Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2314772121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621122

RESUMEN

Dynamic networks composed of constituents that break and reform bonds reversibly are ubiquitous in nature owing to their modular architectures that enable functions like energy dissipation, self-healing, and even activity. While bond breaking depends only on the current configuration of attachment in these networks, reattachment depends also on the proximity of constituents. Therefore, dynamic networks composed of macroscale constituents (not benefited by the secondary interactions cohering analogous networks composed of molecular-scale constituents) must rely on primary bonds for cohesion and self-repair. Toward understanding how such macroscale networks might adaptively achieve this, we explore the uniaxial tensile response of 2D rafts composed of interlinked fire ants (S. invicta). Through experiments and discrete numerical modeling, we find that ant rafts adaptively stabilize their bonded ant-to-ant interactions in response to tensile strains, indicating catch bond dynamics. Consequently, low-strain rates that should theoretically induce creep mechanics of these rafts instead induce elastic-like response. Our results suggest that this force-stabilization delays dissolution of the rafts and improves toughness. Nevertheless, above 35[Formula: see text] strain low cohesion and stress localization cause nucleation and growth of voids whose coalescence patterns result from force-stabilization. These voids mitigate structural repair until initial raft densities are restored and ants can reconnect across defects. However mechanical recovery of ant rafts during cyclic loading suggests that-even upon reinstatement of initial densities-ants exhibit slower repair kinetics if they were recently loaded at faster strain rates. These results exemplify fire ants' status as active agents capable of memory-driven, stimuli-response for potential inspiration of adaptive structural materials.


Asunto(s)
Hormigas , Hormigas de Fuego , Animales , Hormigas/fisiología , Física , Microdominios de Membrana
2.
Ann Allergy Asthma Immunol ; 133(1): 28-32, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38281676

RESUMEN

Imported fire ants (IFAs) permeate many areas of the United States. The IFA allergy is a significant health problem for children and adults. Stings from IFAs cause pustules, localized reactions, and anaphylaxis. There have been at least 32 deaths attributed to IFA stings. Because of the difficulty with the extraction of venom from the fire ants, whole body extracts are the only commercially available serum for immunotherapy. Fortunately, whole body extract immunotherapy given conventionally or through the rush method has proven to be efficacious and safe. It is recommended for the treatment of IFA hypersensitivity. Maintenance immunotherapy is typically given at 4-week intervals. However, more recent research has revealed that these intervals can gradually be extended up to 12 weeks similar to flying Hymenoptera venom immunotherapy. Long-term adherence to IFA immunotherapy remains an obstacle for many patients despite its potential as a life-saving treatment.


Asunto(s)
Venenos de Hormiga , Hormigas , Desensibilización Inmunológica , Mordeduras y Picaduras de Insectos , Animales , Hormigas/inmunología , Venenos de Hormiga/inmunología , Venenos de Hormiga/uso terapéutico , Humanos , Desensibilización Inmunológica/métodos , Mordeduras y Picaduras de Insectos/inmunología , Mordeduras y Picaduras de Insectos/terapia , Alérgenos/inmunología , Hipersensibilidad/terapia , Hipersensibilidad/inmunología , Hormigas de Fuego
3.
Naturwissenschaften ; 111(5): 47, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302452

RESUMEN

Deformed wing virus (DWV) has long been identified as a critical pathogen affecting honeybees, contributing to colony losses through wing deformities, neurological impairments, and reduced lifespan. Since DWV also affects other pollinators, it poses a significant threat to global pollination networks. While honeybees have been the focal point of DWV studies, emerging research indicates that this RNA virus is not host-specific but rather a generalist pathogen capable of infecting a wide range of insect species, including other bee species such as bumblebees and solitary bees, as well as wasps and ants. This expands the potential impact of DWV beyond honeybees to broader ecological communities. The black imported fire ant, Solenopsis richteri, is an economically important invasive ant species. In this study, we describe deformed wing (DW) symptoms in S. richteri. DW alates were found in three of nine (33%) laboratory colonies. The symptoms ranged from severely twisted wings to a single crumpled wing tip. Additionally, numerous symptomatic alates also displayed altered mobility, ranging from an ataxic gait to an inability to walk. Viral replication of DWV was confirmed using a modified strand-specific RT-PCR. Our results suggest that S. richteri can be an alternative host for DWV, expanding our understanding of DWV as a generalist pathogen in insects. However, additional research is required to determine whether DWV is the etiological agent responsible for DW syndrome in S. richteri.


Asunto(s)
Hormigas , Virus ARN , Alas de Animales , Animales , Virus ARN/aislamiento & purificación , Virus ARN/fisiología , Virus ARN/genética , Hormigas/virología , Alas de Animales/virología , Hormigas de Fuego
4.
J Nat Prod ; 87(9): 2302-2309, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39196851

RESUMEN

Imported fire ants are significant agricultural pests. Repellents can be used to prevent foraging fire ants from entering sensitive areas, including electrical equipment, nursing homes, and hospitals. Bioassay-guided fractionation of the essential oil extracted from gurjun balsam (Dipterocarpus turbinatus) resulted in the identification of (-)-α-copaene (1) as the repellent constituent with a minimum repellent effective dose (MRED) of 15.6 µg/g against both red imported fire ants (Solenopsis invicta) and hybrid imported fire ants (Solenopsis invicta × Solenopsis richteri). Stereoselective oxidation of 1 via autoxidation and chemical methods produced (-)-5R-hydroperoxy-α-copaene (2), (+)-3S-hydroperoxycopa-4-ene (3), (-)-α-copaene oxide (4), (+)-ß-copaen-4α-ol (5), copaenediol (6), and copaene ketol (7). Reduction of 2 and 3 with triphenylphosphine afforded (-)-5R-hydroxy-α-copaene (2a) and (+)-3S-hydroxycopa-4-ene (3a), respectively, which led to the structural revision of copa-3-en-2α-ol and copa-2-en-4-ol as 2a and 3, respectively. The configurational assignment of compound 4 in the literature was also clarified by the detailed analysis of 2D NMR spectroscopic data. Compounds 2-7 showed repellency with MREDs ranging from 3.9 to 15.6 µg/g against hybrid and red imported fire ants, indicating that chemical modification can enhance the repellent effect of (-)-α-copaene.


Asunto(s)
Hormigas , Repelentes de Insectos , Aceites Volátiles , Oxidación-Reducción , Sesquiterpenos , Hormigas/efectos de los fármacos , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Animales , Sesquiterpenos/química , Sesquiterpenos/farmacología , Estereoisomerismo , Aceites Volátiles/química , Aceites Volátiles/farmacología , Estructura Molecular , Hormigas de Fuego
5.
J Invertebr Pathol ; 203: 108056, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38176676

RESUMEN

Solenopsis invicta virus 3 (SINV-3) has been shown to cause significant mortality among all stages of its host, Solenopsis invicta. One impact of the virus is alteration of worker ant foraging behavior, which results in colony starvation and collapse over time. Additionally, it has been hypothesized that SINV-3 infection of S. invicta may disrupt worker ant brood care behavior. To investigate this possibility, various combinations of SINV-3-infected and -uninfected adult (worker) and immature (brood) stages were placed together and monitored using the response variables, mortality, egg hatch, and virus load. While significant differences in percent cumulative S. invicta worker ant mortality among six combinations of SINV-3-infected and -uninfected stages were observed, no significant differences in percent cumulative mortality of S. invicta larvae or pupae were observed. No significant differences in egg hatch were observed among SINV-3-uninfected, SINV-3-infected (colony-treated and queen-treated), and starved colonies. Eggs hatched normally in 10-12 days for all treatments indicating that egg care by worker ants was unaffected by SINV-3 infection status. The study further clarifies SINV-3 pathogenesis in its host, S. invicta. Larval mortality in SINV-3-infected colonies does not appear to be caused by worker ant neglect. S. invicta brood under the care of SINV-3-infected worker ants did not exhibit higher mortality rates compared with those tended by SINV-3-uninfected worker ants.


Asunto(s)
Hormigas , Virus ARN , Animales , Hormigas de Fuego , Virus ARN/fisiología , Hormigas/fisiología , Larva
6.
Bull Entomol Res ; 114(3): 454-465, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38751346

RESUMEN

The Argentine ant (Linepithema humile) and the little fire ant (Wasmannia auropunctata) are among the top 100 invasive alien species globally, causing significant ecological and economic harm. Therefore, it is crucial to study their potential geographic distribution worldwide. This study aimed to predict their global distribution under current and future climate conditions. We used distribution data from various sources, including CABI, GBIF, and PIAKey, and key climate variables selected from 19 environmental factors to model their potential geographic distribution using MaxEnt. The AUC values were 0.925 and 0.937 for L. humile and W. auropunctata, respectively, indicating good predictive performance. Suitable areas for L. humile were mainly in southern North America, northern South America, Europe, central Asia, southern Oceania, and parts of Africa, while W. auropunctata suitable areas were mostly in southern North America, most of South America, a small part of Europe, southern Asia, central Africa, and some parts of Oceania. Under climate change scenario, suitable areas for L. humile increased, while highly suitable areas for W. auropunctata decreased. The top four countries with the largest areas of overlapping suitable habitat under current climate were Brazil, China, Australia, and Argentina, while under future SSP585 climate scenario, the top four countries were Brazil, China, Indonesia, and Argentina. Some countries, such as Estonia and Finland, will see an overlapping adaptation area under climate change. In conclusion, this study provides insight into controlling the spread and harm of L. humile and W. auropunctata.


Asunto(s)
Distribución Animal , Hormigas , Cambio Climático , Especies Introducidas , Hormigas/fisiología , Animales , Ecosistema , Hormigas de Fuego
7.
Molecules ; 29(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474545

RESUMEN

Sol g 2 is the major protein in Solenopsis geminata fire ant venom. It shares the highest sequence identity with Sol i 2 (S. invicta) and shares high structural homology with LmaPBP (pheromone-binding protein (PBP) from the cockroach Leucophaea maderae). We examined the specific Sol g 2 protein ligands from fire ant venom. The results revealed that the protein naturally formed complexes with hydrocarbons, including decane, undecane, dodecane, and tridecane, in aqueous venom solutions. Decane showed the highest affinity binding (Kd) with the recombinant Sol g 2.1 protein (rSol g 2.1). Surprisingly, the mixture of alkanes exhibited a higher binding affinity with the rSol g 2.1 protein compared to a single one, which is related to molecular docking simulations, revealing allosteric binding sites in the Sol g 2.1 protein model. In the trail-following bioassay, we observed that a mixture of the protein sol g 2.1 and hydrocarbons elicited S. geminata worker ants to follow trails for a longer time and distance compared to a mixture containing only hydrocarbons. This suggests that Sol g 2.1 protein may delay the evaporation of the hydrocarbons. Interestingly, the piperidine alkaloids extracted have the highest attraction to the ants. Therefore, the mixture of hydrocarbons and piperidines had a synergistic effect on the trail-following of ants when both were added to the protein.


Asunto(s)
Venenos de Hormiga , Hormigas , Animales , Proteínas Portadoras/metabolismo , Hormigas de Fuego , Feromonas/química , Ligandos , Simulación del Acoplamiento Molecular , Hormigas/química , Alcanos/metabolismo
8.
Pestic Biochem Physiol ; 197: 105651, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072526

RESUMEN

Solenopsis invicta is a main issue in southern China and is causing significant damage to the local ecological environment. The extensive use of insecticides has resulted in the development of tolerance in S. invicta. In our study, ten S. invicta colonies from Sichuan Province exhibited varying degrees of tolerance against flonicamid, with LC50 values from 0.49 mg/L to 8.54 mg/L. The sensitivity of S. invicta to flonicamid significantly increased after treatment with the P450 enzyme inhibitor piperonyl butoxide (PBO). Additionally, the activity of P450 in S. invicta was significantly enhanced after being treated with flonicamid. Flonicamid induced the expression levels of CYP4aa1, CYP9e2, CYP4C1, and CYP6A14. The expression levels of these P450 genes were significantly higher in the tolerant colonies compared to the sensitive colonies, and the relative copy numbers of CYP6A14 in the tolerant colonies were 2.01-2.15 fold. RNAi feeding treatment effectively inhibited the expression of P450 genes, thereby reducing the tolerance of S. invicta against flonicamid. In addition, the overexpression of CYP6A14 in D. melanogaster resulted in reduced sensitivity to flonicamid. Our investigations revealed hydrophobic interactions between flonicamid and seven amino acid residues of CYP6A14, along with the formation of a hydrogen bond between Glu306 and flonicamid. Our findings suggest that flonicamid can effectively control S. invicta and P450 plays a pivotal role in the tolerance of S. invicta against flonicamid. The overexpression of CYP6A14 also increased tolerance to flonicamid.


Asunto(s)
Hormigas , Insecticidas , Animales , Hormigas de Fuego , Drosophila melanogaster , Insecticidas/toxicidad
9.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138959

RESUMEN

The red imported fire ant (Solenopsis invicta Buren) is a social pest species with a robust reproductive ability that causes extensive damage. Identification of the genes involved in queen fertility is critical in order to better understand the reproductive biology and screening for the potential molecular targets in S. invicta. Here, we used the mRNA deep sequencing (RNA-seq) approach to identify differentially expressed genes (DEGs) in the transcriptomes of three reproductive caste types of S. invicta, including queen (QA) and winged female (FA) and male (MA) ants. The genes that were specific to and highly expressed in the queens were then screened, and the Vg2 and Vg3 genes were chosen as targets to explore their functions in oogenesis and fertility. A minimum of 6.08 giga bases (Gb) of clean reads was obtained from all samples, with a mapping rate > 89.78%. There were 7524, 7133, and 977 DEGs identified in the MA vs. QA, MA vs. FA, and FA vs. QA comparisons, respectively. qRT-PCR was used to validate 10 randomly selected DEGs, including vitellogenin 2 (Vg2) and 3 (Vg3), and their expression patterns were mostly consistent with the RNA-seq data. The S. invicta Vgs included conserved domains and motifs that are commonly found in most insect Vgs. SiVg2 and SiVg3 were highly expressed in queens and winged females and were most highly expressed in the thorax, followed by the fat body, head, and epidermis. Evaluation based on a loss-of-function-based knockdown analysis showed that the downregulation of either or both of these genes resulted in smaller ovaries, less oogenesis, and less egg production. The results of transcriptional sequencing provide a foundation for clarifying the regulators of queen fertility in S. invicta. The functions of SiVg2 and SiVg3 as regulators of oogenesis highlight their importance in queen fecundity and their potential as targets of reproductive disruption in S. invicta control.


Asunto(s)
Hormigas , Vitelogeninas , Animales , Femenino , Masculino , Vitelogeninas/genética , Vitelogeninas/metabolismo , Hormigas de Fuego , Reproducción/genética , Fertilidad/genética , Hormigas/genética
10.
Environ Entomol ; 53(1): 168-172, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38170875

RESUMEN

Several protected troglobitic invertebrate species are known to occur in caves on Joint Base San Antonio-Camp Bullis, Bexar County, Texas, United States. The United States Fish and Wildlife Service (USFWS) identified red-imported fire ant Solenopsis invicta (hereafter RIFA) (Buren 1972) as the primary threat to cave species' nutrient sources, cave crickets, Ceuthophilus secretus (Scudder 1894). Per the service's recommendations, Joint Base San Antonio-Camp Bullis currently implements boiling water mound injections with digging for RIFA control. However, treatment effectiveness is highly variable and largely dependent on the time of day, weather, and personnel diligence. Toxicants have been used for RIFA treatment throughout the world, but concerns exist that traditional applications of toxicant bait around caves might be accessible and inadvertently affect nontarget arthropods, including cricket populations. To mitigate this accessibility, physically limiting access to the toxicant from crickets may be an option. Our objectives were to (i) compare and evaluate the effectiveness of Amdro (Hydramethylnon) and Advion (Indoxacarb) granular baits housed in Ants-No-More Bait Stations (Kness MFG. Inc., Albia, IA) and (ii) evaluate the distance of effectiveness of each bait within a bait station. Ultimately, we observed a 98% reduction in RIFA mound abundance from both baits. Additionally, RIFA mounds within 10 m of the containerized toxicant were reduced by 70%. Our pilot study suggested that Ants-No-More Bait Stations are an effective way to reduce RIFA mounds by 70% if placed 10 m from each other. In practice, this could include bait stations completely covering a particular distance to a cave entrance or fewer bait stations in a ring barrier at a single radial distance to a cave entrance. Containerized toxicants may be a cost-effective and safe RIFA control option around protected cave environments, but further studies are needed to determine potential effects on nontarget arthropods, optimal bait station configuration, and potential effects of biomagnification.


Asunto(s)
Hormigas , Hormigas de Fuego , Animales , Texas , Proyectos Piloto , Cuevas
11.
J Econ Entomol ; 117(3): 825-833, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38634604

RESUMEN

In an ant colony, a large number of nestmates with a similar gene pool coexist, making them more vulnerable to pathogenic attacks. These pathogens influence the behavior and physiology of the fire ant Solenopsis invicta Buren. Here, we evaluated the impact of entomopathogenic fungi (EPF) Metarhizium anisopliae on the behavior (locomotion and foraging) and physiology (biological molecules, anti-fungal activity, and survival) of S. invicta. Distance traveled and velocity significantly decreased, while turn angle and angular velocity significantly increased in ants exposed to a higher concentration of M. anisopliae compared to ants exposed to control after 36 h, which showed disturbed locomotion. Fungus infection significantly affected the foraging behavior of ants. Fungus-exposed ants spent significantly less time in the food zone (area with food) than in the inner zone (area without food). The activities of 4 enzymes, peroxidase, glutathione-S-transferase, hydrogen peroxide (H2O2), and carboxylesterase were significantly decreased. In contrast, catalase and anti-fungal activities were increased after fungal exposure compared to the control. The activity of acetylcholinesterase, which hydrolyses the important neurotransmitter acetylcholine, also decreased after fungal application compared to the control. Survival of ants was also significantly reduced after fungus infection compared to the control. Our findings help to understand the influence of M. anisopliae on the behavior and physiology of S. invicta, which will help in the management of S. invicta using the EPF M. anisopliae.


Asunto(s)
Hormigas de Fuego , Metarhizium , Animales , Conducta Alimentaria , Hormigas de Fuego/microbiología , Hormigas de Fuego/fisiología , Locomoción , Metarhizium/fisiología
12.
J Econ Entomol ; 117(3): 714-721, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38665095

RESUMEN

Hot water mound drench treatment has broad application prospects in the control of the red imported fire ant (RIFA), Solenopsis invicta Buren (Hymenoptera: Formicidae). However, much work still needs to be carried out to provide a theoretical basis and technical support for the use of this method against RIFAs under field conditions. In this study, we monitored the temperature changes at different depths within RIFA nests during laboratory-simulated hot water mound drench experiments and evaluated the lethal effect of hot water treatment on RIFAs. Furthermore, the targeted removal effect of hot water mound drench treatment on RIFA nests under field conditions was evaluated. Results indicated that the temperature at depths of 5, 15, and 25 cm inside the simulated ant nests was higher than 51.1 °C within 30 min after treatment, resulting in a 100% mortality rate for RIFAs at all tested depths. Under field conditions, when nests were disturbed, the percentage of RIFAs crawling out of their nests gradually increased with time after disturbance, reached its maximum value at 25 or 30 s after the disturbance, and then gradually decreased. Single hot water mound drench treatment (each ant nest was treated with 17.8-21.6 liter of hot water at a temperature of 97-100 °C) can significantly reduce the RIFA population in ant nests and lead to a 72.7% reduction in the number of surviving ant nests. However, the safety, operability, and timelines of hot water mound drench treatment for RIFA field control still need further investigation.


Asunto(s)
Hormigas de Fuego , Calor , Control de Insectos , Animales , Control de Insectos/métodos , Agua
13.
Colloids Surf B Biointerfaces ; 234: 113675, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103428

RESUMEN

Human interference and incorrect use of pesticides are easy to induce red imported fire ant (RIFA) escape and migrate from a nest, resulting in ineffective control of RIFA. In order to avoid RIFA alert, we designed an amphiphilic PSI-mPEG-Boc-DAH loaded Pyr to make the microparticles with effective controlled release. The investigation showed that the quantity of Pyr released by Pyr@PSI-mPEG-Boc-DAH under acidic environment was only 36.40 ± 1.90% at 48 h, whereas the release rate of original Pyr was 75.23 ± 5.71%. And the RIFA mortality rate of 1 ppm Pyr in Pyr@PSI-mPEG-Boc-DAH microparticles at 48 h was only 7.78%, which was significantly lower than that of the Pyr (47.78%). Futhermore, the death rate increased sharply after 48 h, and reached 95.84% within a week after using Pyr@PSI-mPEG-Boc-DAH microparticles. Moreover, PSI-mPEG-Boc-DAH carriers could be absorbed and even transported to crop of the RIFA for subsequent trophallaxis by using fluorescence tracking. In the field experiment, the reduction rate of Pyr@PSI-mPEG-Boc-DAH treatment was achieved 99.89% after 7 d. Pyr@PSI-mPEG-Boc-DAH didn't cause RIFA to be alarmed within 48 h and could kill nearly all of ants in the nest after 7 d, which showed a very good control effect in the field experiment. This work provided a new idea and guidance for the effective control RIFA and the development of sustainable agriculture.


Asunto(s)
Hormigas , Hormigas de Fuego , Animales , Humanos , Polímeros , Polietilenglicoles
14.
Pest Manag Sci ; 80(9): 4410-4416, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38656697

RESUMEN

BACKGROUND: In agricultural pest management, especially in combatting the invasive red imported fire ant (RIFA, Solenopsis invicta), significant challenges emerge as a consequence of the constraints of solely depending on chemical insecticides or entomopathogenic nematodes (EPNs). The utilization of chemical insecticides carries environmental and ecological hazards, whereas EPNs, when applied independently, might not offer the immediate effectiveness necessary for adequate RIFA suppression. Acknowledging these hurdles, our study investigates a synergistic method that integrates EPNs with chemical insecticides, aiming to fulfill the urgent demand for more efficient and environmentally friendly pest control solutions. RESULTS: Our evaluation focused on the interaction between the highly pathogenic Steinernema riobrave 7-12 EPN strain and prevalent insecticides, specifically beta-cypermethrin and a mixture of bifenthrin and clothianidin, applied at highly diluted recommended concentrations. The findings revealed a notable increase in RIFA mortality rates when EPNs and these insecticides were used together, outperforming the results achieved with each method individually. Remarkably, this enhanced efficacy was especially evident at lower concentrations of the bifenthrin-clothianidin mixture, indicating a valuable approach to minimizing reliance on chemical insecticides in agriculture. Furthermore, the high survival rates of EPNs alongside the tested insecticides indicate their compatibility and potential for sustained use in integrated pest management programs. CONCLUSION: Our research underscores the effectiveness of merging EPNs with chemical insecticides as a powerful and sustainable strategy for RIFA management. This combined approach not only meets the immediate challenges of pest control in agricultural settings, but also supports wider environmental objectives by reducing the dependency on chemical insecticides. © 2024 Society of Chemical Industry.


Asunto(s)
Hormigas de Fuego , Insecticidas , Control Biológico de Vectores , Piretrinas , Animales , Hormigas de Fuego/efectos de los fármacos , Hormigas de Fuego/parasitología , Guanidinas , Control de Insectos/métodos , Neonicotinoides , Control Biológico de Vectores/métodos , Rabdítidos/fisiología , Tiazoles
15.
J Med Entomol ; 61(1): 191-200, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-37983140

RESUMEN

Curcuma longa L. (Zingiberales: Zingiberaceae) leaf and rhizome essential oils were evaluated for their toxicity and repellency against invasive fire ants: red imported fire ants (RIFA), Solenopsis invicta Buren, black imported fire ants (BIFA), Solenopsis richteri Forel, and a reproductively functional hybrid (HIFA). Ar-turmerone was the major constituent of leaf (42.4%) and rhizome (40.4%) essential oils. A range of concentrations starting from 156 µg/g until the failure of treatment were used. Removal of treated sand in digging bioassay was used as a criterion for repellency. Leaf essential oil showed significantly higher repellency at concentrations of 19.5, 9.8, and 4.9 µg/g against RIFA, BIFA, and HIFA workers, respectively, as compared with control whereas rhizome essential oil was active at 39, 19.5, and 4.9 µg/g against BIFA, RIFA, and HIFA, respectively. Ar-turmerone exhibited repellency at 19.5 µg/g against HIFA workers whereas DEET (N,N-diethyl-meta-toluamide) failed at 39 µg/g. Leaf essential oil showed LC50 values of 85.8, 97.7, and 182.7µg/g against RIFA, BIFA and HIFA workers, whereas the rhizome essential oil had LC50 values of 127, 109.9, and 151.2 µg/g against these species, respectively. Ar-turmerone, tested only against HIFA, with LC50 value of 57.2 was the most active compound. Bifenthrin, a commonly used pyrethroid, with LC50 of 0.03, 0.32, and 0.018 µg/g was toxic against RIFA, BIFA, and HIFA workers, respectively. Both the essential oils and ar-turmerone showed toxicity and repellency against imported fire ants. Different formulations of these natural products will be tested to explore the use potential of these natural products under field conditions.


Asunto(s)
Hormigas , Repelentes de Insectos , Insecticidas , Cetonas , Aceites Volátiles , Sesquiterpenos , Animales , Aceites Volátiles/farmacología , Hormigas de Fuego , Curcuma , Repelentes de Insectos/farmacología
16.
Sci Total Environ ; 912: 168748, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38008315

RESUMEN

Entomopathogenic microorganisms (e.g., fungi, bacteria, nematodes) have been widely used in biological control of soil-dwelling pests, including the red imported fire ant (RIFA), Solenopsis invicta, a notorious invasive pest worldwide. The application of large amounts of entomopathogenic microorganisms to soil may affect the indigenous soil microbial communities. However, reports about the effect of entomopathogenic nematodes (EPN) on soil microbial communities are very few. In this study, the effects of EPN on RIFA populations and microbial communities in mounds were investigated. Our results showed that the application of the EPN Steinernema carpocapsae. All strain on mounds efficaciously suppressed RIFA worker populations, without forming significantly more satellite mounds compared with the control treatment. The application of EPN did not impact the bacterial and fungal diversity in soils derived from the RIFA mounds. However, it slightly altered the taxonomic make-up of the bacterial communities, but significantly altered the taxonomic composition of fungal communities at the phylum, family, and genus levels. The abundances of some beneficial bacteria and fungi, such as Streptomyces, decreased, while those of plant and animal pathogenic bacteria and fungi, dramatically increased, after EPN treatment. On the other hand, the abundances of some entomopathogenic fungi, such as Fusicolla, Clonostachys, and Mortierella, increased. Redundancy analysis or canonical correspondence analysis revealed a positive correlation between the efficacious EPN control and the presence of the insect-resistant bacteria, Sinomonas, as well as entomopathogenic fungi Fusicolla and Mortierella. This suggests that the interactions between EPN and entomopathogenic fungi may play a role in the biological control of RIFA. Our discoveries shed light on the interactions among EPN, RIFA, and soil microbial communities, and emphasize a possible mutualistic relationship between EPN and entomopathogenic fungi in the biological control of RIFA.


Asunto(s)
Hormigas , Microbiota , Nematodos , Animales , Hormigas de Fuego , Control Biológico de Vectores/métodos , Bacterias , Suelo
17.
Pest Manag Sci ; 80(10): 5277-5285, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38946320

RESUMEN

BACKGROUND: The Red Imported Fire Ant (RIFA), scientifically known as Solenopsis invicta, is a destructive invasive species causing considerable harm to ecosystems and generating substantial economic costs globally. Traditional methods for RIFA nests detection are labor-intensive and may not be scalable to larger field areas. This study aimed to develop an innovative surveillance system that leverages artificial intelligence (AI) and robotic dogs to automate the detection and geolocation of RIFA nests, thereby improving monitoring and control strategies. RESULTS: The designed surveillance system, through integrating the CyberDog robotic platform with a YOLOX AI model, demonstrated RIFA nest detection precision rates of >90%. The YOLOX model was trained on a dataset containing 1118 images and achieved a final precision rate of 0.95, with an inference time of 20.16 ms per image, indicating real-time operational suitability. Field tests revealed that the CyberDog system identified three times more nests than trained human inspectors, with significantly lower rates of missed detections and false positives. CONCLUSION: The findings underscore the potential of AI-driven robotic systems in advancing pest management. The CyberDog/YOLOX system not only matched human inspectors in speed, but also exceeded them in accuracy and efficiency. This study's results are significant as they highlight how technology can be harnessed to address biological invasions, offering a more effective, ecologically friendly, and scalable solution for RIFA detection. The successful implementation of this system could pave the way for broader applications in environmental monitoring and pest control, ultimately contributing to the preservation of biodiversity and economic stability. © 2024 Society of Chemical Industry.


Asunto(s)
Hormigas , Especies Introducidas , Robótica , Animales , Inteligencia Artificial , Comportamiento de Nidificación , Control de Insectos/métodos , Control de Insectos/instrumentación , Hormigas de Fuego
18.
Insect Sci ; 31(2): 371-386, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37933419

RESUMEN

Juvenile hormone (JH) acts in the regulation of caste differentiation between queens and workers (i.e., with or without reproductive capacity) during vitellin synthesis and oogenesis in social insects. However, the regulatory mechanisms have not yet been elucidated. Here, we identified a highly expressed microRNA (miRNA), miR-1175-3p, in the red imported fire ant, Solenopsis invicta. We found that miR-1175-3p is prominently present in the fat bodies and ovaries of workers. Furthermore, miR-1175-3p interacts with its target gene, broad-complex core (Br-C), in the fat bodies. By utilizing miR-1175-3p agomir, we successfully suppressed the expression of the Br-C protein in queens, resulting in reduced vitellogenin expression, fewer eggs, and poorly developed ovaries. Conversely, decreasing miR-1175-3p levels led to the increased expression of Br-C and vitellogenin in workers, triggering the "re-development" of the ovaries. Moreover, when queens were fed with JH, the expression of miR-1175-3p decreased, whereas the expression of vitellogenin-2 and vitellogenin-3 increased. Notably, the suppression of fertility in queens caused by treatment with agomir miR-1175-3p was completely rescued by the increased vitellogenin expression induced by being fed with JH. These results suggest the critical role of miR-1175-3p in JH-regulated reproduction, shedding light on the molecular mechanism underlying miRNA-mediated fecundity in social insects and providing a novel strategy for managing S. invicta.


Asunto(s)
Hormigas , MicroARNs , Animales , Vitelogeninas/genética , Vitelogeninas/metabolismo , Hormigas de Fuego , Hormonas Juveniles/metabolismo , Hormigas/fisiología , Reproducción , MicroARNs/genética , MicroARNs/metabolismo
19.
Insect Sci ; 31(2): 448-468, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38010036

RESUMEN

The insect gustatory system participates in identifying potential food sources and avoiding toxic compounds. During this process, gustatory receptors (GRs) recognize feeding stimulant and deterrent compounds. However, the GRs involved in recognizing stimulant and deterrent compounds in the red imported fire ant, Solenopsis invicta, remain unknown. Therefore, we conducted a study on the genes SinvGR1, SinvGR32b, and SinvGR28a to investigate the roles of GRs in detecting feeding stimulant and deterrent compounds. In this current study, we found that sucrose and fructose are feeding stimulants and the bitter compound quinine is a feeding deterrent. The fire ant workers showed significant behavior changes to avoid the bitter taste in feeding stimulant compounds. Reverse transcription quantitative real-time polymerase chain reaction results from developmental stages showed that the SinvGR1, SinvGR32b, and SinvGR28a genes were highly expressed in fire ant workers. Tissue-specific expression profiles indicated that SinvGR1, SinvGR32b, and SinvGR28a were specifically expressed in the antennae and foreleg tarsi of workers, whereas SinvGR32b gene transcripts were also highly accumulated in the male antennae. Furthermore, the silencing of SinvGR1 or SinvGR32b alone and the co-silencing of both genes disrupted worker stimulation and feeding on sucrose and fructose. The results also showed that SinvGR28a is required for avoiding quinine, as workers with knockdown of the SinvGR28a gene failed to avoid and fed on quinine. This study first identified stimulant and deterrent compounds of fire ant workers and then the GRs involved in the taste recognition of these compounds. This study could provide potential target gustatory genes for the control of the fire ant.


Asunto(s)
Hormigas , Gusto , Masculino , Animales , Hormigas de Fuego , Quinina/farmacología , Quinina/metabolismo , Hormigas/fisiología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Fructosa/metabolismo , Sacarosa/metabolismo
20.
J Agric Food Chem ; 72(19): 10936-10943, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691835

RESUMEN

RNAi plays a crucial role in insect gene function research and pest control field. Nonetheless, the variable efficiency of RNAi across diverse insects and off-target effects also limited its further application. In this study, we cloned six essential housekeeping genes from Solenopsis invicta and conducted RNAi experiments by orally administering dsRNA. Then, we found that mixing with liposomes significantly enhanced the RNAi efficiency by targeting for SiV-ATPaseE. Additionally, we observed a certain lethal effect of this dsRNA on queens by our established RNAi system. Furthermore, no strict sequence-related off-target effects were detected. Finally, the RNAi effect of large-scale bacteria expressing dsRNA was successfully confirmed for controlling S. invicta. In summary, this study established an RNAi system for S. invicta and provided a research template for the future development of nucleic acid drugs based on RNAi.


Asunto(s)
Hormigas , Proteínas de Insectos , Interferencia de ARN , Animales , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Hormigas/genética , Control de Insectos/métodos , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Control Biológico de Vectores/métodos , Femenino , Hormigas de Fuego
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda