RESUMEN
Glucagon and thyroid hormone (T3) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within one precisely targeted molecule. Coordinated glucagon and T3 actions synergize to correct hyperlipidemia, steatohepatitis, atherosclerosis, glucose intolerance, and obesity in metabolically compromised mice. We demonstrate that each hormonal constituent mutually enriches cellular processes in hepatocytes and adipocytes via enhanced hepatic cholesterol metabolism and white fat browning. Synchronized signaling driven by glucagon and T3 reciprocally minimizes the inherent harmful effects of each hormone. Liver-directed T3 action offsets the diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovascular system from adverse T3 action. Our findings support the therapeutic utility of integrating these hormones into a single molecular entity that offers unique potential for treatment of obesity, type 2 diabetes, and cardiovascular disease.
Asunto(s)
Glucagón/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Triyodotironina/efectos de los fármacos , Animales , Aterosclerosis/tratamiento farmacológico , Peso Corporal/efectos de los fármacos , Huesos/efectos de los fármacos , Ingeniería Química/métodos , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Combinación de Medicamentos , Sistemas de Liberación de Medicamentos , Sinergismo Farmacológico , Glucagón/efectos adversos , Glucagón/química , Glucagón/farmacología , Hiperglucemia/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Terapia Molecular Dirigida , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Triyodotironina/efectos adversos , Triyodotironina/química , Triyodotironina/farmacologíaRESUMEN
The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.
Asunto(s)
Maleato de Dizocilpina , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Obesidad , Receptores de N-Metil-D-Aspartato , Animales , Humanos , Masculino , Ratones , Ratas , Tronco Encefálico/metabolismo , Tronco Encefálico/efectos de los fármacos , Modelos Animales de Enfermedad , Maleato de Dizocilpina/efectos adversos , Maleato de Dizocilpina/farmacología , Maleato de Dizocilpina/uso terapéutico , Dislipidemias/tratamiento farmacológico , Dislipidemias/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidoresRESUMEN
The gp130 receptor cytokines IL-6 and CNTF improve metabolic homeostasis but have limited therapeutic use for the treatment of type 2 diabetes. Accordingly, we engineered the gp130 ligand IC7Fc, in which one gp130-binding site is removed from IL-6 and replaced with the LIF-receptor-binding site from CNTF, fused with the Fc domain of immunoglobulin G, creating a cytokine with CNTF-like, but IL-6-receptor-dependent, signalling. Here we show that IC7Fc improves glucose tolerance and hyperglycaemia and prevents weight gain and liver steatosis in mice. In addition, IC7Fc either increases, or prevents the loss of, skeletal muscle mass by activation of the transcriptional regulator YAP1. In human-cell-based assays, and in non-human primates, IC7Fc treatment results in no signs of inflammation or immunogenicity. Thus, IC7Fc is a realistic next-generation biological agent for the treatment of type 2 diabetes and muscle atrophy, disorders that are currently pandemic.
Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Citocinas/síntesis química , Citocinas/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inmunoglobulina G/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Unión Competitiva , Citocinas/química , Diabetes Mellitus Tipo 2/metabolismo , Diseño de Fármacos , Hígado Graso/prevención & control , Prueba de Tolerancia a la Glucosa , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Incretinas/metabolismo , Interleucina-6/antagonistas & inhibidores , Interleucina-6/metabolismo , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Obesidad/metabolismo , Páncreas/metabolismo , Fosfoproteínas/metabolismo , Ingeniería de Proteínas , Receptores de Interleucina-6/metabolismo , Transducción de Señal , Factores de Transcripción , Aumento de Peso/efectos de los fármacos , Proteínas Señalizadoras YAPRESUMEN
Hepatic insulin resistance is a hallmark feature of nonalcoholic fatty liver disease and type-2 diabetes and significantly contributes to systemic insulin resistance. Abnormal activation of nutrient and stress-sensing kinases leads to serine/threonine phosphorylation of insulin receptor substrate (IRS) and subsequent IRS proteasome degradation, which is a key underlying cause of hepatic insulin resistance. Recently, members of the cullin-RING E3 ligases (CRLs) have emerged as mediators of IRS protein turnover, but the pathophysiological roles and therapeutic implications of this cellular signaling regulation is largely unknown. CRLs are activated upon cullin neddylation, a process of covalent conjugation of a ubiquitin-like protein called Nedd8 to a cullin scaffold. Here, we report that pharmacological inhibition of cullin neddylation by MLN4924 (Pevonedistat) rapidly decreases hepatic glucose production and attenuates hyperglycemia in mice. Mechanistically, neddylation inhibition delays CRL-mediated IRS protein turnover to prolong insulin action in hepatocytes. In vitro knockdown of either cullin 1 or cullin 3, but not other cullin members, attenuates insulin-induced IRS protein degradation and enhances cellular insulin signaling activation. In contrast, in vivo knockdown of liver cullin 3, but not cullin 1, stabilizes hepatic IRS and decreases blood glucose, which recapitulates the effect of MLN4924 treatment. In summary, these findings suggest that pharmacological inhibition of cullin neddylation represents a therapeutic approach for improving hepatic insulin signaling and lowering blood glucose.
Asunto(s)
Proteínas Cullin/metabolismo , Ciclopentanos/farmacología , Hiperglucemia/tratamiento farmacológico , Insulina/metabolismo , Hígado/efectos de los fármacos , Proteína NEDD8/metabolismo , Pirimidinas/farmacología , Receptor de Insulina/metabolismo , Animales , Línea Celular , Hiperglucemia/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos , Ubiquitinas/metabolismoRESUMEN
Diabetes mellitus is a significant risk factor for both ischaemic and haemorrhagic stroke, affecting up to a third of individuals with cerebrovascular diseases. Beyond being a risk factor for stroke, diabetes and hyperglycaemia have a negative impact on outcomes after ischaemic and haemorrhagic stroke. Hyperglycaemia during the acute ischaemic stroke phase is associated with a higher risk of haemorrhagic transformation and poor functional outcome, with evidence in favour of early intervention to limit and manage severe hyperglycaemia. Similarly, intensive glucose control nested in a broader bundle of care, including blood pressure, coagulation and temperature control, can provide substantial benefit for clinical outcomes after haemorrhagic stroke. As micro- and macrovascular complications are frequent in people with diabetes, cardiovascular prevention strategies also need to consider tailored treatment. In this regard, the broader availability of sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide 1 receptor agonists can allow tailored treatments, particularly for those with heart failure and chronic kidney disease as comorbidities. Here, we review the main concepts of hyperacute stroke management and CVD prevention among people with diabetes, capitalising on results from large studies and RCTs to inform clinicians on preferred treatments.
Asunto(s)
Accidente Cerebrovascular Hemorrágico , Accidente Cerebrovascular Isquémico , Humanos , Accidente Cerebrovascular Isquémico/prevención & control , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Hemorrágico/epidemiología , Accidente Cerebrovascular Hemorrágico/prevención & control , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Comorbilidad , Factores de Riesgo , Hiperglucemia/complicaciones , Hiperglucemia/tratamiento farmacológico , Control Glucémico , Diabetes Mellitus Tipo 2/complicaciones , Accidente Cerebrovascular/prevención & control , Accidente Cerebrovascular/complicaciones , Diabetes Mellitus , Hipoglucemiantes/uso terapéuticoRESUMEN
AIMS/HYPOTHESIS: Appropriate management of blood glucose levels and the prevention of complications are important in the treatment of diabetes. We have previously reported on a compound named HPH-15 that is not only antifibrotic but also AMP-activated protein kinase (AMPK)-activating. In this study, we evaluated whether HPH-15 is useful as a therapeutic medication for diabetes. METHODS: We examined the effects of HPH-15 on AMPK activation, glucose uptake, fat accumulation and lactic acid production in L6-GLUT4, HepG2 and 3T3-L1 cells, as a model of muscle, liver and fat tissue, respectively. Additionally, we investigated the glucose-lowering, fat-accumulation-suppressing, antifibrotic and AMPK-activating effect of HPH-15 in mice fed a high-fat diet (HFD). RESULTS: HPH-15 at a concentration of 10 µmol/l increased AMPK activation, glucose uptake and membrane translocation of GLUT4 in each cell model to the same extent as metformin at 2 mmol/l. The production of lactic acid (which causes lactic acidosis) in HPH-15-treated cells was equal to or less than that observed in metformin-treated cells. In HFD-fed mice, HPH-15 lowered blood glucose from 11.1±0.3 mmol/l to 8.2±0.4 mmol/l (10 mg/kg) and 7.9±0.4 mmol/l (100 mg/kg) and improved insulin resistance. The HPH-15 (10 mg/kg) group showed the same level of AMPK activation as the metformin (300 mg/kg) group in all organs. The HPH-15-treated HFD-fed mice also showed suppression of fat accumulation and fibrosis in the liver and fat tissue; these effects were more significant than those obtained with metformin. Mice treated with high doses of HPH-15 also exhibited a 44% reduction in subcutaneous fat. CONCLUSIONS/INTERPRETATION: HPH-15 activated AMPK at lower concentrations than metformin in vitro and in vivo and improved blood glucose levels and insulin resistance in vivo. In addition, HPH-15 was more effective than metformin at ameliorating fatty liver and adipocyte hypertrophy in HFD-fed mice. HPH-15 could be effective in preventing fatty liver, a common complication in diabetic individuals. Additionally, in contrast to metformin, high doses of HPH-15 reduced subcutaneous fat in HFD-fed mice. Presumably, HPH-15 has a stronger inhibitory effect on fat accumulation and fibrosis than metformin, accounting for the reduction of subcutaneous fat. Therefore, HPH-15 is potentially a glucose-lowering medication that can lower blood glucose, inhibit fat accumulation and ameliorate liver fibrosis.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Dieta Alta en Grasa , Hiperglucemia , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Células Hep G2 , Células 3T3-L1 , Ratones Endogámicos C57BL , Transportador de Glucosa de Tipo 4/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Metformina/uso terapéutico , Metformina/farmacología , Antifibróticos/farmacología , Antifibróticos/uso terapéutico , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Resistencia a la Insulina/fisiología , Modelos Animales de EnfermedadRESUMEN
PURPOSE: Phosphoinositide 3-kinase (PI3K) inhibition is used for the treatment of certain cancers, but can cause profound hyperglycemia and insulin resistance, for which sodium-glucose cotransporter-2 (SGLT2) inhibitors have been proposed as a preferred therapy. The objective of this research is to assess the effectiveness and safety of SGLT2 inhibitors for hyperglycemia in PI3K inhibition. METHODS: We conducted a single-center retrospective review of adults initiating the PI3K inhibitor alpelisib. Exposure to different antidiabetic drugs and adverse events including diabetic ketoacidosis (DKA) were assessed through chart review. Plasma and point-of-care blood glucoses were extracted from the electronic medical record. Change in serum glucose and the rate of DKA on SGLT2 inhibitor versus other antidiabetic drugs were examined as co-primary outcomes. RESULTS: We identified 103 patients meeting eligibility criteria with median follow-up of 92 days after starting alpelisib. When SGLT2 inhibitors were used to treat hyperglycemia, they were associated with a decrease in mean random glucose by -46 mg/dL (95% CI - 77 to - 15) in adjusted linear modeling. Five cases of DKA were identified, two occurring in patients on alpelisib plus SGLT2 inhibitor. Estimated incidence of DKA was: alpelisib plus SGLT2 inhibitor, 48 DKA cases per 100 patient-years (95% CI 6, 171); alpelisib with non-SGLT2 inhibitor antidiabetic drugs, 15 (95% CI 2, 53); alpelisib only, 4 (95% CI 0.1, 22). CONCLUSIONS: SGLT2 inhibitors are effective treatments for hyperglycemia in the setting of PI3K inhibition.
Asunto(s)
Neoplasias de la Mama , Cetoacidosis Diabética , Hiperglucemia , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Adulto , Humanos , Femenino , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol 3-Quinasa , Neoplasias de la Mama/tratamiento farmacológico , Hipoglucemiantes , Cetoacidosis Diabética/inducido químicamente , Cetoacidosis Diabética/tratamiento farmacológico , Cetoacidosis Diabética/epidemiología , Glucemia , Hiperglucemia/inducido químicamente , Hiperglucemia/tratamiento farmacológico , SodioRESUMEN
PURPOSE: Alpelisib plus fulvestrant demonstrated a significant progression-free survival benefit versus fulvestrant in patients with PIK3CA-mutated HR+ /HER2- advanced breast cancer (ABC) (SOLAR-1). Hyperglycemia, an on-target adverse effect of PI3Kα inhibition, can lead to dose modifications, potentially impacting alpelisib efficacy. We report data from preclinical models and two clinical trials (SOLAR-1 and BYLieve) on Sodium glucose cotransporter 2 inhibitor (SGLT2i) use to improve PI3Kα inhibitor-associated hyperglycemia. METHODS: Healthy Brown Norway (BN), mild diabetic Zucker diabetic fatty (ZDF), and Rat1-myr-p110α/HBRX3077 tumor-bearing nude rats treated with alpelisib were analyzed for glucose and insulin control with metformin and dapagliflozin (SGLT2i) and alpelisib efficacy. Hyperglycemia adverse events (AEs) were compared between patients receiving SGLT2i with alpelisib (n = 19) and a propensity score-matched cohort not receiving SGLT2i (n = 74) in both trials. RESULTS: Dapagliflozin and metformin in BN and ZDF rats treated with alpelisib normalized blood glucose and reduced insulin levels. No signs of ketosis or drug-drug interaction were observed when metformin and dapagliflozin was administered with alpelisib. Alpelisib antitumor efficacy was maintained when used with dapagliflozin in tumor-bearing rats. Compared with a matched set of patients without SGLT2i, patients receiving SGLT2i had 4.9 and 6.4 times lower rates of grade ≥ 3 hyperglycemia AEs and hyperglycemia AEs resulting in alpelisib dose adjustments, interruptions, or withdrawals, respectively, and a relative reduction in risk of experiencing these AEs (70.6% and 35.7%). CONCLUSION: These data suggest adding an SGLT2i can effectively manage hyperglycemia, resulting in fewer alpelisib dose modifications and discontinuations in patients with PIK3CA-mutated HR+ /HER2- ABC (SOLAR-1: NCT02437318; BYLieve: NCT03056755).
Asunto(s)
Neoplasias de la Mama , Hiperglucemia , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Anciano , Animales , Femenino , Humanos , Persona de Mediana Edad , Ratas , Compuestos de Bencidrilo/uso terapéutico , Glucemia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Modelos Animales de Enfermedad , Glucósidos/farmacología , Glucósidos/uso terapéutico , Hiperglucemia/inducido químicamente , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/efectos adversos , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Ratas Zucker , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Tiazoles/efectos adversos , Tiazoles/farmacología , Tiazoles/uso terapéuticoRESUMEN
RATIONALE: Maintaining glycemic control of critically ill patients may impact outcomes such as survival, infection, and neuromuscular recovery, but there is equipoise on the target blood levels, monitoring frequency, and methods. OBJECTIVES: The purpose was to update the 2012 Society of Critical Care Medicine and American College of Critical Care Medicine (ACCM) guidelines with a new systematic review of the literature and provide actionable guidance for clinicians. PANEL DESIGN: The total multiprofessional task force of 22, consisting of clinicians and patient/family advocates, and a methodologist applied the processes described in the ACCM guidelines standard operating procedure manual to develop evidence-based recommendations in alignment with the Grading of Recommendations Assessment, Development, and Evaluation Approach (GRADE) methodology. Conflict of interest policies were strictly followed in all phases of the guidelines, including panel selection and voting. METHODS: We conducted a systematic review for each Population, Intervention, Comparator, and Outcomes question related to glycemic management in critically ill children (≥ 42 wk old adjusted gestational age to 18 yr old) and adults, including triggers for initiation of insulin therapy, route of administration, monitoring frequency, role of an explicit decision support tool for protocol maintenance, and methodology for glucose testing. We identified the best available evidence, statistically summarized the evidence, and then assessed the quality of evidence using the GRADE approach. We used the evidence-to-decision framework to formulate recommendations as strong or weak or as a good practice statement. In addition, "In our practice" statements were included when the available evidence was insufficient to support a recommendation, but the panel felt that describing their practice patterns may be appropriate. Additional topics were identified for future research. RESULTS: This guideline is an update of the guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. It is intended for adult and pediatric practitioners to reassess current practices and direct research into areas with inadequate literature. The panel issued seven statements related to glycemic control in unselected adults (two good practice statements, four conditional recommendations, one research statement) and seven statements for pediatric patients (two good practice statements, one strong recommendation, one conditional recommendation, two "In our practice" statements, and one research statement), with additional detail on specific subset populations where available. CONCLUSIONS: The guidelines panel achieved consensus for adults and children regarding a preference for an insulin infusion for the acute management of hyperglycemia with titration guided by an explicit clinical decision support tool and frequent (≤ 1 hr) monitoring intervals during glycemic instability to minimize hypoglycemia and against targeting intensive glucose levels. These recommendations are intended for consideration within the framework of the patient's existing clinical status. Further research is required to evaluate the role of individualized glycemic targets, continuous glucose monitoring systems, explicit decision support tools, and standardized glycemic control metrics.
Asunto(s)
Control Glucémico , Hiperglucemia , Adolescente , Adulto , Niño , Humanos , Glucemia , Automonitorización de la Glucosa Sanguínea , Cuidados Críticos , Enfermedad Crítica/terapia , Hiperglucemia/tratamiento farmacológico , Insulina/uso terapéutico , Lactante , PreescolarRESUMEN
Diabetes mellitus is a chronic metabolic disease characterized by persistent hyperglycemia, revealing a decrease in insulin efficiency. The sustained glucotoxic pancreatic microenvironment increases reactive oxygen species generation, resulting in chronic oxidative stress responsible for massive DNA damage. This triggers PARP-1 activation with both NAD+ and ATP depletion, affecting drastically pancreatic beta cells' energy storage and leading to their dysfunction and death. The aim of the present study is to highlight the main histological changes observed in pancreatic islets pre-treated with a unique NADH intraperitoneal injection in a streptozotocin-(STZ)-induced diabetes model. In order to adjust NADH doses, a preliminary study with three different doses, 500 mg/kg, 300 mg/kg, and 150 mg/kg, respectively, was conducted. Subsequently, and on the basis of the results of the aforementioned study, Wistar rats were randomly divided into four groups: non-diabetic control group, diabetics (STZ 45 mg/kg), NADH-treated group (150 mg/kg) 15 min before STZ administration, and NADH-treated group (150 mg/kg) 15 min after STZ administration. The effect of NADH was assessed by blood glucose level, TUNEL staining, histo-morphological analysis, and immunohistochemistry. The optimum protective dose of NADH was 150 mg/kg. NADH effectively decreased hyperglycemia and reduced diabetes induced by STZ. Histologically, NADH pre-treatment revealed a decrease in beta cell death favoring apoptosis over necrosis and therefore preventing inflammation with further beta cell destruction. Our data clearly demonstrate that NADH prior or post-treatment could effectively prevent the deleterious loss of beta cell mass in STZ-induced diabetes in rats and preserve the normal pancreatic islet's function.
Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Células Secretoras de Insulina , Ratas , Animales , NAD/efectos adversos , Ratas Wistar , Estreptozocina/efectos adversos , Inyecciones Intraperitoneales , Insulina/metabolismo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/inducido químicamente , Hiperglucemia/prevención & control , Diabetes Mellitus Experimental/metabolismo , Glucemia/metabolismoRESUMEN
Type 2 diabetes mellitus is a prevalent metabolic disease, posing a considerable threat to public health. Oligonucleotide drugs have proven to be a promising field of therapy for the diseases. In this study, we reported that a herbal small RNA (sRNA), JGL-sRNA-h7 (B34735529, F1439.L002444.A11), could exhibit potent hypoglycemic effects by targeting glucose-6-phosphatase. Oral administration of sphingosine (d18:1)-JGL-sRNA-h7 bencaosomes ameliorated hyperglycemia and diabetic kidney injury better than metformin in db/db mice. Furthermore, glucose tolerance was also improved in sphingosine (d18:1)-JGL-sRNA-h7 bencaosomes-treated beagle dogs. Our study indicates that JGL-sRNA-h7 could be a promising hypoglycemic oligonucleotide drug.
Asunto(s)
Hiperglucemia , Hipoglucemiantes , Animales , Perros , Masculino , Ratones , Administración Oral , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/veterinaria , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Ratones Endogámicos C57BL , Oligonucleótidos/administración & dosificaciónRESUMEN
Carvacrol (CV) is an organic compound found in the essential oils of many aromatic herbs. It is nearly unfeasible to analyze all the current human proteins for a query ligand using in vitro and in vivo methods. This study aimed to clarify whether CV possesses an anti-diabetic feature via Docking-based inverse docking and molecular dynamic (MD) simulation and in vitro characterization against a set of novel human protein targets. Herein, the best poses of CV docking simulations according to binding energy ranged from -7.9 to -3.5 (kcal/mol). After pathway analysis of the protein list through GeneMANIA and WebGestalt, eight interacting proteins (DPP4, FBP1, GCK, HSD11ß1, INSR, PYGL, PPARA, and PPARG) with CV were determined, and these proteins exhibited stable structures during the MD process with CV. In vitro application, statistically significant results were achieved only in combined doses with CV or metformin. Considering all these findings, PPARG and INSR, among these target proteins of CV, are FDA-approved targets for treating diabetes. Therefore, CV may be on its way to becoming a promising therapeutic compound for treating Diabetes Mellitus (DM). Our outcomes expose formerly unexplored potential target human proteins, whose association with diabetic disorders might guide new potential treatments for DM.
Asunto(s)
Cimenos , Hipoglucemiantes , Metformina , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Monoterpenos , Humanos , Cimenos/farmacología , Cimenos/química , Metformina/farmacología , Metformina/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Monoterpenos/farmacología , Monoterpenos/química , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Receptor de Insulina/metabolismo , PPAR gamma/metabolismo , PPAR gamma/química , Unión Proteica , Simulación por Computador , Antígenos CDRESUMEN
AIMS: This meta-analysis investigated the efficacy and safety of fully closed-loop automated insulin delivery (AID) in patients with type 2 diabetes. MATERIALS AND METHODS: We systemically searched PubMed, Scopus, Web of Science, and Cochrane Central from inception until April 26, 2023. We included randomized controlled trials (RCTs) comparing fully closed-loop AID versus conventional insulin therapy. The outcomes were pooled as the mean difference (MD) and risk ratio with 95% confidence interval (CI) in the random effect model. Our primary outcome was the proportion of time in the target glucose range (5.6-10 mmol/L, 3.9-10 mmol/L, or 3.9-8 mmol/L, depending on the study). Key secondary outcomes included the proportion of time spent in hyperglycaemia or hypoglycaemia. RESULTS: We included seven RCTs (three crossover and four parallel design), compromising 390 patients. Our analysis showed that compared to the control group, fully closed-loop AID increased the proportion of time spent within the target glucose range by additional 337 min per 24 h (MD = 23.39%, 95% CI [16.64%, 30.14%], p < 0.01), additional 108 min overnight (MD = 22.40%, 95% CI [12.88%, 31.91%], p < 0.01), and additional 258 min during the daytime period (MD = 26.85%, 95% CI [21.06%, 32.63%], p < 0.01). Compared to the control group, the overall time in hyperglycaemia was shortened by 326 min per 24 h (MD = -22.67%, 95% CI [-30.87%, -14.46%], p < 0.01). There was no significant difference between the two groups in terms of overall, overnight, and daytime periods spent in hypoglycaemia. CONCLUSIONS: Our meta-analysis suggests that fully closed-loop AID may improve glycaemic control in patients with type 2 diabetes, particularly for those with more challenging diabetes management. Further research is required to establish the feasibility of implementing these systems in clinical practice. [Correction added on 26 August 2023 after first online publication: Under Results, the first sentence "We included seven RCTs (three crossover and one parallel designs)" has been changed to "We included seven RCTs (three crossover and four parallel designs)".].
Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hiperglucemia , Hipoglucemia , Humanos , Insulina/uso terapéutico , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Control Glucémico , Sistemas de Infusión de Insulina , Ensayos Clínicos Controlados Aleatorios como Asunto , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemia/inducido químicamente , Hipoglucemia/prevención & control , Hipoglucemia/tratamiento farmacológico , Glucemia , Glucosa , Hiperglucemia/prevención & control , Hiperglucemia/tratamiento farmacológico , Estudios CruzadosRESUMEN
PURPOSE OF REVIEW: Postprandial hyperglycemia, or elevated blood glucose after meals, is associated with the development and progression of various diabetes-related complications. Prandial insulins are designed to replicate the natural insulin release after meals and are highly effective in managing post-meal glucose spikes. Currently, different types of prandial insulins are available such as human regular insulin, rapid-acting analogs, ultra-rapid-acting analogs, and inhaled insulins. Knowledge about diverse landscape of prandial insulin will optimize glycemic management. RECENT FINDINGS: Human regular insulin, identical to insulin produced by the human pancreas, has a slower onset and extended duration, potentially leading to post-meal hyperglycemia and later hypoglycemia. In contrast, rapid-acting analogs, such as lispro, aspart, and glulisine, are new insulin types with amino acid modifications that enhance their subcutaneous absorption, resulting in a faster onset and shorter action duration. Ultra-rapid analogs, like faster aspart and ultra-rapid lispro, offer even shorter onset of action, providing better meal-time flexibility. The Technosphere insulin offers an inhaled route for prandial insulin delivery. The prandial insulins can be incorporated into basal-bolus, basal plus, or prandial-only regimens or delivered through insulin pumps. Human regular insulin, aspart, lispro, and faster aspart are recommended for management of hyperglycemia during pregnancy. Ongoing research is focused on refining prandial insulin replacement and exploring newer delivery methods. The article provides a comprehensive overview of various prandial insulin options and their clinical applications in the management of diabetes.
Asunto(s)
Hipoglucemiantes , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/uso terapéutico , Insulina/administración & dosificación , Insulina/uso terapéutico , Periodo Posprandial , Hiperglucemia/tratamiento farmacológico , Femenino , Glucemia/efectos de los fármacos , Glucemia/análisis , Diabetes Mellitus/tratamiento farmacológico , EmbarazoRESUMEN
AIM: To perform a direct, double-blind, randomised, crossover comparison of subcutaneous and intravenous glucagon-like peptide-1 (GLP-1) in hyperglycaemic subjects with type 2 diabetes naïve to GLP-1-based therapy. MATERIALS AND METHODS: Ten fasted, hyperglycaemic subjects (1 female, age 63 ± 10 years [mean ± SD], glycated haemoglobin 73.5 ± 22.0 mmol/mol [8.9% ± 2.0%], both mean ± SD) received subcutaneous GLP-1 and intravenous saline, or intravenous GLP-1 and subcutaneous saline. Infusion rates were doubled every 120 min (1.2, 2.4, 4.8 and 9.6 pmol·kg-1·min-1 for subcutaneous, and 0.3, 0.6, 1.2 and 2.4 pmol·kg-1·min-1 for intravenous). Plasma glucose, total and intact GLP-1, insulin, C-peptide, glucagon and gastrointestinal symptoms were evaluated over 8 h. The results are presented as mean ± SEM. RESULTS: Plasma glucose decreased more with intravenous (by ~8.0 mmol/L [144 mg/dL]) than subcutaneous GLP-1 (by ~5.6 mmol/L [100 mg/dL]; p < 0.001). Plasma GLP-1 increased dose-dependently, but more with intravenous than subcutaneous for both total (∆max 154.2 ± 3.9 pmol/L vs. 85.1 ± 3.8 pmol/L; p < 0.001), and intact GLP-1 (∆max 44.2 ± 2.2 pmol/L vs. 12.8 ± 2.2 pmol/L; p < 0.001). Total and intact GLP-1 clearance was higher for subcutaneous than intravenous GLP-1 (p < 0.001 and p = 0.002, respectively). The increase in insulin secretion was greater, and glucagon was suppressed more with intravenous GLP-1 (p < 0.05 each). Gastrointestinal symptoms did not differ (p > 0.05 each). CONCLUSIONS: Subcutaneous GLP-1 administration is much less efficient than intravenous GLP-1 in lowering fasting plasma glucose, with less stimulation of insulin and suppression of glucagon, and much less bioavailability, even at fourfold higher infusion rates.
Asunto(s)
Glucemia , Estudios Cruzados , Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Hiperglucemia , Hipoglucemiantes , Humanos , Femenino , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Persona de Mediana Edad , Péptido 1 Similar al Glucagón/administración & dosificación , Masculino , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Método Doble Ciego , Anciano , Inyecciones Subcutáneas , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Infusiones Intravenosas , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismo , Glucagón/administración & dosificación , Glucagón/sangre , Péptido C/sangreRESUMEN
AIMS: Corticosteroids are the treatment of choice for many inflammatory diseases but often lead to adverse effects, including hyperglycaemia. This study investigated the mechanisms driving differential effects on glucose control for AZD9567, an oral nonsteroidal selective glucocorticoid receptor modulator vs. prednisolone in 46 patients with type 2 diabetes mellitus. METHODS: In this randomized, double-blind, 2-way cross-over study (NCT04556760), participants received either AZD9567 72 mg and prednisolone 40 mg daily (cohort 1); AZD9567 40 mg and prednisolone 20 mg daily (cohort 2); or placebo and prednisolone 5 mg daily (cohort 3). Treatment duration was 3 days with a 3-week washout between treatment periods. Glycaemic control was assessed after a standardized meal and with continuous glucose monitoring. RESULTS: A significant difference between AZD9567 and prednisolone in favour of AZD9567 was observed for the change from baseline to Day 4 glucose excursions postmeal in cohort 1 (glucose area under the curve from 0 to 4 h -4.54%; 95% confidence interval [CI]: -8.88, -0.01; P = .049), but not in cohort 2 (-5.77%; 95% CI: -20.92, 12.29; P = .435). In cohort 1, significant differences between AZD9567 and prednisolone were also seen for the change from baseline to day 4 in insulin and glucagon secretion postmeal (P < .001 and P = .005, respectively) and change from baseline to Day 4 in GLP-1 response (P = .022). Significant differences between AZD9567 and prednisolone for 24-h glucose control were observed for both cohort 1 (-1.507 mmol/L; 95% CI: -2.0820, -0.9314; P < .001) and cohort 2 (-1.110 mmol/L; 95% CI -1.7257, -0.4941; P < .001). CONCLUSION: AZD9567 significantly reduced treatment-induced hyperglycaemia compared with prednisolone.
Asunto(s)
Glucemia , Estudios Cruzados , Diabetes Mellitus Tipo 2 , Control Glucémico , Prednisolona , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Masculino , Persona de Mediana Edad , Prednisolona/administración & dosificación , Prednisolona/uso terapéutico , Prednisolona/efectos adversos , Femenino , Método Doble Ciego , Glucemia/efectos de los fármacos , Anciano , Hiperglucemia/inducido químicamente , Hiperglucemia/sangre , Hiperglucemia/tratamiento farmacológico , Glucocorticoides/administración & dosificación , Glucocorticoides/efectos adversos , Glucocorticoides/farmacología , Adulto , Insulina , Receptores de Glucocorticoides , Periodo PosprandialRESUMEN
INTRODUCTION: Acute hyperglycemia (HG) enhances inflammatory and oxidative stress and exacerbates myocardial infarct size during ischemia-reperfusion injury by activating splenic leukocytes. Formyl peptide receptor 1 (FPR1) on leukocytes is activated by and mediates myocardial ischemia-reperfusion injury. We hypothesize that selective FPR1 antagonist cinnamoyl-F-(D)L-F-(D)L-F (CF) or potent reducing agent tris (2-carboxyethyl) phosphine hydrochloride (TCEP) could abrogate hyperglycemic infarct exacerbation, both alone and synergistically via a novel CF-TCEP compound that would target leukocytes for antioxidative effect. METHODS: Acute HG was induced in wild type mice with an intraperitoneal dextrose injection followed by left coronary artery occlusion (30 min) and reperfusion (60 min). In treatment groups, CF (0.1 mg/kg or 1 mg/kg), TCEP (1 mg/kg or 20 mg/kg), or the CF-TCEP conjugate (0.1 mg/kg) was administered intravenously before reperfusion. The hearts were harvested to measure infarct size (IF). RESULTS: HG resulted in >50% increase in IF compared to euglycemic mice (52.1 ± 3.0 versus 34.0 ± 3.2%, P < 0.05). Neither CF nor TCEP independently exerted an infarct-sparing effect at lower doses (46.2 ± 2.1% or 50.9 ± 4.1%, P > 0.05 versus HG control) but at high doses, significantly attenuated IF exacerbation (23.2 ± 5.2% or 33.9 ± 3.6%, P < 0.05 versus HG control). However, the low-dose CF-TCEP conjugate significantly reduced IF (39.1 ± 1.7%, P < 0.05 versus HG control). IF was decreased to near euglycemic control levels (P > 0.05). CONCLUSIONS: The CF-TECP conjugate synergistically attenuated HG infarct exacerbation at significantly lower respective doses of CF and TCEP. In addition to the intrinsic anti-inflammatory effect of blocking FPR1, CF is also a feasible tool for leukocyte-targeted therapy to treat IRI.
Asunto(s)
Antioxidantes , Hiperglucemia , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/patología , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Masculino , Ratones , Hiperglucemia/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Receptores de Formil Péptido/antagonistas & inhibidores , Receptores de Formil Péptido/metabolismo , Modelos Animales de EnfermedadRESUMEN
BACKGROUND: Few studies have evaluated the administration of intravenous (IV) insulin infusions for uncontrolled hyperglycemia in non-intensive care unit (ICU) patients, and there is inadequate data to guide how to appropriately administer IV insulin infusions to this patient population. OBJECTIVE: Determine the effectiveness and safety of our institution's non-critical care IV insulin infusion order set. METHODS: This retrospective study was conducted at 2 institutions within a health care system. The primary outcome was the number of individuals who achieved a glucose level ≤180 mg/dL. For those meeting this endpoint, the time to achieving this outcome and the percentage of glucose checks within the goal range were determined. The primary safety endpoint was the number of individuals who experienced hypoglycemia (glucose level <70 mg/dL). Patients were included if they were ≥18 years of age and received the non-critical care IV insulin infusion order set outside of the ICU. RESULTS: Twenty-one (84%) patients achieved a glucose level ≤180 mg/dL. The median (inter-quartile range [IQR]) time to achieving the primary outcome was 5.7 h (3.9-8.3). In patients who achieved the primary outcome, 41.8% of the glucose readings obtained after achieving this outcome were within goal range. Two (8%) patients experienced hypoglycemia. Both of these events occurred within 8 hours of therapy initiation and neither patient received prior doses of subcutaneous insulin. Of the 4 patients who did not achieve a glucose level ≤180 mg/dL, 2 received high-dose corticosteroids, and 3 achieved a glucose level between 181 and 200 mg/dL. CONCLUSION AND RELEVANCE: Our findings support the safe administration of IV insulin infusions to non-ICU patients when targeting a glucose range of 140 to 180 mg/dL and limiting the infusion duration.
Asunto(s)
Hiperglucemia , Hipoglucemia , Humanos , Insulina/efectos adversos , Hipoglucemiantes/uso terapéutico , Estudios Retrospectivos , Glucemia , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/inducido químicamente , Hipoglucemia/inducido químicamente , Hipoglucemia/tratamiento farmacológico , Infusiones Intravenosas , Glucosa/uso terapéutico , Unidades de Cuidados IntensivosRESUMEN
BACKGROUND: Retinal pigment epithelial cells (RPECs) are a type of retinal cells that structurally and physiologically support photoreceptors. However, hyperglycemia has been shown to play a critical role in the progression of diabetic retinopathy (DR), which is one of the leading causes of vision impairment. In the diabetic eye, the high glucose environment damages RPECs via the induction of oxidative stress, leading to the release of excess reactive oxygen species (ROS) and triggering apoptosis. In this study, we aim to investigate the antioxidant mechanism of Vitamin C in reducing hyperglycemia-induced stress and whether this mechanism can preserve the function of RPECs. METHODS AND RESULTS: ARPE-19 cells were treated with high glucose in the presence or absence of Vitamin C. Cell viability was measured by MTT assay. Cleaved poly ADP-ribose polymerase (PARP) was used to identify apoptosis in the cells. ROS were detected by the DCFH-DA reaction. The accumulation of sorbitol in the aldose reductase (AR) polyol pathway was determined using the sorbitol detection assay. Primary mouse RPECs were isolated from adult mice and identified by Rpe65 expression. The mitochondrial damage was measured by mitochondrial membrane depolarization. Our results showed that high glucose conditions reduce cell viability in RPECs while Vitamin C can restore cell viability, compared to the vehicle treatment. We also demonstrated that Vitamin C reduces hyperglycemia-induced ROS production and prevents cell apoptosis in RPECs in an AR-independent pathway. CONCLUSIONS: These results suggest that Vitamin C is not only a nutritional necessity but also an adjuvant that can be combined with AR inhibitors for alleviating hyperglycemic stress in RPECs.
Asunto(s)
Apoptosis , Ácido Ascórbico , Supervivencia Celular , Glucosa , Hiperglucemia , Estrés Oxidativo , Especies Reactivas de Oxígeno , Epitelio Pigmentado de la Retina , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Hiperglucemia/metabolismo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/complicaciones , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glucosa/metabolismo , Humanos , Línea Celular , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Retinopatía Diabética/metabolismo , Retinopatía Diabética/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacosRESUMEN
SARS-CoV-2 can induce insulin resistance, which is, among others, mediated by adipose tissue dysfunction and reduced angiotensin-converting enzyme 2 (ACE2) enzymatic activity. In SARS-CoV-2-infected mice, the tyrosine kinase inhibitor imatinib attenuates inflammation and improves insulin sensitivity. Here, we report the effects of imatinib on incident hyperglycaemia, circulating levels of glucoregulatory proteins, longitudinal insulin sensitivity and ACE-2 enzymatic activity in 385 hospitalized COVID-19 patients who participated in a randomized, double-blind, placebo-controlled clinical trial. Patients with severe hyperglycaemia had similar demographics compared to those without, but required longer hospital stays and exhibited higher invasive ventilation and mortality rates. The incidence of severe hyperglycaemia was significantly lower in patients treated with imatinib, while insulin production and central insulin sensitivity were unaffected. Imatinib increased plasma angiotensin-2 and adiponectin levels, and decreased c-Jun N-terminal protein kinase 1 (JNK1), JNK2 and interleukin-6 levels. These findings suggest that imatinib restores endocrine control of peripheral glucose uptake in COVID-19.