(s)
Cimenos , Eugenol , Aceites Volátiles , Phytophthora infestans , Enfermedades de las Plantas , Solanum tuberosum , Phytophthora infestans/efectos de los fármacos , Phytophthora infestans/fisiología , Solanum tuberosum/microbiología , Aceites Volátiles/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Eugenol/farmacología , Cimenos/farmacología , Monoterpenos/farmacología , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Aceites de Plantas/farmacología , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Esporas/efectos de los fármacos , Esporas/fisiología , Acroleína/análogos & derivadosRESUMEN
The pathogenic fungus Trichosporon asahii causes fatal deep-seated mycosis in immunocompromised patients. Calcineurin, which is widely conserved in eukaryotes, regulates cell growth and various stress responses in fungi. Tacrolimus (FK506), a calcineurin inhibitor, induces sensitivity to compounds that cause stress on the cell membrane and cell wall integrity. In this study, we demonstrated that FK506 affects stress responses and hyphal formation in T. asahii. In silico structural analysis revealed that amino acid residues in the binding site of the calcineurin-FKBP12 complex that interact with FK506 are conserved in T. asahii. The growth of T. asahii was delayed by FK506 in the presence of SDS or Congo red but not in the presence of calcium chloride. FK506 also inhibited hyphal formation in T. asahii. A mutant deficient of the cnb gene, which encodes the regulatory subunit B of calcineurin, exhibited stress sensitivities on exposure to SDS and Congo red and reduced the hyphal forming ability of T. asahii. In the cnb-deficient mutant, FK506 did not increase the stress sensitivity or reduce hyphal forming ability. These results suggest that FK506 affects stress responses and hyphal formation in T. asahii via the calcineurin signaling pathway.
Asunto(s)
Calcineurina , Tacrolimus , Tricosporonosis , Humanos , Calcineurina/metabolismo , Rojo Congo , Transducción de Señal , Tacrolimus/farmacología , Tacrolimus/metabolismo , Tricosporonosis/tratamiento farmacológico , Tricosporonosis/virología , Hifa/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Inhibidores de la Calcineurina/farmacología , Inhibidores de la Calcineurina/uso terapéuticoRESUMEN
The ability to resist copper toxicity is important for microbial pathogens to survive attack by innate immune cells. A sur7Δ mutant of the fungal pathogen Candida albicans exhibits decreased virulence that correlates with increased sensitivity to copper, as well as defects in other stress responses and morphogenesis. Previous studies indicated that copper kills sur7Δ cells by a mechanism distinct from the known resistance pathways involving the Crp1 copper exporter or the Cup1 metallothionein. Since Sur7 resides in punctate plasma membrane domains known as MCC/eisosomes, we examined overexpression of SUR7 and found that it rescued the copper sensitivity of a mutant that fails to form MCC/eisosomes (pil1Δ lsp1Δ), indicating that these domains act to facilitate Sur7 function. Genetic screening identified new copper-sensitive mutants, the strongest of which were similar to sur7Δ in having altered plasma membranes due to defects in membrane trafficking, cortical actin, and morphogenesis (rvs161Δ, rvs167Δ, and arp2Δ arp3Δ). Consistent with the mutants having altered plasma membrane organization, they were all more readily permeabilized by copper, which is known to bind phosphatidylserine and phosphatidylethanolamine and cause membrane damage. Although these phospholipids are normally localized to the intracellular leaflet of the plasma membrane, their exposure on the surface of the copper-sensitive mutants was indicated by increased susceptibility to membrane damaging agents that bind to these phospholipids. Increased copper sensitivity was also detected for a drs2Δ mutant, which lacks a phospholipid flippase that is involved in maintaining phospholipid asymmetry. Copper binds phosphatidylserine with very high affinity, and deleting CHO1 to prevent phosphatidylserine synthesis rescued the copper sensitivity of sur7Δ cells, confirming a major role for phosphatidylserine in copper sensitivity. These results highlight how proper plasma membrane architecture protects fungal pathogens from copper and attack by the immune system, thereby opening up new avenues for therapeutic intervention.
Asunto(s)
CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , Candidiasis/genética , Cobre/química , Metalotioneína/genética , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/patogenicidad , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Membrana Celular , Pared Celular/efectos de los fármacos , Pared Celular/genética , Cobre/uso terapéutico , Endocitosis/efectos de los fármacos , Humanos , Hifa/efectos de los fármacos , Hifa/genética , Hifa/patogenicidad , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Proteínas de la Membrana/genética , Morfogénesis/efectos de los fármacos , Morfogénesis/genéticaRESUMEN
Plant diseases that are caused by fungi and nematodes have become increasingly serious in recent years. However, there are few pesticide chemicals that can be used for the joint control of fungi and nematodes on the market. To solve this problem, a series of novel 1,2,4-oxadiazole derivatives containing amide fragments were designed and synthesized. Additionally, the bioassays revealed that the compound F15 demonstrated excellent antifungal activity against Sclerotinia sclerotiorum (S. sclerotiorum) in vitro, and the EC50 value of that was 2.9 µg/mL, which is comparable with commonly used fungicides thifluzamide and fluopyram. Meanwhile, F15 demonstrated excellent curative and protective activity against S. sclerotiorum-infected cole in vivo. The scanning electron microscopy results showed that the hyphae of S. sclerotiorum treated with F15 became abnormally collapsed and shriveled, thereby inhibiting the growth of the hyphae. Furthermore, F15 exhibited favorable inhibition against the succinate dehydrogenase (SDH) of the S. sclerotiorum (IC50 = 12.5 µg/mL), and the combination mode and binding ability between compound F15 and SDH were confirmed by molecular docking. In addition, compound F11 showed excellent nematicidal activity against Meloidogyne incognita at 200 µg/mL, the corrected mortality rate was 93.2%, which is higher than that of tioxazafen.
Asunto(s)
Antifúngicos/síntesis química , Ascomicetos/crecimiento & desarrollo , Oxadiazoles/síntesis química , Succinato Deshidrogenasa/metabolismo , Amidas/química , Antifúngicos/química , Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Ascomicetos/metabolismo , Línea Celular , Diseño de Fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Oxadiazoles/química , Oxadiazoles/farmacología , Plantas/efectos de los fármacos , Plantas/microbiología , Plantas/parasitología , Conformación Proteica , Relación Estructura-Actividad , Succinato Deshidrogenasa/químicaRESUMEN
Mutanobactin D is a non-ribosomal, cyclic peptide isolated from Streptococcus mutans and shows activity reducing yeast-to-hyphae transition as well as biofilm formation of the pathogenic yeast Candida albicans. We report the first total synthesis of this natural product, which relies on enantioselective, zinc-mediated 1,3-dipolar cycloaddition and a sequence of cascading reactions, providing the key lipidated γ-amino acid found in mutanobactin D. The synthesis enables configurational assignment, determination of the dominant solution-state structure, and studies to assess the stability of the lipopeptide substructure found in the natural product. The information stored in the fingerprint region of the IR spectra in combination with quantum chemical calculations proved key to distinguishing between epimers of the α-substituted ß-keto amide. Synthetic mutanobactin D drives discovery and analysis of its effect on growth of other members of the human oral consortium. Our results showcase how total synthesis is central for elucidating the complex network of interspecies communications of human colonizers.
Asunto(s)
Antifúngicos/farmacología , Péptidos Cíclicos , Antifúngicos/química , Candida albicans/efectos de los fármacos , Hifa/efectos de los fármacos , Modelos Moleculares , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacologíaRESUMEN
Candida albicans is a member of pathogens with potential drug resistance threat that needs novel chemotherapeutic strategies. Considering the multifarious biological activities including bioenhancer activity, anti-Candida potential of piperine was evaluated against planktonic/biofilm and hyphal growth of C. albicans alone or in combination as a synergistic agent with fluconazole. Piperine inhibits planktonic growth at or less than 15 µg/ml, hyphae induction at 5 µg/ml concentration, and exhibits stage-dependent activity against biofilm growth of a fluconazole-resistant strain of C. albicans (ATCC10231). Though piperine couldn't kill inoculum completely at minimum inhibitory concentration (MIC), it is fungicidal at higher concentrations, as shown in apoptosis assay. FIC index values indicate that piperine exhibits excellent synergistic activity with fluconazole against planktonic (0.123) and biofilm (0.215) growth of an FLC resistant strain. Mode of anti-Candida activity was studied by identifying piperine responsive proteins wherein the abundance of 25 proteins involved in stress response, signal transduction and cell cycle were modulated (22 up and 3 down-regulated) significantly in response to piperine (MIC50). Modulation of the proteins involved suggests that piperine affects membrane integrity leading to oxidative stress followed by cell cycle arrest and apoptosis in C. albicans. Flow cytometry-based mitochondrial membrane potential (MMP), cell cycle and apoptosis assay, as well as real-time quantitative polymerase chain reaction analysis of selected genes, confirms piperine induced oxidative stress (TRR1), cell cycle arrest and apoptosis (CaMCA1). Based on our results, we conclude that piperine inhibits planktonic and difficult-to treat-biofilm growth of C. albicans by affecting membrane integrity thereby inducing oxidative stress and apoptosis. LAY ABSTRACT: Piperine inhibit Candida albicans growth (planktonic and biofilm) significantly in our study. Piperine exhibits excellent synergistic potential with fluconazole The proteome analysis suggests that piperine induced membrane damage leads to oxidative stress followed by cell cycle arrest and apoptosis.
Asunto(s)
Alcaloides/farmacología , Antifúngicos/farmacología , Apoptosis/efectos de los fármacos , Benzodioxoles/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Hifa/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Biopelículas/crecimiento & desarrollo , Candidiasis/tratamiento farmacológico , Farmacorresistencia Fúngica , Sinergismo Farmacológico , Fluconazol/farmacología , Hifa/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacologíaRESUMEN
AIMS: Diseases caused by pathogenic fungi was a major constrain in increasing productivity and improving quality of Panax notoginseng. The aim of this research was to evaluate the inhibitory activity of essential oils (EOs) from Asteraceae family, Chrysanthemum indicum and Laggera pterodonta, against pathogenic fungi of P. notoginseng. METHODS AND RESULTS: The antifungal activity was investigated using multiple methods, disclosing that the EOs from C. indicum and L. pterodonta are active against hypha growth of different fungi but with different degrees of potency. Checkerboard testing indicated that the combination of EOs with hymexazol had synergistic effect against Pythium aphanidermatum, and exhibited additive effects against bulk of targeted pathogenic fungi. Besides, we found that the baseline sensitivity of Fusarium oxysporum to L. pterodonta EOs was higher than those of C. indicum by means of mycelium growth rate method. Finally, the practicability of those EOs as plant pesticide was confirmed by in vivo model showing that EOs can significantly inhibit the occurrence of root rot of P. notoginseng caused by F. oxysporum. CONCLUSION: Those studies suggest that the EOs from C. indicum and L. pterodonta had the potential to develop into new pollution-free pesticides for the protection of precious Chinese herbal medicines. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provided a new way of biological control for overcoming the frequent diseases occurrence of P. notoginseng.
Asunto(s)
Asteraceae/química , Hongos/efectos de los fármacos , Fungicidas Industriales/farmacología , Aceites Volátiles/farmacología , Panax notoginseng/microbiología , Asteraceae/clasificación , Sinergismo Farmacológico , Hongos/clasificación , Hongos/crecimiento & desarrollo , Hifa/clasificación , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Oxazoles/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Aceites de Plantas/farmacologíaRESUMEN
AIMS: Multi-species biofilms formed by fungi and bacteria are clinically common and confer the commensal micro-organisms with protection against antimicrobial therapies. Previously, the plant alkaloid berberine was reported to show antimicrobial efficacy to eliminate bacterial and fungal biofilms. In this study, the combination of berberine and amphotericin B, an antifungal agent, was evaluated against dual-species Candida albicans/Staphylococcus aureus biofilms. METHODS AND RESULTS: Combinatorial treatment by berberine and amphotericin B significantly reduced the biomass and viability of residing species in biofilms. Moreover, morphological examination revealed hyphal filamentation of C. albicans and coadhesion between C. albicans/S. aureus were considerably impaired by the treatment. These effects coincided with the reduced expression of cell surface components and quorum-sensing-related genes in both C. albicans and S. aureus. Additionally, in C. albicans, the core transcription factors for controlling biofilm formation together with a crucial component of dual-species biofilms were also downregulated. CONCLUSIONS: These results demonstrated synergistic effects of berberine and amphotericin B against C. albicans/S. aureus dual-species biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY: This study confirms the potential of berberine and amphotericin B for treating the C. albicans/S. aureus biofilms related infections and reveals molecular basis for the efficacy of combinatorial treatment.
Asunto(s)
Anfotericina B/farmacología , Antiinfecciosos/farmacología , Berberina/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Candida albicans/fisiología , Sinergismo Farmacológico , Hifa/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Percepción de Quorum/efectos de los fármacos , Percepción de Quorum/genética , Staphylococcus aureus/fisiologíaRESUMEN
AIMS: With a goal to identify specific essential oils that can control postharvest Rhizopus rot on strawberry and peach fruits, we performed screening for 26 essential oils based on their antifungal activity against Rhizopus stolonifer in vitro and investigated the underlying mechanism. METHODS AND RESULTS: Mentha spicata (Ms), Mentha piperita (Mp), Thymus vulgaris CT carvacrol (Tc) and Thymus vulgaris CT thymol (Tt) exhibited strong inhibition on R. stolonifer growth in the screening. These essential oils increased plasma membrane permeability of R. stolonifer and resulted in the outflow of intercellular electrolyte, nucleic acid, protein and soluble sugar. Morphology of R. stolonifer mycelia was greatly altered by these essential oils. Hyphae treated by these essential oils exhibited high accumulation of superoxide anion and malonaldehyde. Combination of these essential oils in commercial package reduced Rhizopus rot on strawberry and peach fruits, with Mp showing the strongest efficiency. CONCLUSION: Ms, Mp, Tc and Tt essential oils inhibited R. stolonifer growth by targeting its plasma membrane and reduced Rhizopus rot on strawberry and peach fruits. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides potential applications of natural plant extract, as alternatives to tradition fungicides, to control postharvest decay on fruits and vegetables.