Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.927
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Biochem Biophys Res Commun ; 722: 150168, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-38797156

RESUMEN

Human serum albumin (HSA) is the most abundant plasma protein of the circulatory system. It is a multidomain, multifunctional protein that, combining diverse affinities and wide specificity, binds, stores, and transports a variety of biological compounds, pharmacores, and fatty acids. HSA is finding increasing uses in drug-delivery due to its ability to carry functionalized ligands and prodrugs. All this raises the question of competition for binding sites occupancy in case of multiple ligands, which in turn influences the protein structure/dynamic/function relationship and also has an impact on the biomedical applications. In this work, the effects of interactive binding of palmitic acid (PA), warfarin (War) and ibuprofen (Ibu) on the thermal stability of HSA were studied using DSC, ATR-FTIR, and EPR. PA is a high-affinity physiological ligand, while the two drugs are widely used for their anticoagulant (War) and anti-inflammatory (Ibu) efficacy, and are exogenous compounds that accommodate in the deputed drug site DS1 and DS2, respectively overlapping with some of the fatty acid binding sites. The results indicate that HSA acquires the highest thermal stability when it is fully saturated with PA. The binding of this physiological ligand does not hamper the binding of War or Ibu to the native state of the protein. In addition, the three ligands bind simultaneously, suggesting a synergic cooperative influence due to allosteric effects. The increased thermal stability subsequent to binary and multiple ligands binding moderates protein aggregation propensity and restricts protein dynamics. The biophysics findings provide interesting features about protein stability, aggregation, and dynamics in interaction with multiple ligands and are relevant in drug-delivery.


Asunto(s)
Ibuprofeno , Albúmina Sérica Humana , Warfarina , Humanos , Sitios de Unión , Unión Competitiva , Ibuprofeno/química , Ibuprofeno/metabolismo , Ligandos , Ácido Palmítico/química , Ácido Palmítico/metabolismo , Unión Proteica , Estabilidad Proteica/efectos de los fármacos , Albúmina Sérica Humana/metabolismo , Albúmina Sérica Humana/química , Temperatura , Warfarina/química , Warfarina/metabolismo , Warfarina/farmacología
2.
Small ; 20(25): e2307858, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38269485

RESUMEN

The organic nucleation of the pharmaceutical ibuprofen is investigated, as triggered by the protonation of ibuprofen sodium salt at elevated pH. The growth and aggregation of nanoscale solution species by Analytical Ultracentrifugation and Molecular Dynamics (MD) simulations is tracked. Both approaches reveal solvated molecules, oligomers, and prenucleation clusters, their size as well as their hydration at different reaction stages. By combining surface-specific vibrational spectroscopy and MD simulations, water interacting with ibuprofen at the air-water interface during nucleation is probed. The results show the structure of water changes upon ibuprofen protonation in response to the charge neutralization. Remarkably, the water structure continues to evolve despite the saturation of protonated ibuprofen at the hydrophobic interface. This further water rearrangement is associated with the formation of larger aggregates of ibuprofen molecules at a late prenucleation stage. The nucleation of ibuprofen involves ibuprofen protonation and their hydrophobic assembly. The results highlight that these processes are accompanied by substantial water reorganization. The critical role of water is possibly relevant for organic nucleation in aqueous environments in general.


Asunto(s)
Ibuprofeno , Simulación de Dinámica Molecular , Agua , Ibuprofeno/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas
3.
J Mol Recognit ; 37(5): e3089, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38894531

RESUMEN

The frequent use of anti-inflammatory drugs and the side effects of existing drugs keep the need for new compounds constant. For this purpose, flurbiprofen and ibuprofen-like compounds, which are frequently used anti-inflammatory compounds in this study, were synthesized and their structures were elucidated. Like ibuprofen and flurbiprofen, the compounds contain a residue of phenylacetic acid. On the other hand, it contains a secondary amine residue. Thus, it is planned to reduce the acidity, which is the biggest side effect of NSAI drugs, even a little bit. The estimated ADME parameters of the compounds were evaluated. Apart from internal use, local use of anti-inflammatory compounds is also very important. For this reason, the skin permeability values of the compounds were also calculated. And it has been found to be compatible with reference drugs. The COX enzyme inhibitory effects of the obtained compounds were tested by in vitro experiments. Compound 2a showed significant activity against COX-1 enzyme with an IC50 = 0.123 + 0.005 µM. The interaction of the compound with the enzyme active site was clarified by molecular dynamics studies.


Asunto(s)
Ciclooxigenasa 1 , Inhibidores de la Ciclooxigenasa , Flurbiprofeno , Ibuprofeno , Simulación de Dinámica Molecular , Flurbiprofeno/farmacología , Flurbiprofeno/química , Ibuprofeno/farmacología , Ibuprofeno/química , Inhibidores de la Ciclooxigenasa/farmacología , Inhibidores de la Ciclooxigenasa/química , Inhibidores de la Ciclooxigenasa/síntesis química , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 1/química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/síntesis química , Humanos , Dominio Catalítico , Fenilacetatos/química , Fenilacetatos/farmacología
4.
Chemphyschem ; 25(11): e202400066, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38470129

RESUMEN

The thermodynamic data on ibuprofen available in the literature shows that the disarray of experimental results is unacceptable for this very important drug. The data on ibuprofens available in the literature were collected, combined with our complementary experimental results and evaluated. The enthalpies of combustion and formation of the crystalline RS-(±)- and S-(+)-ibuprofens were measured using high-precision combustion calorimetry. The temperature dependence of the vapour pressure of S-(+)-ibuprofen was measured using the transpiration method and the enthalpy of vaporization was derived from this measurement. The enthalpies of fusion of both compounds were measured using DSC. The G4 calculations have been carried out to determine the enthalpy of formation in the gaseous state of the most stable conformer. Thermochemical properties of the compounds studied were evaluated and tested for consistency with the "centerpiece approach". A set of reliable and consistent values of thermodynamic properties of ibuprofens at 298.15 K is recommended for thermochemical calculations of the pharmaceutical processes. The diagnostic protocol was developed to distinguish between the "sick" or "healthy" thermodynamic data. This diagnostic is also applicable to other drugs with a different structure than ibuprofen.


Asunto(s)
Ibuprofeno , Teoría Cuántica , Termodinámica , Ibuprofeno/química , Temperatura , Antiinflamatorios no Esteroideos/química
5.
Mol Pharm ; 21(5): 2473-2483, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38579335

RESUMEN

In recent years, the drainage of fluids, immune cells, antigens, fluorescent tracers, and other solutes from the brain has been demonstrated to occur along lymphatic outflow pathways to the deep cervical lymph nodes in the neck. To the best of our knowledge, no studies have evaluated the lymphatic transport of therapeutics from the brain. The objective of this study was to determine the lymphatic transport of model therapeutics of different molecular weights and lipophilicity from the brain using cervical lymph cannulation and ligation models in rats. To do this, anesthetized Sprague-Dawley rats were cannulated at the carotid artery and cannulated, ligated, or left intact at the cervical lymph duct. Rats were administered 14C-ibuprofen (206.29 g/mol, logP 3.84), 3H-halofantrine HCl (536.89 g/mol, logP 8.06), or 3H-albumin (∼65,000 g/mol) via direct injection into the brain striatum at a rate of 0.5 µL/min over 16 min. Plasma or cervical lymph samples were collected for up to 6-8 h following dosing, and brain and lymph nodes were collected at 6 or 8 h. Samples were subsequently analyzed for radioactivity levels via scintillation counting. For 14C-ibuprofen, plasma concentrations over time (plasma AUC0-6h) were >2 fold higher in lymph-ligated rats than in lymph-intact rats, suggesting that ibuprofen is cleared from the brain primarily via nonlymphatic routes (e.g., across the blood-brain barrier) but that this clearance is influenced by changes in lymphatic flow. For 3H-halofantrine, >73% of the dose was retained at the brain dosing site in lymph-intact and lymph-ligated groups, and plasma AUC0-8h values were low in both groups (<0.3% dose.h/mL), consistent with the high retention in the brain. It was therefore not possible to determine whether halofantrine undergoes lymphatic transport from the brain within the duration of the study. For 3H-albumin, plasma AUC0-8h values were not significantly different between lymph-intact, lymph-ligated, and lymph-cannulated rats. However, >4% of the dose was recovered in cervical lymph over 8 h. Lymph/plasma concentration ratios of 3H-albumin were also very high (up to 53:1). Together, these results indicate that 3H-albumin is transported from the brain not only via lymphatic routes but also via the blood. Similar to other tissues, the lymphatics may thus play a significant role in the transport of macromolecules, including therapeutic proteins, from the brain but are unlikely to be a major transport pathway from the brain for small molecule drugs that are not lipophilic. Our rat cervical lymph cannulation model can be used to quantify the lymphatic drainage of different molecules and factors from the brain.


Asunto(s)
Encéfalo , Ibuprofeno , Ganglios Linfáticos , Ratas Sprague-Dawley , Animales , Ratas , Encéfalo/metabolismo , Masculino , Ganglios Linfáticos/metabolismo , Ibuprofeno/farmacocinética , Ibuprofeno/administración & dosificación , Ibuprofeno/química , Fenantrenos/farmacocinética , Fenantrenos/química , Fenantrenos/administración & dosificación , Transporte Biológico/fisiología , Albúminas/farmacocinética , Albúminas/metabolismo
6.
Mol Pharm ; 21(9): 4524-4540, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39109552

RESUMEN

Molecular interactions between active pharmaceutical ingredients (APIs) and xanthine (XAT) derivatives were analyzed using singular value decomposition (SVD). XAT derivatives were mixed with equimolar amounts of ibuprofen (IBP) and diclofenac (DCF), and their dissolution behaviors were measured using high-performance liquid chromatography. The solubility of IBP decreased in mixtures with caffeine (CFN) and theophylline (TPH), whereas that of DCF increased in mixtures with CFN and TPH. No significant differences were observed between the mixtures of theobromine (TBR) or XAT with IBP and DCF. Mixtures with various molar ratios were analyzed using differential scanning calorimetry, X-ray powder diffraction, and Fourier-transform infrared spectroscopy to further explore these interactions. The results were subjected to SVD. This analysis provides valuable insights into the differences in interaction strength and predicted interaction sites between XAT derivatives and APIs based on the combinations that form mixtures. The results also showed the impact of the XAT derivatives on the dissolution behavior of IBP and DCF. Although IBP and DCF were found to form intermolecular interactions with CFN and TPH, these effects resulted in a reduction of the solubility of IBP and an increase in the solubility of DCF. The current approach has the potential to predict various interactions that may occur in different combinations, thereby contributing to a better understanding of the impact of health supplements on pharmaceuticals.


Asunto(s)
Cafeína , Rastreo Diferencial de Calorimetría , Ibuprofeno , Polvos , Solubilidad , Difracción de Rayos X , Cafeína/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Ibuprofeno/química , Rastreo Diferencial de Calorimetría/métodos , Polvos/química , Difracción de Rayos X/métodos , Teofilina/química , Cromatografía Líquida de Alta Presión/métodos , Teobromina/química , Diclofenaco/química , Xantina/química
7.
Mol Pharm ; 21(5): 2501-2511, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38574292

RESUMEN

The molecular structures of nonsteroidal anti-inflammatory drugs (NSAIDs) vary, but most contain a carboxylic acid functional group (RCOOH). This functional group is known to be related to the mechanism of cyclooxygenase inhibition and also causes side effects, such as gastrointestinal bleeding. This study proposes a new role for RCOOH in NSAIDs: facilitating the interaction at the binding site II of serum albumins. We used bovine serum albumin (BSA) as a model to investigate the interactions with ligands at site II. Using dansyl-proline (DP) as a fluorescent site II marker, we demonstrated that only negatively charged NSAIDs such as ibuprofen (IBP), naproxen (NPX), diflunisal (DFS), and ketoprofen (KTP) can efficiently displace DP from the albumin binding site. We confirmed the importance of RCOO by neutralizing IBP and NPX through esterification, which reduced the displacement of DP. The competition was also monitored by stopped-flow experiments. While IBP and NPX displaced DP in less than 1 s, the ester derivatives were ineffective. We also observed a higher affinity of negatively charged NSAIDs using DFS as a probe and ultrafiltration experiments. Molecular docking simulations showed an essential salt bridge between the positively charged residues Arg409 and Lys413 with RCOO-, consistent with the experimental findings. We performed a ligand dissociation pathway and corresponding energy analysis by applying molecular dynamics. The dissociation of NPX showed a higher free energy barrier than its ester. Apart from BSA, we conducted some experimental studies with human serum albumin, and similar results were obtained, suggesting a general effect for other mammalian serum albumins. Our findings support that the RCOOH moiety affects not only the mechanism of action and side effects but also the pharmacokinetics of NSAIDs.


Asunto(s)
Antiinflamatorios no Esteroideos , Ácidos Carboxílicos , Simulación del Acoplamiento Molecular , Albúmina Sérica Bovina , Animales , Bovinos , Humanos , Antiinflamatorios no Esteroideos/química , Sitios de Unión , Ácidos Carboxílicos/química , Diflunisal/química , Ibuprofeno/química , Cetoprofeno/química , Ligandos , Naproxeno/química , Unión Proteica , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo
8.
Mol Pharm ; 21(9): 4589-4602, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088435

RESUMEN

Amorphous solid dispersion (ASD) in a polymer matrix is a powerful method for enhancing the solubility and bioavailability of otherwise crystalline, poorly water-soluble drugs. 6-Carboxycellulose acetate butyrate (CCAB) is a relatively new commercial cellulose derivative that was introduced for use in waterborne coating applications. As CCAB is an amphiphilic, carboxyl-containing, high glass transition temperature (Tg) polymer, characteristics essential to excellent ASD polymer performance, we chose to explore its ASD potential. Structurally diverse drugs quercetin, ibuprofen, ritonavir, loratadine, and clarithromycin were dispersed in CCAB matrices. We evaluated the ability of CCAB to create ASDs with these drugs and its ability to provide solubility enhancement and effective drug release. CCAB/drug dispersions prepared by spray drying were amorphous up to 25 wt % drug, with loratadine remaining amorphous up to 50% drug. CCAB formulations with 10% drug proved effective at providing in vitro solubility enhancement for the crystalline flavonoid drug quercetin as well as ritonavir, but not for the more soluble APIs ibuprofen and clarithromycin and the more hydrophobic loratadine. CCAB did provide slow and controlled release of ibuprofen, offering a simple and promising Long-duration ibuprofen formulation. Formulation with clarithromycin showed the ability of the polymer to protect against degradation of the drug at stomach pH. Furthermore, CCAB ASDs with both loratadine and ibuprofen could be improved by the addition of the water-soluble polymer poly(vinylpyrrolidone) (PVP), with which CCAB shows good miscibility. CCAB provided solubility enhancement in some cases, and the slower drug release exhibited by CCAB, especially in the stomach, could be especially beneficial, for example, in formulations containing known stomach irritants like ibuprofen.


Asunto(s)
Celulosa , Ibuprofeno , Loratadina , Polímeros , Solubilidad , Polímeros/química , Celulosa/química , Celulosa/análogos & derivados , Ibuprofeno/química , Ibuprofeno/farmacocinética , Loratadina/química , Loratadina/análogos & derivados , Loratadina/farmacocinética , Liberación de Fármacos , Quercetina/química , Claritromicina/química , Ritonavir/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos
9.
Mol Pharm ; 21(8): 4004-4011, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38973113

RESUMEN

The purpose of this study was to examine how the introduction of ibuprofen (IBU) affected tumor-targeting and biodistribution properties of 177Lu-labeled IBU-conjugated alpha-melanocyte-stimulating hormone peptides. The IBU was used as an albumin binder and conjugated to the DOTA-Lys moiety without or with a linker to yield DOTA-Lys(IBU)-GG-Nle-CycMSHhex {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Lys(IBU)-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2}, DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex, DOTA-Lys(Asn-IBU)-GGNle-CycMSHhex, and DOTA-Lys(Dab-IBU)-GGNle-CycMSHhex peptides. Their melanocortin-receptor 1 (MC1R) binding affinities were determined on B16/F10 melanoma cells first. Then the biodistribution of 177Lu-labeled peptides was determined on B16/F10 melanoma-bearing C57 mice at 2 h postinjection to choose the lead peptide for further examination. The full biodistribution and melanoma imaging properties of 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex were further evaluated using B16/F10 melanoma-bearing C57 mice. DOTA-Lys(IBU)-GG-Nle-CycMSHhex, DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex, DOTA-Lys(Asn-IBU)-GGNle-CycMSHhex, and DOTA-Lys(Dab-IBU)-GGNle-CycMSHhex displayed the IC50 values of 1.41 ± 0.37, 1.52 ± 0.08, 0.03 ± 0.01, and 0.58 ± 0.06 nM on B16/F10 melanoma cells, respectively. 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex exhibited the lowest liver and kidney uptake among all four designed 177Lu peptides. Therefore, 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex was further evaluated for its full biodistribution and melanoma imaging properties. The B16/F10 melanoma uptake of 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex was 19.5 ± 3.12, 24.12 ± 3.35, 23.85 ± 2.08, and 10.80 ± 2.89% ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. Moreover, 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex could clearly visualize the B16/F10 melanoma lesions at 2 h postinjection. The conjugation of IBU with or without a linker to GGNle-CycMSHhex affected the MC1R binding affinities of the designed peptides. The charge of the linker played a key role in the liver and kidney uptake of 177Lu-Asp-IBU, 177Lu-Asn-IBU, and 177Lu-Dab-IBU. 177Lu-Asp-IBU exhibited higher tumor/liver and tumor/kidney uptake ratios than those of 177Lu-Asn-IBU and 177Lu-Dab-IBU, underscoring its potential evaluation for melanoma therapy in the future.


Asunto(s)
Ibuprofeno , Lutecio , alfa-MSH , Animales , Ratones , alfa-MSH/química , alfa-MSH/farmacocinética , Lutecio/química , Distribución Tisular , Ibuprofeno/química , Ibuprofeno/farmacocinética , Ibuprofeno/farmacología , Línea Celular Tumoral , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Ratones Endogámicos C57BL , Radioisótopos/química , Melanoma/metabolismo , Melanoma/tratamiento farmacológico , Albúminas/química , Radiofármacos/farmacocinética , Radiofármacos/química , Radiofármacos/farmacología , Péptidos/química , Péptidos/farmacocinética , Péptidos/farmacología , Femenino
10.
Langmuir ; 40(10): 5098-5105, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38412279

RESUMEN

As a serious public health issue, malaria threatens the health of millions of people. Artemisinin, a gift from traditional Chinese medicine, has been used in the treatment of malaria and has shown good therapeutic efficiency. However, due to its low solubility, poor bioavailability, and short half-life time, some smart delivery strategies are still required. Herein, a multifunctional DES prepared from ibuprofen and menthol was prepared. This DES was shown to efficiently promote the solubility of artemisinin up to 400-fold. Then, it was further applied as the oil phase to construct an O/W microemulsion with the help of Tween-80 + Span-20 mixed surfactants. The prepared microemulsion displayed high efficiency in improving the permeability of artemisinin, which can be ascribed to the presence of the permeation enhancer menthol in DES and the microstructure of the O/W microemulsion. Moreover, the simultaneous permeation of artemisinin and ibuprofen further indicated the potential benefits of the presented formulation in the treatment of malaria. To sum up, the microemulsion based on multifunctional DES presented herein provided an effective method for transdermal delivery of artemisinin.


Asunto(s)
Artemisininas , Malaria , Humanos , Ibuprofeno/química , Disolventes Eutécticos Profundos , Solventes , Sistemas de Liberación de Medicamentos/métodos , Mentol , Emulsiones/química , Administración Cutánea , Tensoactivos/química , Malaria/tratamiento farmacológico
11.
Biomacromolecules ; 25(5): 2852-2862, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38574372

RESUMEN

Albumin nanoparticles are widely used in biomedicine due to their safety, low immunogenicity, and prolonged circulation. However, incorporating therapeutic molecules into these carriers faces challenges due to limited binding sites, restricting drug conjugation efficiency. We introduce a universal nanocarrier platform (X-UNP) using polyphenol-based engineering to incorporate phenolic moieties into albumin nanoparticles. Integration of catechol or galloyl groups significantly enhances drug binding and broadens the drug conjugation possibilities. Our study presents a library of X-UNP nanoparticles with improved drug-loading efficiency, achieving up to 96% across 10 clinically used drugs, surpassing conventional methods. Notably, ibuprofen-UNP nanoparticles exhibit a 5-fold increase in half-life compared with free ibuprofen, enhancing in vivo analgesic and anti-inflammatory effectiveness. This research establishes a versatile platform for protein-based nanosized materials accommodating various therapeutic agents in biotechnological applications.


Asunto(s)
Nanopartículas , Polifenoles , Polifenoles/química , Nanopartículas/química , Animales , Ratones , Ibuprofeno/química , Portadores de Fármacos/química , Humanos , Albúminas/química , Albúmina Sérica Bovina/química
12.
Biomacromolecules ; 25(6): 3288-3301, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38805352

RESUMEN

Poly(2-isopropenyl-2-oxazoline) (PIPOx) represents a universal polymer platform with pendant 2-oxazoline groups, allowing the preparation of biomaterials for various biomedical applications. However, there is a lack of information on PIPOx concerning the effect of molar mass (Mn) on cytotoxicity and bioimmunological properties. Here, aqueous copper(0)-mediated reversible-deactivation radical polymerization (Cu0-RDPR) was used for the preparation of PIPOx with defined Mn and low dispersity. PIPOx of different Mn are used for the synthesis of conjugates with ibuprofen (5 mol %), the nonsteroidal anti-inflammatory drug. The release of ibuprofen at 37 °C and different pH values is monitored using high-performance liquid chromatography, where the rate of drug release increases with increasing pH and lower Mn. In vitro cytotoxicity and bioimmunological properties of PIPOx and drug conjugates are studied using 3D reconstructed tissue models of the human epidermis and intestinal epithelium. We demonstrate low cytotoxicity of PIPOx and conjugates with different Mn values on both 3D tissue models.


Asunto(s)
Ibuprofeno , Ibuprofeno/química , Ibuprofeno/farmacología , Humanos , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Oxazoles/química , Oxazoles/farmacología , Polímeros/química , Polímeros/farmacología , Polimerizacion , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
13.
J Org Chem ; 89(11): 8005-8010, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38804706

RESUMEN

Trace palladium in synthetic materials can be rapidly and inexpensively semiquantified by a catalysis-based fluorometric method that converts resorufin allyl ether to resorufin. However, whether sulfur compounds would interfere with this method has not been systematically studied. Herein, we show that although thiourea in solution interferes with quantification, sulfide, thiol, and thiocarbamate do not. The fluorometric method can also detect palladium bound to sulfur-based scavenger resin and outperform inductively coupled plasma mass spectrometry for detecting trace palladium in ibuprofen.


Asunto(s)
Fluorometría , Ibuprofeno , Paladio , Paladio/química , Ibuprofeno/química , Ibuprofeno/análisis , Catálisis , Fluorometría/métodos , Estructura Molecular , Compuestos de Azufre/química , Compuestos de Azufre/análisis
14.
Pharm Res ; 41(5): 937-945, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698196

RESUMEN

BACKGROUND: Phosphate buffer is often used as a replacement for the physiological bicarbonate buffer in pharmaceutical dissolution testing, although there are some discrepancies in their properties making it complicated to extrapolate dissolution results in phosphate to the in vivo situation. This study aims to characterize these discrepancies regarding solubility and dissolution behavior of ionizable compounds. METHODS: The dissolution of an ibuprofen powder with a known particle size distribution was simulated in silico and verified experimentally in vitro at two different doses and in two different buffers (5 mM pH 6.8 bicarbonate and phosphate). RESULTS: The results showed that there is a solubility vs. dissolution mismatch in the two buffers. This was accurately predicted by the in-house simulations based on the reversible non-equilibrium (RNE) and the Mooney models. CONCLUSIONS: The results can be explained by the existence of a relatively large gap between the initial surface pH of the drug and the bulk pH at saturation in bicarbonate but not in phosphate, which is caused by not all the interfacial reactions reaching equilibrium in bicarbonate prior to bulk saturation. This means that slurry pH measurements, while providing surface pH estimates for buffers like phosphate, are poor indicators of surface pH in the intestinal bicarbonate buffer. In addition, it showcases the importance of accounting for the H2CO3-CO2 interconversion kinetics to achieve good predictions of intestinal drug dissolution.


Asunto(s)
Bicarbonatos , Liberación de Fármacos , Ibuprofeno , Fosfatos , Solubilidad , Tampones (Química) , Bicarbonatos/química , Concentración de Iones de Hidrógeno , Ibuprofeno/química , Fosfatos/química , Tamaño de la Partícula , Simulación por Computador , Polvos/química , Cinética , Química Farmacéutica/métodos
15.
Pharm Res ; 41(6): 1233-1245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744732

RESUMEN

PURPOSE: This study was designed to develop ibuprofen (IBU) sustained-release amorphous solid dispersion (ASD) using polymer composites matrix with drug release plateaus for stable release and to further reveal intrinsic links between polymer' matrix ratios and drug release behaviors. METHODS: Hydrophilic polymers and hydrophobic polymers were combined to form different composite matrices in developing IBU ASD formulations by hot melt extrusion technique. The intrinsic links between the mixed polymer matrix ratio and drug dissolution behaviors was deeply clarified from the dissolution curves of hydrophilic polymers and swelling curves of composite matrices, and intermolecular forces among the components in ASDs. RESULTS: IBU + ammonio methacrylate copolymer type B (RSPO) + poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP VA64) physical mixtures presented unstable release behaviors with large error bars due to inhomogeneities at the micrometer level. However, IBU-RSPO-PVP VA64 ASDs showed a "dissolution plateau phenomenon", i.e., release behaviors of IBU in ASDs were unaffected by polymer ratios when PVP VA64 content was 35% ~ 50%, which could reduce risks of variations in release behaviors due to fluctuations in prescriptions/processes. The release of IBU in ASDs was simultaneously regulated by the PVP VA64-mediated "dissolution" and RSPO-PVP VA64 assembly-mediated "swelling". Radial distribution function suggested that similar intermolecular forces between RSPO and PVP VA64 were key mechanisms for the "dissolution plateau phenomenon" in ASDs at 35% ~ 50% of PVP VA64. CONCLUSIONS: This study provided ideas for developing ASD sustained-release formulations with stable release plateau modulated by polymer combinations, taking full advantages of simple process/prescription, ease of scale-up and favorable release behavior of ASD formulations.


Asunto(s)
Preparaciones de Acción Retardada , Composición de Medicamentos , Liberación de Fármacos , Ibuprofeno , Polímeros , Preparaciones de Acción Retardada/química , Ibuprofeno/química , Ibuprofeno/administración & dosificación , Polímeros/química , Composición de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Tecnología de Extrusión de Fusión en Caliente/métodos , Compuestos de Vinilo/química , Pirrolidinas/química , Química Farmacéutica/métodos , Povidona/química
16.
Pharm Res ; 41(8): 1725-1736, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048881

RESUMEN

OBJECTIVE: The development of an efficient, multifunctional drug delivery system overcoming different obstacles generally associated with drug formulations, including the poor accumulation of the active principle in the target site and its sustained release for prolonged time. METHODS: Our study proposes the development of a fluorinated poly(amidoamine) (PAMAM) carrier prodrug combining drug release boosted in alkaline environments with a possible implementation in 19F MRI applications. In particular, we functionalized the terminal primary amines of PAMAM G2 and G4 through an ad hoc designed fluorinated ibuprofen-arginine Michael acceptor to obtain multifunctional ibuprofen-PAMAM-Arg conjugates. RESULTS: These carriers demonstrated pH-dependent and sustained ibuprofen release for more than 5 days. This advantage was observed in both weak alkaline and physiological buffer solutions, allowing to overcome the limits associated to the burst release from similar fluorinated Arg-PAMAM dendrimers with ibuprofen physically encapsulated. CONCLUSION: These findings, coupled to the high biocompatibility of the system, suggest a potential synergistic biomedical application of our conjugates, serving as vehicles for drug delivery and as 19F magnetic resonance imaging contrast agents.


Asunto(s)
Arginina , Dendrímeros , Portadores de Fármacos , Liberación de Fármacos , Ibuprofeno , Profármacos , Ibuprofeno/administración & dosificación , Ibuprofeno/química , Dendrímeros/química , Concentración de Iones de Hidrógeno , Profármacos/química , Profármacos/administración & dosificación , Portadores de Fármacos/química , Arginina/química , Halogenación , Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos/métodos , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacocinética , Humanos , Imagen por Resonancia Magnética/métodos
17.
Analyst ; 149(22): 5482-5490, 2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39401057

RESUMEN

To enhance the effects of some functional soft drinks, drugs, especially metronidazole (MNZ) and ibuprofen (IBF), are often illegally added. This poses a serious threat to the health of consumers. Therefore, developing simple and rapid detection methods for these additives is crucial. In this study, DNA aptamers of metronidazole and ibuprofen were selected using the library-immobilized method. The best aptamer for metronidazole, named MNZ-1, has a dissociation constant (Kd) value of 4.9 µM and the aptamer for ibuprofen, named IBF-1, shows a Kd of 9.3 µM, as determined by the thioflavin T (ThT) fluorescence assay. The Kd values measured using isothermal titration calorimetry (ITC) were 17.0 µM and 66.7 µM for these two aptamers, respectively. Selectivity experiments indicate that MNZ-1 demonstrates very weak binding to structurally similar drugs, whereas IBF-1 exhibits binding capability to some structurally similar compounds comparable to ibuprofen, enabling the simultaneous detection of these types of drugs. Neither MNZ-1 nor IBF-1 binds to other common drugs. Using ThT, a label-free fluorescent detection method was developed for metronidazole and ibuprofen in soft drinks, showing limits of detection (LODs) of 0.6 µM and 4.7 µM, respectively. Owing to their small size and well-defined secondary structures, these aptamers are expected to be utilized in analytical applications for food and environmental monitoring.


Asunto(s)
Aptámeros de Nucleótidos , Bebidas Gaseosas , Ibuprofeno , Límite de Detección , Metronidazol , Ibuprofeno/análisis , Ibuprofeno/química , Aptámeros de Nucleótidos/química , Metronidazol/análisis , Metronidazol/química , Bebidas Gaseosas/análisis , Espectrometría de Fluorescencia/métodos , Técnicas Biosensibles/métodos
18.
Inorg Chem ; 63(33): 15421-15432, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39115163

RESUMEN

The escalating levels of hazardous pharmaceutical contaminants, specifically nonsteroidal anti-inflammatory drugs (NSAIDs), in groundwater reservoir surfaces and surface waterway systems have prompted substantial scientific interest regarding their potential deleterious effects on both aquatic ecosystems and human health. Extraction of those pollutants from wastewater is quite challenging. Hence, the development of economic, sustainable, and scalable techniques for capturing and removing those pollutants is crucial to ensure water safety. Herein, we demonstrate a physicochemically stable, reusable, porous Hf(IV)-based cationic metal-organic framework (MOF), namely, 1'@MeCl for the aqueous phase adsorption-based removal of NSAIDs (diclofenac, naproxen, ibuprofen) from the wastewater environment. The highly positively charged surface of the 1'@MeCl MOF enables it to selectively extract more than 99% of diclofenac, naproxen, and ibuprofen contaminants within less than 30 s. With fast adsorption kinetics, very high adsorption capacities (Qe) were achieved at neutral pH for diclofenac (482.9 mg/g), naproxen (295.9 mg/g), and ibuprofen (219.5 mg/g). Moreover, the influence of changes in pH and coexisting anions on the adsorption property of the 1'@MeCl MOF was studied. Furthermore, the adsorption efficiency of 1'@MeCl in different real water environments was ensured by performing diclofenac, naproxen, and ibuprofen adsorption from tap, river, and lake water. Moreover, a 1'@MeCl-anchored cellulose acetate-chitosan membrane was developed successfully to demonstrate the membrane-based extraction of diclofenac, naproxen, and ibuprofen from contaminated water. Furthermore, a molecular-level mechanistic study was performed through experimental and computational study to propose the plausible adsorption mechanisms for diclofenac, naproxen, and ibuprofen over the surface of 1'@MeCl.


Asunto(s)
Antiinflamatorios no Esteroideos , Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Estructuras Metalorgánicas/química , Adsorción , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Diclofenaco/química , Diclofenaco/aislamiento & purificación , Naproxeno/química , Naproxeno/aislamiento & purificación , Ibuprofeno/química , Ibuprofeno/aislamiento & purificación , Propiedades de Superficie , Ácidos Carboxílicos/química , Ácidos Carboxílicos/aislamiento & purificación , Estructura Molecular , Teoría Funcional de la Densidad , Cationes/química
19.
Environ Sci Technol ; 58(42): 19058-19069, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39230246

RESUMEN

Producing H2O2 through a selective, two-electron (2e) oxygen reduction reaction (ORR) is challenging, especially when it serves as an advanced oxidation process (AOP) for cost-effective water decontamination. Herein, we attain a 2e-selectivity H2O2 production using a carbon nanotube electrified membrane with ibuprofen (IBU) molecules laden (IBU@CNT-EM) in an ultrafast, single-pass electrofiltration process. The IBU@CNT-EM can generate H2O2 at a rate of 25.62 mol gCNT-1 h-1 L-1 in the permeate with a residence time of 1.81 s. We demonstrated that an interwoven, hydrophilic-hydrophobic membrane nanostructure offers an excellent air-to-water transport platform for ORR acceleration. The electron transfer number of the ORR for IBU@CNT at neutral pH was confirmed as 2.71, elucidating a near-2e selectivity to H2O2. Density functional theory (DFT) studies validated an exceptional charge distribution of the IBU@CNT for the O2 adsorption. The adsorption energies of the O2 and *OOH intermediates are proportional to the H2O2 selectivity (64.39%), higher than that of the CNT (37.81%). With the simple and durable production of H2O2 by IBU@CNT-EM electrofiltration, the permeate can actuate Fenton oxidation to efficiently decompose emerging pollutants and inactivate bacteria. Our study introduces a new paradigm for developing high-performance H2O2-production membranes for water treatment by reusing environmental functional materials.


Asunto(s)
Peróxido de Hidrógeno , Ibuprofeno , Nanotubos de Carbono , Peróxido de Hidrógeno/química , Nanotubos de Carbono/química , Ibuprofeno/química , Oxígeno/química , Oxidación-Reducción , Membranas Artificiales
20.
Bioorg Chem ; 147: 107393, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38691908

RESUMEN

Cyclooxygenase-2 plays a vital role in inflammation by catalyzing arachidonic acid conversion toward prostaglandins, making it a prime therapeutic objective. Selective COX-2 inhibitors represent significant progress in anti-inflammatory therapy, offering improved efficacy and fewer side effects. This study describes the synthesis of novel anti-inflammatory compounds from established pharmaceutically marketed agents like fenamates III-V and ibuprofen VI. Through rigorous in vitro testing, compounds 7b-c, and 12a-b demonstrated substantial in vitro selective inhibition, with IC50 values of 0.07 to 0.09 µM, indicating potent pharmacological activity. In vivo assessment, particularly focusing on compound 7c, revealed significant anti-inflammatory effects. Markedly, it demonstrated the highest inhibition of paw thickness (58.62 %) at the 5-hr mark compared to the carrageenan group, indicating its potency in mitigating inflammation. Furthermore, it exhibited a rapid onset of action, with a 54.88 % inhibition observed at the 1-hr mark. Subsequent comprehensive evaluations encompassing analgesic efficacy, histological characteristics, and toxicological properties indicated that compound 7c did not induce gastric ulcers, in contrast to the ulcerogenic tendency associated with mefenamic acid. Moreover, compound 7c underwent additional investigations through in silico methodologies such as molecular modelling, field alignment, and density functional theory. These analyses underscored the therapeutic potential and safety profile of this novel compound, warranting further exploration and development in the realm of pharmaceutical research.


Asunto(s)
Antiinflamatorios no Esteroideos , Carragenina , Inhibidores de la Ciclooxigenasa 2 , Ciclooxigenasa 2 , Fenamatos , Ibuprofeno , Ibuprofeno/farmacología , Ibuprofeno/química , Ibuprofeno/síntesis química , Ciclooxigenasa 2/metabolismo , Animales , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/química , Estructura Molecular , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/síntesis química , Relación Estructura-Actividad , Fenamatos/farmacología , Fenamatos/química , Fenamatos/síntesis química , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Edema/tratamiento farmacológico , Edema/inducido químicamente , Simulación del Acoplamiento Molecular , Ratas , Masculino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda