Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
Biochem Biophys Res Commun ; 724: 150174, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38852507

RESUMEN

The primary cilium is a hair-like projection that controls cell development and tissue homeostasis. Although accumulated studies identify the molecular link between cilia and cilia-related diseases, the underlying etiology of ciliopathies has not been fully understood. In this paper, we determine the function of Rab34, a small GTPase, as a key regulator for controlling ciliogenesis and type I collagen trafficking in craniofacial development. Mechanistically, Rab34 is required to form cilia that control osteogenic proliferation, survival, and differentiation via cilia-mediated Hedgehog signaling. In addition, Rab34 is indispensable for regulating type I collagen trafficking from the ER to the Golgi. These results demonstrate that Rab34 has both ciliary and non-ciliary functions to regulate osteogenesis. Our study highlights the critical function of Rab34, which may contribute to understanding the novel etiology of ciliopathies that are associated with the dysfunction of RAB34 in humans.


Asunto(s)
Cilios , Osteogénesis , Proteínas de Unión al GTP rab , Cilios/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Animales , Ratones , Humanos , Cráneo/metabolismo , Proteínas Hedgehog/metabolismo , Diferenciación Celular , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Transducción de Señal , Desarrollo Óseo , Huesos Faciales/metabolismo , Huesos Faciales/crecimiento & desarrollo , Huesos Faciales/embriología , Proliferación Celular , Transporte de Proteínas , Aparato de Golgi/metabolismo
2.
Development ; 146(14)2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31340933

RESUMEN

Oral clefts are common birth defects. Individuals with oral clefts who have identical genetic mutations regularly present with variable penetrance and severity. Epigenetic or chromatin-mediated mechanisms are commonly invoked to explain variable penetrance. However, specific examples of these are rare. Two functional copies of the MOZ (KAT6A, MYST3) gene, encoding a MYST family lysine acetyltransferase chromatin regulator, are essential for human craniofacial development, but the molecular role of MOZ in this context is unclear. Using genetic interaction and genomic studies, we have investigated the effects of loss of MOZ on the gene expression program during mouse development. Among the more than 500 genes differentially expressed after loss of MOZ, 19 genes had previously been associated with cleft palates. These included four distal-less homeobox (DLX) transcription factor-encoding genes, Dlx1, Dlx2, Dlx3 and Dlx5 and DLX target genes (including Barx1, Gbx2, Osr2 and Sim2). MOZ occupied the Dlx5 locus and was required for normal levels of histone H3 lysine 9 acetylation. MOZ affected Dlx gene expression cell-autonomously within neural crest cells. Our study identifies a specific program by which the chromatin modifier MOZ regulates craniofacial development.


Asunto(s)
Huesos Faciales/embriología , Proteínas de Homeodominio/genética , Desarrollo Maxilofacial/genética , Cráneo/embriología , Factores de Transcripción/genética , Animales , Desarrollo Óseo/genética , Células Cultivadas , Embrión de Mamíferos , Huesos Faciales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Histona Acetiltransferasas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Cráneo/metabolismo
3.
Semin Cell Dev Biol ; 91: 13-22, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29248471

RESUMEN

The skull is a vertebrate novelty. Morphological adaptations of the skull are associated with major evolutionary transitions, including the shift to a predatory lifestyle and the ability to masticate while breathing. These adaptations include the chondrocranium, dermatocranium, articulated jaws, primary and secondary palates, internal choanae, the middle ear, and temporomandibular joint. The incredible adaptive diversity of the vertebrate skull indicates an underlying bauplan that promotes evolvability. Comparative studies in craniofacial development suggest that the craniofacial bauplan includes three secondary organizers, two that are bilaterally placed at the Hinge of the developing jaw, and one situated in the midline of the developing face (the FEZ). These organizers regulate tissue interactions between the cranial neural crest, the neuroepithelium, and facial and pharyngeal epithelia that regulate the development and evolvability of the craniofacial skeleton.


Asunto(s)
Evolución Biológica , Huesos Faciales/embriología , Cresta Neural/embriología , Cráneo/embriología , Animales , Tipificación del Cuerpo/genética , Huesos Faciales/anatomía & histología , Huesos Faciales/metabolismo , Peces/anatomía & histología , Peces/embriología , Peces/genética , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/anatomía & histología , Cresta Neural/metabolismo , Cráneo/anatomía & histología , Cráneo/metabolismo
4.
Semin Cell Dev Biol ; 91: 2-12, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29248472

RESUMEN

Chrondrocranium, the cartilaginous skull, is one of the major innovations that underlie evolution of the vertebrate head. Control of the induction and shaping of the cartilage is a key for the formation of the facial bones and largely defines facial shape. The appearance of cartilage in the head enabled many new functions such as protection of central nervous system and sensory structures, support of the feeding apparatus and formation of muscle attachment points ensuring faster and coordinated jaw movements. Here we review the evolution of cartilage in the cranial region and discuss shaping of the chondrocranium in different groups of vertebrates.


Asunto(s)
Evolución Biológica , Cartílago/embriología , Huesos Faciales/embriología , Anfioxos/embriología , Cráneo/embriología , Vertebrados/embriología , Animales , Cartílago/anatomía & histología , Cartílago/crecimiento & desarrollo , Huesos Faciales/anatomía & histología , Huesos Faciales/crecimiento & desarrollo , Humanos , Anfioxos/anatomía & histología , Anfioxos/crecimiento & desarrollo , Modelos Biológicos , Cráneo/anatomía & histología , Cráneo/crecimiento & desarrollo , Vertebrados/anatomía & histología , Vertebrados/crecimiento & desarrollo
5.
Dev Biol ; 461(2): 132-144, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32044379

RESUMEN

The formation of the craniofacial skeleton is a highly dynamic process that requires proper orchestration of various cellular processes in cranial neural crest cell (cNCC) development, including cell migration, proliferation, differentiation, polarity and cell death. Alterations that occur during cNCC development result in congenital birth defects and craniofacial abnormalities such as cleft lip with or without cleft palate. While the gene regulatory networks facilitating neural crest development have been extensively studied, the epigenetic mechanisms by which these pathways are activated or repressed in a temporal and spatially regulated manner remain largely unknown. Chromatin modifiers can precisely modify gene expression through a variety of mechanisms including histone modifications such as methylation. Here, we investigated the role of two members of the PRDM (Positive regulatory domain) histone methyltransferase family, Prdm3 and Prdm16 in craniofacial development using genetic models in zebrafish and mice. Loss of prdm3 or prdm16 in zebrafish causes craniofacial defects including hypoplasia of the craniofacial cartilage elements, undefined posterior ceratobranchials, and decreased mineralization of the parasphenoid. In mice, while conditional loss of Prdm3 in the early embryo proper causes mid-gestation lethality, loss of Prdm16 caused craniofacial defects including anterior mandibular hypoplasia, clefting in the secondary palate and severe middle ear defects. In zebrafish, prdm3 and prdm16 compensate for each other as well as a third Prdm family member, prdm1a. Combinatorial loss of prdm1a, prdm3, and prdm16 alleles results in severe hypoplasia of the anterior cartilage elements, abnormal formation of the jaw joint, complete loss of the posterior ceratobranchials, and clefting of the ethmoid plate. We further determined that loss of prdm3 and prdm16 reduces methylation of histone 3 lysine 9 (repression) and histone 3 lysine 4 (activation) in zebrafish. In mice, loss of Prdm16 significantly decreased histone 3 lysine 9 methylation in the palatal shelves but surprisingly did not change histone 3 lysine 4 methylation. Taken together, Prdm3 and Prdm16 play an important role in craniofacial development by maintaining temporal and spatial regulation of gene regulatory networks necessary for proper cNCC development and these functions are both conserved and divergent across vertebrates.


Asunto(s)
Anomalías Craneofaciales/genética , Proteínas de Unión al ADN/fisiología , Histona Metiltransferasas/fisiología , Proteína del Locus del Complejo MDS1 y EV11/fisiología , Cráneo/embriología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Cromatina/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Oído Medio/anomalías , Oído Medio/embriología , Huesos Faciales/embriología , Femenino , Genes Letales , Código de Histonas/genética , Histona Metiltransferasas/deficiencia , Histona Metiltransferasas/genética , Histonas/metabolismo , Maxilares/embriología , Proteína del Locus del Complejo MDS1 y EV11/deficiencia , Proteína del Locus del Complejo MDS1 y EV11/genética , Masculino , Metilación , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional/genética , Especificidad de la Especie , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
6.
Dev Dyn ; 249(9): 1062-1076, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32391617

RESUMEN

BACKGROUND: The frontonasal ectodermal zone (FEZ) is a signaling center that regulates patterned development of the upper jaw, and Sonic hedgehog (SHH) mediates FEZ activity. Induction of SHH expression in the FEZ results from SHH-dependent signals from the brain and neural crest cells. Given the role of miRNAs in modulating gene expression, we investigated the extent to which miRNAs regulate SHH expression and FEZ signaling. RESULTS: In the FEZ, the miR-199 family appears to be regulated by SHH-dependent signals from the brain; expression of this family increased from HH18 to HH22, and upon activation of SHH signaling in the brain. However, the miR-199 family is more broadly expressed in the mesenchyme of the frontonasal process and adjacent neuroepithelium. Downregulating the miR-199 genes expanded SHH expression in the FEZ, resulting in wider faces, while upregulating miR-199 genes resulted in decreased SHH expression and narrow faces. Hypoxia inducible factor 1 alpha (HIF1A) and mitogen-activated protein kinase kinase kinase 4 (MAP3K4) appear to be potential targets of miR-199b. Reduction of MAP3K4 altered beak development but increased apoptosis, while reducing HIF1A reduced expression of SHH in the FEZ and produced malformations independent of apoptosis. CONCLUSIONS: Our results demonstrate that this miRNA family appears to participate in regulating SHH expression in the FEZ; however, specific molecular mechanisms remain unknown.


Asunto(s)
Proteínas Aviares/biosíntesis , Pollos , Huesos Faciales/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/biosíntesis , MicroARNs/biosíntesis , Transducción de Señal , Animales , Tipificación del Cuerpo , Embrión de Pollo , Ectodermo/embriología
7.
Dev Dyn ; 248(7): 603-612, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31070827

RESUMEN

BACKGROUND: The platelet-derived growth factor (PDGF) family consists of four ligands (PDGF-A, PDGF-B, PDGF-C, PDGF-D) and two tyrosine kinase receptors (PDGFR-α and PDGFR-ß). In vertebrates, PDGF signaling influences cell proliferation, migration, and matrix deposition, and its up-regulation is implicated in cancer progression. Despite this evidence, the role of each family member during embryogenesis is still incomplete and partially controversial. In particular, study of the role of pdgf signaling during craniofacial development has been focused on pdgf-a, while the role of pdgf-b is almost unknown due to the lethal phenotypes of pdgf-b-null mice. RESULTS: By using a pdgf-b splice-blocking morpholino approach, we highlighted impairment of neural crest cell (NCC) migration in Xenopus laevis morphants, leading to alteration of NCC derivatives formation, such as cranial nerves and cartilages. We also uncovered a possible link between pdgf-b and the expression of cadherin superfamily members cdh6 and cdh11, which mediate cell-cell adhesion promoting NCC migration. CONCLUSIONS: Our results suggested that pdgf-b signaling is involved in cranial NCC migration and it is required for proper formation of craniofacial NCC derivatives. Taken together, these data unveiled a new role for pdgf-b during vertebrate development, contributing to complete the picture of pdgf signaling role in craniofacial development.


Asunto(s)
Huesos Faciales/crecimiento & desarrollo , Proteínas Proto-Oncogénicas c-sis/fisiología , Cráneo/crecimiento & desarrollo , Animales , Cadherinas/metabolismo , Adhesión Celular , Movimiento Celular , Embrión no Mamífero , Huesos Faciales/embriología , Ratones , Cresta Neural/citología , Transducción de Señal , Cráneo/embriología , Xenopus laevis/embriología , Xenopus laevis/crecimiento & desarrollo
8.
Dev Dyn ; 248(12): 1264-1272, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31464047

RESUMEN

BACKGROUND: Six1 is a transcriptional factor that plays an important role in embryonic development. Mouse and chick embryos deficient for Six1 have multiple craniofacial anomalies in the facial bones and cartilages. Multiple Six1 enhancers have been identified, but none of them has been reported to be active in the maxillary and mandibular process. RESULTS: We studied two Six1 enhancers in the chick neural crest tissues during craniofacial development. We showed that two evolutionarily conserved enhancers, Six1E1 and Six1E2, act synergistically. Neither Six1E1 nor Six1E2 alone can drive enhancer reporter signal in the maxillary or mandibular processes. However, their combination, Six1E, showed robust enhancer activity in these tissues. Similar reporter signal can also be driven by the mouse homolog of Six1E. Mutations of multiple conserved transcriptional factor binding sites altered the enhancer activity of Six1E, especially mutation of the LIM homeobox binding site, dramatically reduced the enhancer activity, implying that the Lhx protein family be an important regulator of Six1 expression. CONCLUSION: This study, for the first time, described the synergistic activation of two Six1 enhancers in the maxillary and mandibular processes and will facilitate more detailed studies of the regulation of Six1 in craniofacial development.


Asunto(s)
Elementos de Facilitación Genéticos/fisiología , Huesos Faciales/embriología , Proteínas de Homeodominio/genética , Cresta Neural/embriología , Cráneo/embriología , Animales , Animales Modificados Genéticamente , Embrión de Pollo , Anomalías Craneofaciales/genética , Desarrollo Embrionario/genética , Huesos Faciales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mandíbula/embriología , Mandíbula/metabolismo , Maxilar/embriología , Maxilar/metabolismo , Cresta Neural/metabolismo , Cráneo/metabolismo
9.
Development ; 143(7): 1060-2, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27048684

RESUMEN

Abigail Tucker is a professor at King's College London, UK and her lab works on various aspects of craniofacial development - from basic, evolutionary and clinical biology perspectives. This year, Abigail will be awarded the first Cheryll Tickle Medal by the British Society for Developmental Biology (BSDB). We chatted with Abigail about her research, her commitment to public engagement and the challenges and rewards of working with emerging model systems.


Asunto(s)
Distinciones y Premios , Biología Evolutiva , Animales , Huesos Faciales/embriología , Femenino , Humanos
10.
Dev Dyn ; 246(12): 1015-1026, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28791750

RESUMEN

BACKGROUND: Craniofacial anomalies involve defective pharyngeal arch development and neural crest function. Copy number variation at 1p35, containing histone deacetylase 1 (Hdac1), or 6q21-22, containing Hdac2, are implicated in patients with craniofacial defects, suggesting an important role in guiding neural crest development. However, the roles of Hdac1 and Hdac2 within neural crest cells remain unknown. RESULTS: The neural crest and its derivatives express both Hdac1 and Hdac2 during early murine development. Ablation of Hdac1 and Hdac2 within murine neural crest progenitor cells cause severe hemorrhage, atrophic pharyngeal arches, defective head morphogenesis, and complete embryonic lethality. Embryos lacking Hdac1 and Hdac2 in the neural crest exhibit decreased proliferation and increased apoptosis in both the neural tube and the first pharyngeal arch. Mechanistically, loss of Hdac1 and Hdac2 upregulates cyclin-dependent kinase inhibitors Cdkn1a, Cdkn1b, Cdkn1c, Cdkn2b, Cdkn2c, and Tp53 within the first pharyngeal arch. CONCLUSIONS: Our results show that Hdac1 and Hdac2 function redundantly within the neural crest to regulate proliferation and the development of the pharyngeal arches by means of repression of cyclin-dependent kinase inhibitors. Developmental Dynamics 246:1015-1026, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Región Branquial/embriología , Proliferación Celular/fisiología , Huesos Faciales/embriología , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Cresta Neural/embriología , Animales , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Ratones , Ratones Transgénicos
11.
Dev Biol ; 410(1): 98-107, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26681395

RESUMEN

Nedd4 is an E3 ubiquitin ligase that has an essential role in craniofacial development. However, how and when Nedd4 controls skull formation is ill defined. Here we have used a collection of complementary genetic mouse models to dissect the cell-autonomous roles of Nedd4 in the formation of neural crest cell derived cranial bone. Removal of Nedd4 specifically from neural crest cells leads to profound craniofacial defects with marked reduction of cranial bone that was preceded by hypoplasia of bone forming osteoblasts. Removal of Nedd4 after differentiation of neural crest cells into progenitors of chondrocytes and osteoblasts also led to profound deficiency of craniofacial bone in the absence of cartilage defects. Notably, these skull malformations were conserved when Nedd4 was specifically removed from the osteoblast lineage after specification of osteoblast precursors from mesenchymal skeletal progenitors. We further show that absence of Nedd4 in pre-osteoblasts results in decreased cell proliferation and altered osteogenic differentiation. Taken together our data demonstrate a novel cell-autonomous role for Nedd4 in promoting expansion of the osteoblast progenitor pool to control craniofacial development. Nedd4 mutant mice therefore represent a unique mouse model of craniofacial anomalies that provide an ideal resource to explore the cell-intrinsic mechanisms of neural crest cells in craniofacial morphogenesis.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Huesos Faciales/embriología , Osteogénesis , Cráneo/embriología , Ubiquitina-Proteína Ligasas/fisiología , Animales , Linaje de la Célula , Proliferación Celular , Ratones , Ubiquitina-Proteína Ligasas Nedd4 , Cresta Neural/fisiología , Osteoblastos/citología , Proteína Smad1/fisiología
12.
Dev Biol ; 416(1): 136-148, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27265864

RESUMEN

Both Fras1 and Itga8 connect mesenchymal cells to epithelia by way of an extracellular 'Fraser protein complex' that functions in signaling and adhesion; these proteins are vital to the development of several vertebrate organs. We previously found that zebrafish fras1 mutants have craniofacial defects, specifically, shortened symplectic cartilages and cartilage fusions that spare joint elements. During a forward mutagenesis screen, we identified a new zebrafish mutation, b1161, that we show here disrupts itga8, as confirmed using CRISPR-generated itga8 alleles. fras1 and itga8 single mutants and double mutants have similar craniofacial phenotypes, a result expected if loss of either gene disrupts function of the Fraser protein complex. Unlike fras1 mutants or other Fraser-related mutants, itga8 mutants do not show blistered tail fins. Thus, the function of the Fraser complex differs in the craniofacial skeleton and the tail fin. Focusing on the face, we find that itga8 mutants consistently show defective outpocketing of a late-forming portion of the first pharyngeal pouch, and variably express skeletal defects, matching previously characterized fras1 mutant phenotypes. In itga8 and fras1 mutants, skeletal severity varies markedly between sides, indicating that both mutants have increased developmental instability. Whereas fras1 is expressed in epithelia, we show that itga8 is expressed complementarily in facial mesenchyme. Paired with the observed phenotypic similarity, this expression indicates that the genes function in epithelial-mesenchymal interactions. Similar interactions between Fras1 and Itga8 have previously been found in mouse kidney, where these genes both regulate Nephronectin (Npnt) protein abundance. We find that zebrafish facial tissues express both npnt and the Fraser gene fibrillin2b (fbn2b), but their transcript levels do not depend on fras1 or itga8 function. Using a revertible fras1 allele, we find that the critical window for fras1 function in the craniofacial skeleton is between 1.5 and 3 days post fertilization, which coincides with the onset of fras1-dependent and itga8-dependent morphogenesis. We propose a model wherein Fras1 and Itga8 interact during late pharyngeal pouch morphogenesis to sculpt pharyngeal arches through epithelial-mesenchymal interactions, thereby stabilizing the developing craniofacial skeleton.


Asunto(s)
Región Branquial/embriología , Epitelio/embriología , Proteínas de la Matriz Extracelular/fisiología , Integrinas/fisiología , Mesodermo/embriología , Proteínas de Pez Cebra/fisiología , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Inducción Embrionaria , Epitelio/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Huesos Faciales/embriología , Fibrilina-2/metabolismo , Integrinas/genética , Mesodermo/metabolismo , Morfogénesis , Mutación , ARN Mensajero , Pez Cebra , Proteínas de Pez Cebra/genética
13.
Dev Biol ; 415(2): 251-260, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-26453795

RESUMEN

The transcription factor BCL11B plays essential roles during development of the immune, nervous, and cutaneous systems. Here we show that BCL11B is expressed in both osteogenic and sutural mesenchyme of the developing craniofacial complex. Bcl11b(-/-) mice exhibit increased proliferation of osteoprogenitors, premature osteoblast differentiation, and enhanced skull mineralization leading to synostoses of facial and calvarial sutures. Ectopic expression of Fgfr2c, a gene implicated in craniosynostosis in mice and humans, and that of Runx2 was detected within the affected sutures of Bcl11b(-/-) mice. These data suggest that ectopic expression of Fgfr2c in the sutural mesenchyme, without concomitant changes in the expression of FGF ligands, appears to induce the RUNX2-dependent osteogenic program and craniosynostosis in Bcl11b(-/-) mice.


Asunto(s)
Suturas Craneales/embriología , Huesos Faciales/embriología , Proteínas Represoras/fisiología , Cráneo/embriología , Proteínas Supresoras de Tumor/fisiología , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal/fisiología , Craneosinostosis/diagnóstico por imagen , Craneosinostosis/genética , Craneosinostosis/fisiopatología , Huesos Faciales/diagnóstico por imagen , Huesos Faciales/patología , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Cresta Neural/citología , Osteoblastos/metabolismo , Osteoblastos/patología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/fisiología , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Cráneo/diagnóstico por imagen , Cráneo/patología , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
14.
Hum Mol Genet ; 24(8): 2330-48, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25556186

RESUMEN

T-box transcription factor TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS, DiGeorge syndrome/Velo-cardio-facial syndrome), whose phenotypes include craniofacial malformations such as dental defects and cleft palate. In this study, Tbx1 was conditionally deleted or over-expressed in the oral and dental epithelium to establish its role in odontogenesis and craniofacial developmental. Tbx1 lineage tracing experiments demonstrated a specific region of Tbx1-positive cells in the labial cervical loop (LaCL, stem cell niche). We found that Tbx1 conditional knockout (Tbx1(cKO)) mice featured microdontia, which coincides with decreased stem cell proliferation in the LaCL of Tbx1(cKO) mice. In contrast, Tbx1 over-expression increased dental epithelial progenitor cells in the LaCL. Furthermore, microRNA-96 (miR-96) repressed Tbx1 expression and Tbx1 repressed miR-96 expression, suggesting that miR-96 and Tbx1 work in a regulatory loop to maintain the correct levels of Tbx1. Cleft palate was observed in both conditional knockout and over-expression mice, consistent with the craniofacial/tooth defects associated with TBX1 deletion and the gene duplication that leads to 22q11.2DS. The biochemical analyses of TBX1 human mutations demonstrate functional differences in their transcriptional regulation of miR-96 and co-regulation of PITX2 activity. TBX1 interacts with PITX2 to negatively regulate PITX2 transcriptional activity and the TBX1 N-terminus is required for its repressive activity. Overall, our results indicate that Tbx1 regulates the proliferation of dental progenitor cells and craniofacial development through miR-96-5p and PITX2. Together, these data suggest a new molecular mechanism controlling pathogenesis of dental anomalies in human 22q11.2DS.


Asunto(s)
Proliferación Celular , Síndrome de DiGeorge/metabolismo , Huesos Faciales/metabolismo , MicroARNs/metabolismo , Proteínas de Dominio T Box/metabolismo , Diente/metabolismo , Animales , Anomalías Craneofaciales , Síndrome de DiGeorge/embriología , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/fisiopatología , Huesos Faciales/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Ratones , MicroARNs/genética , Regiones Promotoras Genéticas , Unión Proteica , Proteínas de Dominio T Box/genética , Diente/embriología
15.
Development ; 141(4): 867-77, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24496623

RESUMEN

The emergence of craniofacial skeletal elements, and of the jaw in particular, was a crucial step in the evolution of higher vertebrates. Most facial bones and cartilage are generated during embryonic development by cranial neural crest cells, while an osteochondrogenic fate is suppressed in more posterior neural crest cells. Key players in this process are Hox genes, which suppress osteochondrogenesis in posterior neural crest derivatives. How this specific pattern of osteochondrogenic competence is achieved remains to be elucidated. Here we demonstrate that Hox gene expression and osteochondrogenesis are controlled by epigenetic mechanisms. Ezh2, which is a component of polycomb repressive complex 2 (PRC2), catalyzes trimethylation of lysine 27 in histone 3 (H3K27me3), thereby functioning as transcriptional repressor of target genes. Conditional inactivation of Ezh2 does not interfere with localization of neural crest cells to their target structures, neural development, cell cycle progression or cell survival. However, loss of Ezh2 results in massive derepression of Hox genes in neural crest cells that are usually devoid of Hox gene expression. Accordingly, craniofacial bone and cartilage formation is fully prevented in Ezh2 conditional knockout mice. Our data indicate that craniofacial skeleton formation in higher vertebrates is crucially dependent on epigenetic regulation that keeps in check inhibitors of an osteochondrogenic differentiation program.


Asunto(s)
Cartílago/embriología , Condrogénesis/fisiología , Epigénesis Genética/fisiología , Huesos Faciales/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Cresta Neural/fisiología , Osteogénesis/fisiología , Complejo Represivo Polycomb 2/metabolismo , Azul Alcián , Animales , Antraquinonas , Inmunoprecipitación de Cromatina , Metilación de ADN , Proteína Potenciadora del Homólogo Zeste 2 , Citometría de Flujo , Galactósidos , Regulación del Desarrollo de la Expresión Génica/genética , Histonas/metabolismo , Inmunohistoquímica , Indoles , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Cresta Neural/metabolismo , Complejo Represivo Polycomb 2/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Dev Biol ; 400(2): 180-90, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25722190

RESUMEN

Growth factor signaling regulates tissue-tissue interactions to control organogenesis and tissue homeostasis. Specifically, transforming growth factor beta (TGFß) signaling plays a crucial role in the development of cranial neural crest (CNC) cell-derived bone, and loss of Tgfbr2 in CNC cells results in craniofacial skeletal malformations. Our recent studies indicate that non-canonical TGFß signaling is activated whereas canonical TGFß signaling is compromised in the absence of Tgfbr2 (in Tgfbr2(fl/fl);Wnt1-Cre mice). A haploinsufficiency of Tgfbr1 (aka Alk5) (Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)) largely rescues craniofacial deformities in Tgfbr2 mutant mice by reducing ectopic non-canonical TGFß signaling. However, the relative involvement of canonical and non-canonical TGFß signaling in regulating specific craniofacial bone formation remains unclear. We compared the size and volume of CNC-derived craniofacial bones (frontal bone, premaxilla, maxilla, palatine bone, and mandible) from E18.5 control, Tgfbr2(fl/fl);Wnt1-Cre, and Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)mice. By analyzing three dimensional (3D) micro-computed tomography (microCT) images, we found that different craniofacial bones were restored to different degrees in Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+) mice. Our study provides comprehensive information on anatomical landmarks and the size and volume of each craniofacial bone, as well as insights into the extent that canonical and non-canonical TGFß signaling cascades contribute to the formation of each CNC-derived bone. Our data will serve as an important resource for developmental biologists who are interested in craniofacial morphogenesis.


Asunto(s)
Desarrollo Óseo , Huesos Faciales/embriología , Cráneo/embriología , Animales , Huesos Faciales/anatomía & histología , Imagenología Tridimensional , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Microtomografía por Rayos X
17.
Development ; 140(13): 2765-75, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23698351

RESUMEN

The evolution of joints, which afford skeletal mobility, was instrumental in vertebrate success. Here, we explore the molecular genetics and cell biology that govern jaw joint development. Genetic manipulation experiments in zebrafish demonstrate that functional loss, or gain, of the homeobox-containing gene barx1 produces gain, or loss, of joints, respectively. Ectopic joints in barx1 mutant animals are present in every pharyngeal segment, and are associated with disrupted attachment of bone, muscles and teeth. We find that ectopic joints develop at the expense of cartilage. Time-lapse experiments suggest that barx1 controls the skeletal precursor cell choice between differentiating into cartilage versus joint cells. We discovered that barx1 functions in this choice, in part, by regulating the transcription factor hand2. We further show that hand2 feeds back to negatively regulate barx1 expression. We consider the possibility that changes in barx1 function in early vertebrates were among the key innovations fostering the evolution of skeletal joints.


Asunto(s)
Cartílago/embriología , Huesos Faciales/metabolismo , Articulaciones/embriología , Cráneo/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Cartílago/metabolismo , Huesos Faciales/embriología , Articulaciones/metabolismo , Cráneo/embriología , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética
18.
Dev Dyn ; 244(8): 1022-30, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26061551

RESUMEN

BACKGROUND: The YPEL (Yippee-like) gene family comprises five highly conserved members (YPEL1-5), but their biological function remains largely unknown. Early studies of YPEL1 function suggested that it plays a role in the development of structures derived from the pharyngeal arches. Human YPEL1 localises to distal chromosome 22q11.2 and copy number changes at this locus lead to diverse phenotypes that include facial dysmorphism, facial asymmetry, and palatal anomalies comprising the distal 22q11.2 deletion/duplication syndromes (OMIM 611867). We therefore investigated the role of chick YPEL1 in craniofacial development using ex vivo and in vivo approaches in the avian model. RESULTS: We found that retroviral-mediated in vivo overexpression of YPEL1 causes abnormal mandibular morphogenesis associated with increased apoptosis and involvement of the BMP/MSX pathway. CONCLUSIONS: Our results suggest that YPEL1 expression is regulated by bone morphogenetic protein signaling and suggest a role for YPEL1 in the pathogenesis of the craniofacial abnormalities observed in humans with distal chromosome 22q11.2 deletions or duplications.


Asunto(s)
Proteínas Aviares/metabolismo , Huesos Faciales/embriología , Huesos Faciales/metabolismo , Animales , Proteínas Aviares/genética , Pollos , Morfogénesis/genética , Morfogénesis/fisiología , Activación Transcripcional
19.
Dev Dyn ; 244(2): 146-56, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25483930

RESUMEN

BACKGROUND: Congenital loss of the SHOX gene is considered to be a genetic cause of short stature phenotype in Turner syndrome and Leri-Weill dyschondrosteosis patients. Though SHOX expression initiates during early fetal development, little is known about the embryonic roles of SHOX. The evolutionary conservation of the zebrafish shox gene and the convenience of the early developmental stages for analyses make zebrafish a preferred model. Here, we characterized structure, expression, and developmental roles of zebrafish shox through a loss-of-function approach. RESULTS: We found a previously undiscovered Shox protein that has both a homeodomain and an OAR-domain in zebrafish. The shox transcript emerged during the segmentation period and it increased in later stages. The predominant domains of shox expression were mandibular arch, pectoral fin, anterior notochord, rhombencephalon, and mesencephalon, suggesting that Shox is involved in bone and neural development. Translational blockade of Shox mRNA by an antisense morpholino oligo delayed embryonic growth, which was restored by the co-overexpression of morpholino-resistant Shox mRNA. At later stages, impaired Shox expression markedly delayed the calcification process in the anterior vertebral column and craniofacial bones. CONCLUSIONS: Our data demonstrate evolutionarily conserved Shox plays roles in early embryonic growth and in later bone formation.


Asunto(s)
Embrión no Mamífero/embriología , Proteínas de Homeodominio/metabolismo , Osteogénesis/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Embrión no Mamífero/citología , Huesos Faciales/citología , Huesos Faciales/embriología , Proteínas de Homeodominio/genética , Columna Vertebral/citología , Columna Vertebral/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
20.
Dev Biol ; 391(2): 133-46, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24780627

RESUMEN

We present a gene expression atlas of early mouse craniofacial development. Laser capture microdissection (LCM) was used to isolate cells from the principal critical microregions, whose development, differentiation and signaling interactions are responsible for the construction of the mammalian face. At E8.5, as migrating neural crest cells begin to exit the neural fold/epidermal ectoderm boundary, we examined the cranial mesenchyme, composed of mixed neural crest and paraxial mesoderm cells, as well as cells from adjacent neuroepithelium. At E9.5 cells from the cranial mesenchyme, overlying olfactory placode/epidermal ectoderm, and underlying neuroepithelium, as well as the emerging mandibular and maxillary arches were sampled. At E10.5, as the facial prominences form, cells from the medial and lateral prominences, the olfactory pit, multiple discrete regions of underlying neuroepithelium, the mandibular and maxillary arches, including both their mesenchymal and ectodermal components, as well as Rathke's pouch, were similarly sampled and profiled using both microarray and RNA-seq technologies. Further, we performed single cell studies to better define the gene expression states of the early E8.5 pioneer neural crest cells and paraxial mesoderm. Taken together, and analyzable by a variety of biological network approaches, these data provide a complementing and cross validating resource capable of fueling discovery of novel compartment specific markers and signatures whose combinatorial interactions of transcription factors and growth factors/receptors are responsible for providing the master genetic blueprint for craniofacial development.


Asunto(s)
Huesos Faciales/embriología , Regulación del Desarrollo de la Expresión Génica , Desarrollo Maxilofacial , Mesodermo/embriología , Animales , Secuencia de Bases , Diferenciación Celular , Movimiento Celular , Embrión de Mamíferos/citología , Cara/embriología , Expresión Génica , Perfilación de la Expresión Génica , Captura por Microdisección con Láser , Mesodermo/citología , Ratones , Cresta Neural/citología , Cresta Neural/embriología , Análisis de Secuencia de ARN , Transducción de Señal , Cráneo/embriología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda