Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Clin Orthop Relat Res ; 478(3): 668-678, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31794485

RESUMEN

BACKGROUND: Substantial evidence exists to show the positive effects of radialextracorporeal shock wave therapy (ESWT) on bone formation. However, it is unknown whether rESWT can act locally at the growth plate level to stimulate linear bone growth. One way to achieve this is to stimulate chondrogenesis in the growth plate without depending on circulating systemic growth factors. We wished to see whether rESWT would stimulate metatarsal rat growth plates in the absence of vascularity and associated systemic growth factors. QUESTIONS/PURPOSES: To study the direct effects of rESWT on growth plate chondrogenesis, we asked: (1) Does rESWT stimulate longitudinal bone growth of ex vivo cultured bones? (2) Does rESWT cause any morphological changes in the growth plate? (3) Does rESWT locally activate proteins specific to growth plate chondrogenesis? METHODS: Metatarsal bones from rat fetuses were untreated (controls: n = 15) or exposed to a single application of rESWT at a low dose (500 impulses, 5 Hz, 90 mJ; n = 15), mid-dose (500 impulses, 5 Hz, 120 mJ; n = 14) or high dose (500 impulses, 10 Hz, 180 mJ; n = 34) and cultured for 14 days. Bone lengths were measured on Days 0, 4, 7, and 14. After 14 days of culturing, growth plate morphology was assessed with a histomorphometric analysis in which hypertrophic cell size (> 7 µm) and hypertrophic zone height were measured (n = 6 bones each). Immunostaining for specific regulatory proteins involved in chondrogenesis and corresponding staining were quantitated digitally by a single observer using the automated threshold method in ImageJ software (n = 6 bones per group). A p value < 0.05 indicated a significant difference. RESULTS: The bone length in the high-dose rESWT group was increased compared with that in untreated controls (4.46 mm ± 0.75 mm; 95% confidence interval, 3.28-3.71 and control: 3.50 mm ± 0.38 mm; 95% CI, 4.19-4.72; p = 0.01). Mechanistic studies of the growth plate's cartilage revealed that high-dose rESWT increased the number of proliferative chondrocytes compared with untreated control bones (1363 ± 393 immunopositive cells per bone and 500 ± 413 immunopositive cells per bone, respectively; p = 0.04) and increased the diameter of hypertrophic chondrocytes (18 ± 3 µm and 13 ± 3 µm, respectively; p < 0.001). This was accompanied by activation of insulin-like growth factor-1 (1015 ± 322 immunopositive cells per bone and 270 ± 121 immunopositive cells per bone, respectively; p = 0.043) and nuclear factor-kappa beta signaling (1029 ± 262 immunopositive cells per bone and 350 ± 60 immunopositive cells per bone, respectively; p = 0.01) and increased levels of the anti-apoptotic proteins B-cell lymphoma 2 (718 ± 86 immunopositive cells per bone and 35 ± 11 immunopositive cells per bone, respectively; p < 0.001) and B-cell lymphoma-extra-large (107 ± 7 immunopositive cells per bone and 34 ± 6 immunopositive cells per bone, respectively; p < 0.001). CONCLUSION: In a model of cultured fetal rat metatarsals, rESWT increased longitudinal bone growth by locally inducing chondrogenesis. To verify whether rESWT can also stimulate bone growth in the presence of systemic circulatory factors, further studies are needed. CLINICAL RELEVANCE: This preclinical proof-of-concept study shows that high-dose rESWT can stimulate longitudinal bone growth and growth plate chondrogenesis in cultured fetal rat metatarsal bones. A confirmatory in vivo study in skeletally immature animals must be performed before any clinical studies.


Asunto(s)
Desarrollo Óseo/efectos de la radiación , Condrogénesis/efectos de la radiación , Tratamiento con Ondas de Choque Extracorpóreas/métodos , Huesos Metatarsianos/crecimiento & desarrollo , Animales , Células Cultivadas , Feto/citología , Huesos Metatarsianos/citología , Ratas
2.
Evol Dev ; 21(6): 320-329, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31631508

RESUMEN

In many vertebrate animals that run or leap, the metatarsals and/or metacarpals of the distal limb are fused into a single larger element, likely to resist fracture due to high ground-reaction forces during locomotion. Although metapodial fusion evolved independently in modern birds, ungulates, and jerboas, the developmental basis has only been explored in chickens, which diverged from the mammalian lineage approximately 300 million years ago. Here, we use a bipedal rodent, the lesser Egyptian jerboa (Jaculus jaculus), to understand the cellular processes of metatarsal fusion in a mammal, and we revisit the developing chicken to assess similarities and differences in the localization of osteoblast and osteoclast activities. In both species, adjacent metatarsals align along flat surfaces, osteoblasts cross the periosteal membrane to unite the three elements in a single circumference, and osteoclasts resorb bone at the interfaces leaving a single marrow cavity. However, the pattern of osteoclast activity differs in each species; osteoclasts are highly localized to resorb bone at the interfaces of neighboring jerboa metatarsals and are distributed throughout the endosteum of chicken metatarsals. Each species, therefore, provides an opportunity to understand mechanisms that pattern osteoblast and osteoclast activities to alter bone shape during development and evolution.


Asunto(s)
Diferenciación Celular/fisiología , Pollos/metabolismo , Huesos Metatarsianos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Roedores/metabolismo , Animales , Pollos/anatomía & histología , Huesos Metatarsianos/citología , Osteoblastos/citología , Osteoclastos/citología , Roedores/anatomía & histología , Especificidad de la Especie
3.
Nature ; 495(7441): 375-8, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23485973

RESUMEN

The wide diversity of skeletal proportions in mammals is evident upon a survey of any natural history museum's collections and allows us to distinguish between species even when reduced to their calcified components. Similarly, each individual is comprised of a variety of bones of differing lengths. The largest contribution to the lengthening of a skeletal element, and to the differential elongation of elements, comes from a dramatic increase in the volume of hypertrophic chondrocytes in the growth plate as they undergo terminal differentiation. However, the mechanisms of chondrocyte volume enlargement have remained a mystery. Here we use quantitative phase microscopy to show that mammalian chondrocytes undergo three distinct phases of volume increase, including a phase of massive cell swelling in which the cellular dry mass is significantly diluted. In light of the tight fluid regulatory mechanisms known to control volume in many cell types, this is a remarkable mechanism for increasing cell size and regulating growth rate. It is, however, the duration of the final phase of volume enlargement by proportional dry mass increase at low density that varies most between rapidly and slowly elongating growth plates. Moreover, we find that this third phase is locally regulated through a mechanism dependent on insulin-like growth factor. This study provides a framework for understanding how skeletal size is regulated and for exploring how cells sense, modify and establish a volume set point.


Asunto(s)
Huesos/citología , Condrocitos/citología , Placa de Crecimiento/citología , Placa de Crecimiento/crecimiento & desarrollo , Animales , Tamaño de la Célula , Células Cultivadas , Factor I del Crecimiento Similar a la Insulina/metabolismo , Huesos Metatarsianos/citología , Ratones , Tibia/citología
4.
Histochem Cell Biol ; 144(1): 1-11, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25850409

RESUMEN

Osteocytes are the predominant cells in bone, where they form a cellular network and display important functions in bone homeostasis, phosphate metabolism and mechanical transduction. Several proteins strongly expressed by osteocytes are involved in these processes, e.g., sclerostin, DMP-1, PHEX, FGF23 and MEPE, while others are upregulated during differentiation of osteoblasts into osteocytes, e.g., osteocalcin and E11. The receptor-type protein tyrosine phosphatase µ (RPTPµ) has been described to be expressed in cells which display a cellular network, e.g., endothelial and neuronal cells, and is implied in mechanotransduction. In a capillary outgrowth assay using metatarsals derived from RPTPµ-knock-out/LacZ knock-in mice, we observed that the capillary structures grown out of the metatarsals were stained blue, as expected. Surprisingly, cells within the metatarsal bone tissue were positive for LacZ activity as well, indicating that RPTPµ is also expressed by osteocytes. Subsequent histochemical analysis showed that within bone, RPTPµ is expressed exclusively in early-stage osteocytes. Analysis of bone marrow cell cultures revealed that osteocytes are present in the nodules and an enzymatic assay enabled the quantification of the amount of osteocytes. No apparent bone phenotype was observed when tibiae of RPTPµ-knock-out/LacZ knock-in mice were analyzed by µCT at several time points during aging, although a significant reduction in cortical bone was observed in RPTPµ-knock-out/LacZ knock-in mice at 20 weeks. Changes in trabecular bone were more subtle. Our data show that RPTPµ is a new marker for osteocytes.


Asunto(s)
Huesos Metatarsianos/citología , Osteocitos/enzimología , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Animales , Biomarcadores , Células de la Médula Ósea/enzimología , Huesos/diagnóstico por imagen , Factor-23 de Crecimiento de Fibroblastos , Técnicas de Sustitución del Gen , Histocitoquímica , Mecanotransducción Celular , Huesos Metatarsianos/crecimiento & desarrollo , Ratones , Ratones Noqueados , Osteogénesis , Tomografía Computarizada por Rayos X
5.
J Biomech Eng ; 136(2): 021020, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24170133

RESUMEN

Microgravity and its inherent reduction in body-weight associated mechanical loading encountered during spaceflight have been shown to produce deleterious effects on important human physiological processes. Rodent hindlimb unloading is the most widely-used ground-based microgravity model. Unfortunately, results from these studies are difficult to translate to the human condition due to major anatomic and physiologic differences between the two species such as bone microarchitecture and healing rates. The use of translatable ovine models to investigate orthopedic-related conditions has become increasingly popular due to similarities in size and skeletal architecture of the two species. Thus, a new translational model of simulated microgravity was developed using common external fixation techniques to shield the metatarsal bone of the ovine hindlimb during normal daily activity over an 8 week period. Bone mineral density, quantified via dual-energy X-ray absorptiometry, decreased 29.0% (p < 0.001) in the treated metatarsi. Post-sacrifice biomechanical evaluation revealed reduced bending modulus (-25.8%, p < 0.05) and failure load (-27.8%, p < 0.001) following the microgravity treatment. Microcomputed tomography and histology revealed reduced bone volume (-35.9%, p < 0.01), trabecular thickness (-30.9%, p < 0.01), trabecular number (-22.5%, p < 0.05), bone formation rate (-57.7%, p < 0.01), and osteoblast number (-52.5%, p < 0.001), as well as increased osteoclast number (269.1%, p < 0.001) in the treated metatarsi of the microgravity group. No significant alterations occurred for any outcome parameter in the Sham Surgery Group. These data indicate that the external fixation technique utilized in this model was able to effectively unload the metatarsus and induce significant radiographic, biomechanical, and histomorphometric alterations that are known to be induced by spaceflight. Further, these findings demonstrate that the physiologic mechanisms driving bone remodeling in sheep and humans during prolonged periods of unloading (specifically increased osteoclast activity) are more similar than previously utilized models, allowing more comprehensive investigations of microgravity-related bone remodeling as it relates to human spaceflight.


Asunto(s)
Adaptación Fisiológica/fisiología , Densidad Ósea/fisiología , Huesos Metatarsianos/citología , Huesos Metatarsianos/fisiología , Modelos Animales , Ovinos/fisiología , Simulación de Ingravidez/métodos , Animales , Recuento de Células , Fuerza Compresiva/fisiología , Módulo de Elasticidad/fisiología , Femenino , Humanos , Resistencia al Corte/fisiología , Resistencia a la Tracción/fisiología
6.
J Biomech Eng ; 136(2): 021019, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24317222

RESUMEN

During orthopaedic surgery elevated temperatures due to cutting can result in bone injury, contributing to implant failure or delayed healing. However, how resulting temperatures are experienced throughout bone tissue and cells is unknown. This study uses a combination of experiments (forward-looking infrared (FLIR)) and multiscale computational models to predict thermal elevations in bone tissue and cells. Using multiple regression analysis, analytical expressions are derived allowing a priori prediction of temperature distribution throughout bone with respect to blade geometry, feed-rate, distance from surface, and cooling time. This study offers an insight into bone thermal behavior, informing innovative cutting techniques that reduce cellular thermal damage.


Asunto(s)
Temperatura Corporal/fisiología , Huesos Metatarsianos/fisiología , Huesos Metatarsianos/cirugía , Modelos Biológicos , Osteocitos/citología , Osteocitos/fisiología , Osteotomía/métodos , Animales , Calcificación Fisiológica/fisiología , Simulación por Computador , Transferencia de Energía/fisiología , Técnicas In Vitro , Huesos Metatarsianos/citología , Ovinos , Temperatura , Resistencia a la Tracción/fisiología , Conductividad Térmica
7.
J Biol Chem ; 287(31): 26060-7, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22696219

RESUMEN

Fibroblast growth factor 21 (FGF21) modulates glucose and lipid metabolism during fasting. In addition, previous evidence indicates that increased expression of FGF21 during chronic food restriction is associated with reduced bone growth and growth hormone (GH) insensitivity. In light of the inhibitory effects on growth plate chondrogenesis mediated by other FGFs, we hypothesized that FGF21 causes growth inhibition by acting directly at the long bones' growth plate. We first demonstrated the expression of FGF21, FGFR1 and FGFR3 (two receptors known to be activated by FGF21) and ß-klotho (a co-receptor required for the FGF21-mediated receptor binding and activation) in fetal and 3-week-old mouse growth plate chondrocytes. We then cultured mouse growth plate chondrocytes in the presence of graded concentrations of rhFGF21 (0.01-10 µg/ml). Higher concentrations of FGF21 (5 and 10 µg/ml) inhibited chondrocyte thymidine incorporation and collagen X mRNA expression. 10 ng/ml GH stimulated chondrocyte thymidine incorporation and collagen X mRNA expression, with both effects prevented by the addition in the culture medium of FGF21 in a concentration-dependent manner. In addition, FGF21 reduced GH binding in cultured chondrocytes. In cells transfected with FGFR1 siRNA or ERK 1 siRNA, the antagonistic effects of FGF21 on GH action were all prevented, supporting a specific effect of this growth factor in chondrocytes. Our findings suggest that increased expression of FGF21 during food restriction causes growth attenuation by antagonizing the GH stimulatory effects on chondrogenesis directly at the growth plate. In addition, high concentrations of FGF21 may directly suppress growth plate chondrocyte proliferation and differentiation.


Asunto(s)
Condrocitos/metabolismo , Factores de Crecimiento de Fibroblastos/fisiología , Hormona del Crecimiento/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Condrocitos/fisiología , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Hormona del Crecimiento/metabolismo , Placa de Crecimiento/citología , Proteínas Klotho , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Huesos Metatarsianos/citología , Ratones , Ratones Endogámicos C57BL , Cultivo Primario de Células , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Transcripción Genética
8.
J Biol Chem ; 286(28): 24726-34, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21592969

RESUMEN

Growth hormone (GH) stimulates growth plate chondrogenesis and longitudinal bone growth with its stimulatory effects primarily mediated by insulin-like growth factor-1 (IGF-1) both systemically and locally in the growth plate. It has been shown that the transcription factor Stat5b mediates the GH promoting effect on IGF-1 expression and on chondrogenesis, yet it is not known whether other signaling molecules are activated by GH in growth plate chondrocytes. We have previously demonstrated that nuclear factor-κB p65 is a transcription factor expressed in growth plate chondrocytes where it facilitates chondrogenesis. We have also shown that fibroblasts isolated from a patient with growth failure and a heterozygous mutation of inhibitor-κBα (IκB; component of the nuclear factor-κB (NF-κB) signaling pathway) exhibit GH insensitivity. In this study, we cultured rat metatarsal bones in the presence of GH and/or pyrrolidine dithiocarbamate (PDTC), a known NF-κB inhibitor. The GH-mediated stimulation of metatarsal longitudinal growth and growth plate chondrogenesis was neutralized by PDTC. In cultured chondrocytes isolated from rat metatarsal growth plates, GH induced NF-κB-DNA binding and chondrocyte proliferation and differentiation and prevented chondrocyte apoptosis. The inhibition of NF-κB p65 expression and activity (by NF-κB p65 siRNA and PDTC, respectively) in chondrocytes reversed the GH-mediated effects on chondrocyte proliferation, differentiation, and apoptosis. Lastly, the inhibition of Stat5b expression in chondrocytes prevented the GH promoting effects on NF-κB-DNA binding, whereas the inhibition of NF-κB p65 expression or activity prevented the GH-dependent activation of IGF-1 and bone morphogenetic protein-2 expression.


Asunto(s)
Proteína Morfogenética Ósea 2/biosíntesis , Condrocitos/metabolismo , Condrogénesis/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Hormona del Crecimiento/farmacología , Placa de Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción ReIA/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Condrocitos/citología , Condrogénesis/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Hormona del Crecimiento/metabolismo , Placa de Crecimiento/citología , Huesos Metatarsianos/citología , Huesos Metatarsianos/metabolismo , Prolina/análogos & derivados , Prolina/farmacología , Ratas , Ratas Sprague-Dawley , Tiocarbamatos/farmacología , Factor de Transcripción ReIA/antagonistas & inhibidores
9.
Dev Biol ; 329(1): 36-43, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19217897

RESUMEN

Wdr5 is developmentally expressed in osteoblasts and is required for osteoblast differentiation. Mice overexpressing Wdr5 under the control of the mouse alpha(1)I collagen promoter (Col I-Wdr5) display accelerated osteoblast differentiation as well as accelerated chondrocyte differentiation, suggesting that overexpression of Wdr5 in osteoblasts affects chondrocyte differentiation. To elucidate the molecular mechanism by which overexpression of Wdr5 in the perichondrium regulates chondrocyte differentiation, studies were undertaken using skeletal elements and cultured metatarsals isolated from wild-type and Col I-Wdr5 embryos. FGF18 mRNA levels were decreased in Col I-Wdr5 humeri. Furthermore, local delivery of FGF18 to the bone collar of ex vivo cultures of metatarsals attenuated the chondrocyte phenotype of the Col I-Wdr5 metatarsals. Impairing local FGF action in wild-type metatarsals resulted in a chondrocyte phenotype analogous to that of Col I-Wdr5 metatarsals implicating impaired FGF action as the cause of the phenotype observed. The expression of Twist-1, which regulates chondrocyte differentiation, was increased in Col I-Wdr5 humeri. Chromatin immunoprecipitation analyses demonstrated that Wdr5 is recruited to the Twist-1 promoter. These findings support a model in which overexpression of Wdr5 in the perichondrium promotes chondrocyte differentiation by modulating the expression of Twist-1 and FGF18.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular , Condrocitos/metabolismo , Condrogénesis , Proteínas/metabolismo , Animales , Células Cultivadas , Condrocitos/fisiología , Colágeno Tipo I/genética , Embrión de Mamíferos , Femenino , Húmero/citología , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Huesos Metatarsianos/citología , Ratones , Embarazo , Regiones Promotoras Genéticas , Proteínas/genética , Transgenes
10.
J Cell Physiol ; 218(2): 276-84, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18803233

RESUMEN

Suppressor of cytokine signalling-2 (SOCS2) negatively regulates the signal transduction of several cytokines. Socs2(-/-) mice show increased longitudinal skeletal growth associated with deregulated GH/IGF-1 signalling. The present study examined the role of SOCS2 in endochondral ossification and trabecular and cortical bone formation, and investigated whether pro-inflammatory cytokines associated with pediatric chronic inflammatory disorders mediate their effects through SOCS2. Seven-week-old Socs2(-/-) mice were heavier (27%; P < 0.001) and longer (6%; P < 0.001) than wild-type mice. Socs2(-/-) tibiae were longer (8%; P < 0.001) and broader (18%; P < 0.001) than that of wild-type mice, and the Socs2(-/-) mice had wider growth plates (24%; P < 0.001) with wider proliferative and hypertrophic zones (10% (P < 0.05) and 14% (P < 0.001) respectively). Socs2(-/-) mice showed increased total cross-sectional bone area (16%: P < 0.001), coupled to increased total tissue area (17%; P < 0.05) compared to tibia from wild-type mice. Socs2(-/-) mice showed increased percent bone volume (101%; P < 0.001), trabecular number (82%; P < 0.001) and trabecular thickness (11%; P < 0.001), with associated decreases in trabecular separation (19%; P < 0.001). TNFalpha exposure to growth plate chondrocytes for 48 h increased SOCS2 protein expression. Growth of metatarsals from 1-day-old Socs2(-/-) and Socs2(+/+) mice, as well as expression of Aggrecan, Collagen Type II and Collagen Type X, were inhibited by TNFalpha, with no effect of genotype. Our data indicate that physiological levels of SOCS2 negatively regulate bone formation and endochondral growth. Our results further suggest that pro-inflammatory cytokines mediate their inhibitory effects on longitudinal bone growth through a mechanism that is independent of SOCS2.


Asunto(s)
Desarrollo Óseo , Placa de Crecimiento/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/deficiencia , Tibia/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Desarrollo Óseo/efectos de los fármacos , Resorción Ósea/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Citocinas/farmacología , Femenino , Regulación de la Expresión Génica , Placa de Crecimiento/citología , Placa de Crecimiento/efectos de los fármacos , Mediadores de Inflamación/farmacología , Huesos Metatarsianos/citología , Ratones , Tamaño de los Órganos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Tibia/efectos de los fármacos , Tibia/metabolismo
11.
J Cell Biochem ; 108(3): 668-74, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19681042

RESUMEN

Phosphate is required for terminal differentiation of hypertrophic chondrocytes during postnatal growth plate maturation. In vitro models of chondrocyte differentiation demonstrate that 7 mM phosphate, a concentration analogous to that of the late gestational fetus, activates the mitochondrial apoptotic pathway in hypertrophic chondrocytes. This raises the question as to whether extracellular phosphate modulates chondrocyte differentiation and apoptosis during embryonic endochondral bone formation. To address this question, we performed investigations in the mouse metatarsal culture model that recapitulates in vivo bone development. Metatarsals were cultured for 4, 8, and 12 days with 1.25 and 7 mM phosphate. Metatarsals cultured with 7 mM phosphate showed a decrease in proliferation compared to those cultured in 1.25 mM phosphate. This decrease in proliferation was accompanied by an early enhancement in hypertrophic chondrocyte differentiation, associated with an increase in FGF18 expression. By 8 days in culture, an increase caspase-9 activation and apoptosis of hypertrophic chondrocytes was observed in the metatarsals cultured in 7 mM phosphate. Immunohistochemical analyses of embryonic bones demonstrated activation of caspase-9 in hypertrophic chondrocytes, associated with vascular invasion. Thus, these investigations demonstrate that phosphate promotes chondrocyte differentiation during embryonic development and implicate a physiological role for phosphate activation of the mitochondrial apoptotic pathway during embryonic endochondral bone formation.


Asunto(s)
Desarrollo Óseo/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Huesos Metatarsianos/efectos de los fármacos , Huesos Metatarsianos/embriología , Fosfatos/farmacología , Animales , Apoptosis/efectos de los fármacos , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Factores de Crecimiento de Fibroblastos/metabolismo , Huesos Metatarsianos/citología , Huesos Metatarsianos/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
12.
Mol Endocrinol ; 22(5): 1238-50, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18292241

RESUMEN

Signaling through the IGF-I receptor by locally synthesized IGF-I or IGF-II is critical for normal skeletal development and for bone remodeling and repair throughout the lifespan. In most tissues, IGF actions are modulated by IGF-binding proteins (IGFBPs). IGFBP-5 is the most abundant IGFBP in bone, and previous studies have suggested that it may either enhance or inhibit osteoblast differentiation in culture and may facilitate or block bone growth in vivo. To resolve these contradictory observations and discern the mechanisms of action of IGFBP-5 in bone, we studied its effects in differentiating osteoblasts and in primary bone cultures. Purified wild-type (WT) mouse IGFBP-5 or a recombinant adenovirus expressing IGFBP-5WT each prevented osteogenic differentiation induced by the cytokine bone morphogenetic protein (BMP)-2 at its earliest stages without interfering with BMP-mediated signaling, whereas an analog with reduced IGF binding (N domain mutant) was ineffective. When added at later phases of bone cell maturation, IGFBP-5WT but not IGFBP-5N blocked mineralization, prevented longitudinal growth of mouse metatarsal bones in short-term primary culture, and inhibited their endochondral ossification. Because an IGF-I variant (R3IGF-I) with diminished affinity for IGFBPs promoted full osteogenic differentiation in the presence of IGFBP-5WT, our results show that IGFBP-5 interferes with IGF action in osteoblasts and provides a framework for discerning mechanisms of collaboration between signal transduction pathways activated by BMPs and IGFs in bone.


Asunto(s)
Diferenciación Celular/fisiología , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Osteoblastos/metabolismo , Somatomedinas/metabolismo , Animales , Proteína Morfogenética Ósea 2 , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/fisiología , Diferenciación Celular/genética , Células Cultivadas , Femenino , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Huesos Metatarsianos/citología , Huesos Metatarsianos/metabolismo , Ratones , Ratones Endogámicos C3H , Osteoblastos/citología , Embarazo , Transfección , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/fisiología
13.
Mol Biol Cell ; 16(6): 3028-39, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15800063

RESUMEN

Endochondral bone formation is characterized by the progressive replacement of a cartilage anlagen by bone at the growth plate with a tight balance between the rates of chondrocyte proliferation, differentiation, and cell death. Deficiency of matrix metalloproteinase-9 (MMP-9) leads to an accumulation of late hypertrophic chondrocytes. We found that galectin-3, an in vitro substrate of MMP-9, accumulates in the late hypertrophic chondrocytes and their surrounding extracellular matrix in the expanded hypertrophic cartilage zone. Treatment of wild-type embryonic metatarsals in culture with full-length galectin-3, but not galectin-3 cleaved by MMP-9, mimicked the embryonic phenotype of Mmp-9 null mice, with an increased hypertrophic zone and decreased osteoclast recruitment. These results indicate that extracellular galectin-3 could be an endogenous substrate of MMP-9 that acts downstream to regulate hypertrophic chondrocyte death and osteoclast recruitment during endochondral bone formation. Thus, the disruption of growth plate homeostasis in Mmp-9 null mice links galectin-3 and MMP-9 in the regulation of the clearance of late chondrocytes through regulation of their terminal differentiation.


Asunto(s)
Desarrollo Óseo , Huesos/enzimología , Galectina 3/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Animales , Western Blotting , Huesos/citología , Huesos/metabolismo , Diferenciación Celular , Células Cultivadas , Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Placa de Crecimiento/citología , Placa de Crecimiento/embriología , Placa de Crecimiento/crecimiento & desarrollo , Placa de Crecimiento/metabolismo , Húmero/citología , Húmero/embriología , Inmunohistoquímica , Hibridación in Situ , Huesos Metatarsianos/citología , Huesos Metatarsianos/embriología , Ratones , Ratones Mutantes , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo
14.
Bone ; 40(5): 1415-24, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17293177

RESUMEN

Estrogen affects skeletal growth and promotes growth plate fusion in humans. High doses of estrogen have been used to limit growth in girls with predicted extreme tall stature; a treatment which has been associated with severe side effects. Selective estrogen receptor modulators (SERMs) could potentially be used as an alternative treatment. We chose to study the effects of Tamoxifen (Tam), a first generation SERM that has been used in the treatment of pubertal gynecomastia or McCune-Albright syndrome. Cultured fetal rat metatarsal bones were used to study the effects of Tam on longitudinal bone growth. In sectioned bones, chondrocyte apoptosis and proliferation were analyzed by TUNEL assay and BrdU incorporation, respectively. We also used a human chondrocytic cell line, HSC-2/8, to study the effects of Tam on apoptosis (FACS analysis and Cell Death detection ELISA) and caspase activation (caspase substrate cleavage and Western immunoblotting). Tam caused a dose-dependent growth retardation of cultured metatarsal bones. No catch-up growth was observed after Tam was removed from the culture medium. Detailed analysis of sectioned growth plate cartilage revealed increased apoptosis of chondrocytes within the resting and hypertrophic zones. HCS-2/8 cells also underwent apoptosis upon Tam treatment. Tam-induced apoptosis was caspase-dependent and completely abrogated by either caspase-8 or -9 inhibitors. A substrate assay revealed that caspase-8 is first activated followed by caspase-9 and -3. Finally, FasL secretion was stimulated by Tam and blocking of either FasL or Fas decreased Tam-induced apoptosis in chondrocytes. We here describe a novel mechanism of tamoxifen-induced apoptosis in chondrocytes, involving the activation of caspases and the FasL/Fas pathway, which diminishes the potential for bone growth.


Asunto(s)
Apoptosis/efectos de los fármacos , Condrocitos/citología , Condrocitos/efectos de los fármacos , Placa de Crecimiento/citología , Placa de Crecimiento/efectos de los fármacos , Huesos Metatarsianos/citología , Tamoxifeno/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Condrocitos/metabolismo , Proteína Ligando Fas/metabolismo , Placa de Crecimiento/metabolismo , Humanos , Huesos Metatarsianos/efectos de los fármacos , Huesos Metatarsianos/metabolismo , Ratas
15.
J Appl Physiol (1985) ; 123(5): 1101-1109, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28798204

RESUMEN

Bones elongate through endochondral ossification in cartilaginous growth plates located at ends of primary long bones. Linear growth ensues from a cascade of biochemical signals initiated by actions of systemic and local regulators on growth plate chondrocytes. Although cellular processes are well defined, there is a fundamental gap in understanding how growth regulators are physically transported from surrounding blood vessels into and through dense, avascular cartilage matrix. Intravital imaging using in vivo multiphoton microscopy is one promising strategy to overcome this barrier by quantitatively tracking molecular delivery to cartilage from the vasculature in real time. We previously used in vivo multiphoton imaging to show that hindlimb heating increases vascular access of large molecules to growth plates using 10-, 40-, and 70-kDa dextran tracers. To comparatively evaluate transport of similarly sized physiological regulators, we developed and validated methods for measuring uptake of biologically active IGF-I into proximal tibial growth plates of live 5-wk-old mice. We demonstrate that fluorescently labeled IGF-I (8.2 kDa) is readily taken up in the growth plate and localizes to chondrocytes. Bioactivity tests performed on cultured metatarsal bones confirmed that the labeled protein is functional, assessed by phosphorylation of its signaling kinase, Akt. This methodology, which can be broadly applied to many different proteins and tissues, is relevant for understanding factors that affect delivery of biologically relevant molecules to the skeleton in real time. Results may lead to the development of drug-targeting strategies to treat a wide range of bone and cartilage pathologies.NEW & NOTEWORTHY This paper describes and validates a novel method for imaging transport of biologically active, fluorescently labeled IGF-I into skeletal growth plates of live mice using multiphoton microscopy. Cellular patterns of fluorescence in the growth plate were completely distinct from our prior publications using biologically inert probes, demonstrating for the first time in vivo localization of IGF-I in chondrocytes and perichondrium. These results form important groundwork for future studies aimed at targeting therapeutics into growth plates.


Asunto(s)
Cartílago/metabolismo , Condrocitos/metabolismo , Placa de Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Huesos Metatarsianos/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica , Tibia/metabolismo , Animales , Transporte Biológico , Cartílago/citología , Femenino , Colorantes Fluorescentes/metabolismo , Placa de Crecimiento/citología , Humanos , Cinética , Masculino , Huesos Metatarsianos/citología , Ratones Endogámicos C57BL , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reproducibilidad de los Resultados , Tibia/citología , Técnicas de Cultivo de Tejidos
16.
Endocrinology ; 147(8): 3761-8, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16675523

RESUMEN

The proteasome is a large multiprotein complex that processes intracellular proteins functioning as cell cycle regulators and transcription factors. It has been shown that the chymotryptic component of the proteasome is an important regulator of osteoblast differentiation and bone formation, with inhibitors of the proteasome increasing osteoblast differentiation and bone formation. Yet, little is known about the effects of the proteasomal activity in the growth plate. In the present study, we cultured rat metatarsal bones in the presence of proteasome inhibitor I (PSI), a known inhibitor of the chymotrypsin-like activity of the 20S proteasome. PSI suppressed growth plate chondrocyte proliferation and hypertrophy/differentiation, and induced chondrocyte apoptosis. All these cellular effects led to reduced metatarsal linear growth. In cultured chondrocytes, PSI increased the expression of beta-catenin (a negative regulator of chondrogenesis) and reduced the DNA binding of nuclear factor kappaB, a transcription factor that stimulates growth plate chondrogenesis. In conclusion, our findings suggest that the proteasomal activity facilitates growth plate chondrogenesis and, in turn, longitudinal bone growth.


Asunto(s)
Condrocitos/enzimología , Condrogénesis/fisiología , Placa de Crecimiento/crecimiento & desarrollo , Huesos Metatarsianos/crecimiento & desarrollo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Condrocitos/citología , Condrogénesis/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Expresión Génica , Placa de Crecimiento/citología , Placa de Crecimiento/enzimología , Proteínas I-kappa B/metabolismo , Huesos Metatarsianos/citología , Huesos Metatarsianos/enzimología , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Oligopéptidos/farmacología , Técnicas de Cultivo de Órganos , Inhibidores de Proteasoma , Ratas , Ratas Sprague-Dawley , beta Catenina/genética , beta Catenina/metabolismo
17.
Mech Dev ; 122(4): 557-71, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15804568

RESUMEN

Transforming growth factor-beta (TGF-beta) is known to regulate chondrocyte proliferation and hypertrophic differentiation in embryonic bone cultures by a perichondrium dependent mechanism. To begin to determine which factors in the perichondrium mediate the effects of TGF-beta, we studied the effect of Insulin-like Growth Factor-1 (IGF-I) and Fibroblast Growth Factors-2 and -18 (FGF2, FGF18) on metatarsal organ cultures. An increase in chondrocyte proliferation and hypertrophic differentiation was observed after treatment with IGF-I. A similar effect was seen after the perichondrium was stripped from the metatarsals suggesting IGF-I acts directly on the chondrocytes. Treatment with FGF-2 or FGF-18 resulted in a decrease in bone elongation as well as hypertrophic differentiation. Treatment also resulted in a decrease in BrdU incorporation into chondrocytes and an increase in BrdU incorporation in perichondrial cells, similar to what is seen after treatment with TGF-beta1. A similar effect was seen with FGF2 after the perichondrium was stripped suggesting that, unlike TGF-beta, FGF2 acts directly on chondrocytes to regulate proliferation and hypertrophic differentiation. To test the hypothesis that TGF-beta regulates IGF or FGF signaling, activation of the receptors was characterized after treatment with TGF-beta. Activation was measured as the level of tyrosine phosphorylation on the receptor. Treatment with TGF-beta for 24h did not alter the level of IGFR-I tyrosine phosphorylation. In contrast, treatment with TGF-beta resulted in and increase in tyrosine phosphorylation on FGFR3 without alterations in total FGFR3 levels. TGF-beta also stimulated expression of FGF18 mRNA in the cultures and the effects of TGF-beta on metatarsal development were blocked or partially blocked by pretreatment with FGF signaling inhibitors. The results suggest a model in which FGF through FGFR3 mediates some of the effects of TGF-beta on embryonic bone formation.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/farmacología , Factores de Crecimiento de Fibroblastos/farmacología , Huesos Metatarsianos/citología , Huesos Metatarsianos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Condrocitos/citología , Condrocitos/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Miembro Posterior/citología , Miembro Posterior/embriología , Factor I del Crecimiento Similar a la Insulina/farmacología , Huesos Metatarsianos/embriología , Huesos Metatarsianos/metabolismo , Ratones , Técnicas de Cultivo de Órganos , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
18.
Mol Cell Endocrinol ; 249(1-2): 107-15, 2006 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-16530934

RESUMEN

The ATDC5 chondrogenic cell line is typically induced to differentiate by exposure to insulin at high concentration (10 microg/ml, approximately 1600 nM). Differentiation can also be induced by physiological concentrations of insulin-like growth factor-I (IGF-I). Unlike previous reports, we observed a stimulation of differentiation, as measured by collagen X expression and Alcian Blue staining for proteoglycan synthesis, upon exposure to insulin at concentrations (10-50 nM) consistent with signaling via the insulin receptor. Analysis of lysates from proliferating and hypertrophic ATDC5 cells demonstrated that exposure to 50 nM insulin induced tyrosine phosphorylation of insulin receptors but not IGF-I receptors or hybrid receptors. In contrast to the potent effects of IGF-I to stimulate both ATDC5 proliferation and differentiation, insulin was not as potent as IGF-I as a proliferating agent but more selectively a differentiating agent. Consistent with this result, insulin was less potent than IGF-I in inducing activation of the Erk1/Erk2 mitogenic signaling pathway. Furthermore, Erk pathway inhibition did not enhance the differentiating effects of insulin as it does in the case of IGF-I exposure. Extending our observations to fetal rat metatarsal explants, we observed significant stimulation of bone growth by 50 nM insulin. This could be accounted for by a disproportionate stimulatory effect on growth of the hypertrophic zone. The proliferative zone was not significantly affected. Based on our results in both ATDC5 cells and metatarsal explants, we conclude that the insulin functioning through insulin receptor has a dominant effect as an inducer of chondrocyte differentiation. These results support assignment of a physiological role for this hormone in linear bone growth.


Asunto(s)
Condrocitos/citología , Condrogénesis/fisiología , Insulina/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Proliferación Celular , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrogénesis/efectos de los fármacos , Colágeno/metabolismo , Insulina/farmacología , Sistema de Señalización de MAP Quinasas , Huesos Metatarsianos/citología , Huesos Metatarsianos/efectos de los fármacos , Huesos Metatarsianos/crecimiento & desarrollo , Ratones , Fosforilación , Ratas , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal
19.
Anat Rec A Discov Mol Cell Evol Biol ; 288(1): 104-18, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16342215

RESUMEN

There is significant diversity in growth plate behavior among sites within an individual skeleton and between skeletons of different species. This variation within wild-type animals is an underutilized resource for studying skeletal development. One bone that potentially exhibits the most diverse behavior is the metatarsal. While one end forms a growth plate with an epiphyseal secondary center of ossification as in other long bones, the opposite end undergoes direct ossification in a manner more similar to short bones. Although descriptions of human metatarsal/metacarpal ossification are available, a detailed comparative analysis has yet to be conducted in an animal model amenable to biomolecular analysis. Here we report an analysis of proximal and distal ossification in an age series of mouse metatarsals. Safranin O staining was used for qualitative and quantitative histology, and chondrocyte differentiation and proliferation were analyzed using immunohistochemistry for type X collagen and proliferative cell nuclear antigen expression. We establish that, as in the human, both growth plate formation and direct ossification occur in the mouse metatarsal, with chondrocyte populations showing distinct differentiation patterns at opposite ends of the bone. In addition, growth plate formation is characterized by a peak of proliferation in reserve zone chondrocytes that distinguishes it from both established growth plates and direct ossification. Our analysis demonstrates that the mouse metatarsal is a productive model for investigating natural variation in ossification that can further understanding of vertebrate skeletal development and evolution.


Asunto(s)
Placa de Crecimiento/fisiología , Huesos Metatarsianos/fisiología , Osteogénesis/fisiología , Animales , Proliferación Celular , Condrocitos/fisiología , Colágeno Tipo X/metabolismo , Diáfisis/anatomía & histología , Epífisis/anatomía & histología , Femenino , Inmunohistoquímica , Masculino , Huesos Metatarsianos/anatomía & histología , Huesos Metatarsianos/citología , Huesos Metatarsianos/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL
20.
Biomech Model Mechanobiol ; 5(2-3): 172-9, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16506017

RESUMEN

One of the challenges facing researchers studying chondrocyte mechanobiology is determining the range of mechanical forces pertinent to the problems they study. One possible way to deal with this problem is to quantify how the biomechanical behavior of cells varies in response to changing mechanical forces. In this study, the compressibility and recovery behaviors of single chondrocytes were determined as a function of compressive strains from 6 to 63%. Bovine articular chondrocytes from the middle and deep zones were subjected to this range of strains, and digital videocapture was used to track changes in cell dimensions during and after compression. The normalized volume change, apparent Poisson's ratio, residual strain after recovery, cell volume fraction after recovery, and characteristic recovery time constant were analyzed with respect to axial strain. Normalized volume change varied as a function of strain, demonstrating that chondrocytes exhibited compressibility. The mean Poisson's ratio of chondrocytes was found to be 0.29 +/- 0.14, and did not vary with axial strain. In contrast, residual strain, recovered volume fraction, and recovery time constant all depended on axial strain. The dependence of residual strain and recovered volume fraction on axial strain showed a change in behavior around 25-30% strain, opening up the possibility that this range of strains represents a critical value for chondrocytes. Quantifying the mechanical behavior of cells as a function of stress and strain is a potentially useful approach for identifying levels of mechanical stimulation that may be germane to normal cartilage physiology, functional tissue engineering of cartilage, and the etiopathogenesis of osteoarthritis.


Asunto(s)
Forma de la Célula , Condrocitos/citología , Condrocitos/fisiología , Animales , Cartílago Articular/citología , Bovinos , Biología Celular , Técnicas de Cultivo de Célula , Células Cultivadas , Fuerza Compresiva , Masculino , Huesos Metatarsianos/citología , Microscopía por Video , Sefarosa/fisiología , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda