Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 6.330
Filtrar
Más filtros

Colección SES
Publication year range
1.
Nature ; 627(8002): 49-58, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448693

RESUMEN

Scientists are enthusiastically imagining ways in which artificial intelligence (AI) tools might improve research. Why are AI tools so attractive and what are the risks of implementing them across the research pipeline? Here we develop a taxonomy of scientists' visions for AI, observing that their appeal comes from promises to improve productivity and objectivity by overcoming human shortcomings. But proposed AI solutions can also exploit our cognitive limitations, making us vulnerable to illusions of understanding in which we believe we understand more about the world than we actually do. Such illusions obscure the scientific community's ability to see the formation of scientific monocultures, in which some types of methods, questions and viewpoints come to dominate alternative approaches, making science less innovative and more vulnerable to errors. The proliferation of AI tools in science risks introducing a phase of scientific enquiry in which we produce more but understand less. By analysing the appeal of these tools, we provide a framework for advancing discussions of responsible knowledge production in the age of AI.


Asunto(s)
Inteligencia Artificial , Ilusiones , Conocimiento , Proyectos de Investigación , Investigadores , Humanos , Inteligencia Artificial/provisión & distribución , Inteligencia Artificial/tendencias , Cognición , Difusión de Innovaciones , Eficiencia , Reproducibilidad de los Resultados , Proyectos de Investigación/normas , Proyectos de Investigación/tendencias , Riesgo , Investigadores/psicología , Investigadores/normas
2.
Nature ; 618(7966): 782-789, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286595

RESUMEN

Anecdotal evidence indicates that people believe that morality is declining1,2. In a series of studies using both archival and original data (n = 12,492,983), we show that people in at least 60 nations around the world believe that morality is declining, that they have believed this for at least 70 years and that they attribute this decline both to the decreasing morality of individuals as they age and to the decreasing morality of successive generations. Next, we show that people's reports of the morality of their contemporaries have not declined over time, suggesting that the perception of moral decline is an illusion. Finally, we show how a simple mechanism based on two well-established psychological phenomena (biased exposure to information and biased memory for information) can produce an illusion of moral decline, and we report studies that confirm two of its predictions about the circumstances under which the perception of moral decline is attenuated, eliminated or reversed (that is, when respondents are asked about the morality of people they know well or people who lived before the respondent was born). Together, our studies show that the perception of moral decline is pervasive, perdurable, unfounded and easily produced. This illusion has implications for research on the misallocation of scarce resources3, the underuse of social support4 and social influence5.


Asunto(s)
Cultura , Ilusiones , Principios Morales , Humanos , Ilusiones/psicología , Relaciones Intergeneracionales , Envejecimiento/psicología , Sesgo , Sesgo Atencional , Apoyo Social/psicología , Influencia de los Compañeros
3.
Proc Natl Acad Sci U S A ; 121(17): e2400086121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621132

RESUMEN

Vision can provide useful cues about the geometric properties of an object, like its size, distance, pose, and shape. But how the brain merges these properties into a complete sensory representation of a three-dimensional object is poorly understood. To address this gap, we investigated a visual illusion in which humans misperceive the shape of an object due to a small change in one eye's retinal image. We first show that this illusion affects percepts of a highly familiar object under completely natural viewing conditions. Specifically, people perceived their own rectangular mobile phone to have a trapezoidal shape. We then investigate the perceptual underpinnings of this illusion by asking people to report both the perceived shape and pose of controlled stimuli. Our results suggest that the shape illusion results from distorted cues to object pose. In addition to yielding insights into object perception, this work informs our understanding of how the brain combines information from multiple visual cues in natural settings. The shape illusion can occur when people wear everyday prescription spectacles; thus, these findings also provide insight into the cue combination challenges that some spectacle wearers experience on a regular basis.


Asunto(s)
Ilusiones , Humanos , Encéfalo , Señales (Psicología)
4.
Proc Natl Acad Sci U S A ; 121(12): e2315758121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38489383

RESUMEN

Grid cells in the entorhinal cortex (EC) encode an individual's location in space, integrating both environmental and multisensory bodily cues. Notably, body-derived signals are also primary signals for the sense of self. While studies have demonstrated that continuous application of visuo-tactile bodily stimuli can induce perceptual shifts in self-location, it remains unexplored whether these illusory changes suffice to trigger grid cell-like representation (GCLR) within the EC, and how this compares to GCLR during conventional virtual navigation. To address this, we systematically induced illusory drifts in self-location toward controlled directions using visuo-tactile bodily stimulation, while maintaining the subjects' visual viewpoint fixed (absent conventional virtual navigation). Subsequently, we evaluated the corresponding GCLR in the EC through functional MRI analysis. Our results reveal that illusory changes in perceived self-location (independent of changes in environmental navigation cues) can indeed evoke entorhinal GCLR, correlating in strength with the magnitude of perceived self-location, and characterized by similar grid orientation as during conventional virtual navigation in the same virtual room. These data demonstrate that the same grid-like representation is recruited when navigating based on environmental, mainly visual cues, or when experiencing illusory forward drifts in self-location, driven by perceptual multisensory bodily cues.


Asunto(s)
Células de Red , Ilusiones , Navegación Espacial , Humanos , Corteza Entorrinal/fisiología , Células de Red/fisiología , Estado de Conciencia , Ilusiones/fisiología , Tacto , Navegación Espacial/fisiología
5.
PLoS Biol ; 21(3): e3002009, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862734

RESUMEN

We occasionally misinterpret ambiguous sensory input or report a stimulus when none is presented. It is unknown whether such errors have a sensory origin and reflect true perceptual illusions, or whether they have a more cognitive origin (e.g., are due to guessing), or both. When participants performed an error-prone and challenging face/house discrimination task, multivariate electroencephalography (EEG) analyses revealed that during decision errors (e.g., mistaking a face for a house), sensory stages of visual information processing initially represent the presented stimulus category. Crucially however, when participants were confident in their erroneous decision, so when the illusion was strongest, this neural representation flipped later in time and reflected the incorrectly reported percept. This flip in neural pattern was absent for decisions that were made with low confidence. This work demonstrates that decision confidence arbitrates between perceptual decision errors, which reflect true illusions of perception, and cognitive decision errors, which do not.


Asunto(s)
Ilusiones , Humanos , Percepción Visual , Electroencefalografía , Cognición , Estimulación Luminosa
6.
Proc Natl Acad Sci U S A ; 120(29): e2301463120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428927

RESUMEN

Auditory perception is traditionally conceived as the perception of sounds-a friend's voice, a clap of thunder, a minor chord. However, daily life also seems to present us with experiences characterized by the absence of sound-a moment of silence, a gap between thunderclaps, the hush after a musical performance. In these cases, do we positively hear silence? Or do we just fail to hear, and merely judge or infer that it is silent? This longstanding question remains controversial in both the philosophy and science of perception, with prominent theories holding that sounds are the only objects of auditory experience and thus that our encounter with silence is cognitive, not perceptual. However, this debate has largely remained theoretical, without a key empirical test. Here, we introduce an empirical approach to this theoretical dispute, presenting experimental evidence that silence can be genuinely perceived (not just cognitively inferred). We ask whether silences can "substitute" for sounds in event-based auditory illusions-empirical signatures of auditory event representation in which auditory events distort perceived duration. Seven experiments introduce three "silence illusions"-the one-silence-is-more illusion, silence-based warping, and the oddball-silence illusion-each adapted from a prominent perceptual illusion previously thought to arise only from sounds. Subjects were immersed in ambient noise interrupted by silences structurally identical to the sounds in the original illusions. In all cases, silences elicited temporal distortions perfectly analogous to the illusions produced by sounds. Our results suggest that silence is truly heard, not merely inferred, introducing a general approach for studying the perception of absence.


Asunto(s)
Ilusiones , Humanos , Ruido , Sonido , Percepción Auditiva , Audición , Estimulación Acústica/métodos
7.
Proc Natl Acad Sci U S A ; 120(44): e2220749120, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37878723

RESUMEN

To survive, organisms constantly make decisions to avoid danger and maximize rewards in information-rich environments. As a result, decisions about sensory input are not only driven by sensory information but also by other factors, such as the expected rewards of a decision (known as the payoff matrix) or by information about temporal regularities in the environment (known as cognitive priors or predictions). However, it is unknown to what extent these different types of information affect subjective experience or whether they merely result in nonperceptual response criterion shifts. To investigate this question, we used three carefully matched manipulations that typically result in behavioral shifts in decision criteria: a visual illusion (Müller-Lyer condition), a punishment scheme (payoff condition), and a change in the ratio of relevant stimuli (base rate condition). To gauge shifts in subjective experience, we introduce a task in which participants not only make decisions about what they have just seen but are also asked to reproduce their experience of a target stimulus. Using Bayesian ordinal modeling, we show that each of these three manipulations affects the decision criterion as intended but that the visual illusion uniquely affects sensory experience as measured by reproduction. In a series of follow-up experiments, we use computational modeling to show that although the visual illusion results in a distinct drift-diffusion (DDM) parameter profile relative to nonsensory manipulations, reliance on DDM parameter estimates alone is not sufficient to ascertain whether a given manipulation is perceptual or nonperceptual.


Asunto(s)
Toma de Decisiones , Ilusiones , Humanos , Toma de Decisiones/fisiología , Teorema de Bayes , Recompensa , Simulación por Computador
8.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38508711

RESUMEN

In the study of bodily awareness, the predictive coding theory has revealed that our brain continuously modulates sensory experiences to integrate them into a unitary body representation. Indeed, during multisensory illusions (e.g., the rubber hand illusion, RHI), the synchronous stroking of the participant's concealed hand and a fake visible one creates a visuotactile conflict, generating a prediction error. Within the predictive coding framework, through sensory processing modulation, prediction errors are solved, inducing participants to feel as if touches originated from the fake hand, thus ascribing the fake hand to their own body. Here, we aimed to address sensory processing modulation under multisensory conflict, by disentangling somatosensory and visual stimuli processing that are intrinsically associated during the illusion induction. To this aim, we designed two EEG experiments, in which somatosensory- (SEPs; Experiment 1; N = 18; F = 10) and visual-evoked potentials (VEPs; Experiment 2; N = 18; F = 9) were recorded in human males and females following the RHI. Our results show that, in both experiments, ERP amplitude is significantly modulated in the illusion as compared with both control and baseline conditions, with a modality-dependent diametrical pattern showing decreased SEP amplitude and increased VEP amplitude. Importantly, both somatosensory and visual modulations occur in long-latency time windows previously associated with tactile and visual awareness, thus explaining the illusion of perceiving touch at the sight location. In conclusion, we describe a diametrical modulation of somatosensory and visual processing as the neural mechanism that allows maintaining a stable body representation, by restoring visuotactile congruency under the occurrence of multisensory conflicts.


Asunto(s)
Electroencefalografía , Potenciales Evocados Somatosensoriales , Potenciales Evocados Visuales , Ilusiones , Percepción Visual , Humanos , Masculino , Femenino , Adulto , Percepción Visual/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Adulto Joven , Ilusiones/fisiología , Potenciales Evocados Visuales/fisiología , Percepción del Tacto/fisiología , Estimulación Luminosa/métodos , Conflicto Psicológico , Corteza Somatosensorial/fisiología , Imagen Corporal
9.
Ann Neurol ; 96(1): 121-132, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38709569

RESUMEN

OBJECTIVE: Brain networks mediating vestibular perception of self-motion overlap with those mediating balance. A systematic mapping of vestibular perceptual pathways in the thalamus may reveal new brain modulation targets for improving balance in neurological conditions. METHODS: Here, we systematically report how magnetic resonance-guided focused ultrasound surgery of the nucleus ventralis intermedius of the thalamus commonly evokes transient patient-reported illusions of self-motion. In 46 consecutive patients, we linked the descriptions of self-motion to sonication power and 3-dimensional (3D) coordinates of sonication targets. Target coordinates were normalized using a standard atlas, and a 3D model of the nucleus ventralis intermedius and adjacent structures was created to link sonication target to the illusion. RESULTS: A total of 63% of patients reported illusions of self-motion, which were more likely with increased sonication power and with targets located more inferiorly along the rostrocaudal axis. Higher power and more inferiorly targeted sonications increased the likelihood of experiencing illusions of self-motion by 4 and 2 times, respectively (odds ratios = 4.03 for power, 2.098 for location). INTERPRETATION: The phenomenon of magnetic vestibular stimulation is the most plausible explanation for these illusions of self-motion. Temporary unilateral modulation of vestibular pathways (via magnetic resonance-guided focused ultrasound) unveils the central adaptation to the magnetic field-induced peripheral vestibular bias, leading to an explicable illusion of motion. Consequently, systematic mapping of vestibular perceptual pathways via magnetic resonance-guided focused ultrasound may reveal new intracerebral targets for improving balance in neurological conditions. ANN NEUROL 2024;96:121-132.


Asunto(s)
Ilusiones , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Ilusiones/fisiología , Persona de Mediana Edad , Anciano , Adulto , Tálamo/cirugía , Tálamo/diagnóstico por imagen , Núcleos Talámicos Ventrales/cirugía , Núcleos Talámicos Ventrales/diagnóstico por imagen , Anciano de 80 o más Años
10.
Brain ; 147(2): 390-405, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847057

RESUMEN

The sense of body ownership (i.e. the feeling that our body or its parts belong to us) plays a key role in bodily self-consciousness and is believed to stem from multisensory integration. Experimental paradigms such as the rubber hand illusion have been developed to allow the controlled manipulation of body ownership in laboratory settings, providing effective tools for investigating malleability in the sense of body ownership and the boundaries that distinguish self from other. Neuroimaging studies of body ownership converge on the involvement of several cortical regions, including the premotor cortex and posterior parietal cortex. However, relatively less attention has been paid to subcortical structures that may also contribute to body ownership perception, such as the cerebellum and putamen. Here, on the basis of neuroimaging and neuropsychological observations, we provide an overview of relevant subcortical regions and consider their potential role in generating and maintaining a sense of ownership over the body. We also suggest novel avenues for future research targeting the role of subcortical regions in making sense of the body as our own.


Asunto(s)
Ilusiones , Corteza Motora , Percepción del Tacto , Humanos , Imagen Corporal/psicología , Propiedad , Lóbulo Parietal , Ilusiones/psicología , Percepción Visual , Mano , Propiocepción
12.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38185991

RESUMEN

Intracranial electrical stimulation (iES) of auditory cortex can elicit sound experiences with a variety of perceived contents (hallucination or illusion) and locations (contralateral or bilateral side), independent of actual acoustic inputs. However, the neural mechanisms underlying this elicitation heterogeneity remain undiscovered. Here, we collected subjective reports following iES at 3062 intracranial sites in 28 patients (both sexes) and identified 113 auditory cortical sites with iES-elicited sound experiences. We then decomposed the sound-induced intracranial electroencephalogram (iEEG) signals recorded from all 113 sites into time-frequency features. We found that the iES-elicited perceived contents can be predicted by the early high-γ features extracted from sound-induced iEEG. In contrast, the perceived locations elicited by stimulating hallucination sites and illusion sites are determined by the late high-γ and long-lasting α features, respectively. Our study unveils the crucial neural signatures of iES-elicited sound experiences in human and presents a new strategy to hearing restoration for individuals suffering from deafness.


Asunto(s)
Corteza Auditiva , Ilusiones , Masculino , Femenino , Humanos , Corteza Auditiva/fisiología , Ilusiones/fisiología , Estimulación Acústica , Mapeo Encefálico , Estimulación Eléctrica , Alucinaciones
13.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38365271

RESUMEN

Sense of agency (SoA) is the sensation that self-actions lead to ensuing perceptual consequences. The prospective mechanism emphasizes that SoA arises from motor prediction and its comparison with actual action outcomes, while the reconstructive mechanism stresses that SoA emerges from retrospective causal processing about the action outcomes. Consistent with the prospective mechanism, motor planning regions were identified by neuroimaging studies using the temporal binding (TB) effect, a behavioral measure often linked to implicit SoA. Yet, TB also occurs during passive observation of another's action, lending support to the reconstructive mechanism, but its neural correlates remain unexplored. Here, we employed virtual reality (VR) to modulate such observation-based SoA and examined it with functional magnetic resonance imaging (fMRI). After manipulating an avatar hand in VR, participants passively observed an avatar's "action" and showed a significant increase in TB. The binding effect was associated with the right angular gyrus and inferior parietal lobule, which are critical nodes for inferential and agency processing. These results suggest that the experience of controlling an avatar may potentiate inferential processing within the right inferior parietal cortex and give rise to the illusionary SoA without voluntary action.


Asunto(s)
Ilusiones , Realidad Virtual , Humanos , Desempeño Psicomotor , Estudios Retrospectivos , Lóbulo Parietal
14.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074880

RESUMEN

Despite our fluency in reading human faces, sometimes we mistakenly perceive illusory faces in objects, a phenomenon known as face pareidolia. Although illusory faces share some neural mechanisms with real faces, it is unknown to what degree pareidolia engages higher-level social perception beyond the detection of a face. In a series of large-scale behavioral experiments (ntotal = 3,815 adults), we found that illusory faces in inanimate objects are readily perceived to have a specific emotional expression, age, and gender. Most strikingly, we observed a strong bias to perceive illusory faces as male rather than female. This male bias could not be explained by preexisting semantic or visual gender associations with the objects, or by visual features in the images. Rather, this robust bias in the perception of gender for illusory faces reveals a cognitive bias arising from a broadly tuned face evaluation system in which minimally viable face percepts are more likely to be perceived as male.


Asunto(s)
Cara/fisiología , Ilusiones/fisiología , Adulto , Reconocimiento Facial/fisiología , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos
15.
J Neurosci ; 43(13): 2424-2438, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36859306

RESUMEN

Individuals on the autism spectrum often exhibit atypicality in their sensory perception, but the neural underpinnings of these perceptual differences remain incompletely understood. One proposed mechanism is an imbalance in higher-order feedback re-entrant inputs to early sensory cortices during sensory perception, leading to increased propensity to focus on local object features over global context. We explored this theory by measuring visual evoked potentials during contour integration as considerable work has revealed that these processes are largely driven by feedback inputs from higher-order ventral visual stream regions. We tested the hypothesis that autistic individuals would have attenuated evoked responses to illusory contours compared with neurotypical controls. Electrophysiology was acquired while 29 autistic and 31 neurotypical children (7-17 years old, inclusive of both males and females) passively viewed a random series of Kanizsa figure stimuli, each consisting of four inducers that were aligned either at random rotational angles or such that contour integration would form an illusory square. Autistic children demonstrated attenuated automatic contour integration over lateral occipital regions relative to neurotypical controls. The data are discussed in terms of the role of predictive feedback processes on perception of global stimulus features and the notion that weakened "priors" may play a role in the visual processing anomalies seen in autism.SIGNIFICANCE STATEMENT Children on the autism spectrum differ from typically developing children in many aspects of their processing of sensory stimuli. One proposed mechanism for these differences is an imbalance in higher-order feedback to primary sensory regions, leading to an increased focus on local object features rather than global context. However, systematic investigation of these feedback mechanisms remains limited. Using EEG and a visual illusion paradigm that is highly dependent on intact feedback processing, we demonstrated significant disruptions to visual feedback processing in children with autism. This provides much needed experimental evidence that advances our understanding of the contribution of feedback processing to visual perception in autism spectrum disorder.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ilusiones , Masculino , Femenino , Humanos , Niño , Adolescente , Potenciales Evocados Visuales , Retroalimentación Sensorial , Retroalimentación , Percepción Visual/fisiología , Ilusiones/fisiología
16.
J Neurosci ; 43(35): 6164-6175, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37536980

RESUMEN

Prior knowledge has a profound impact on the way we perceive the world. However, it remains unclear how the prior knowledge is maintained in our brains and thereby influences the subsequent conscious perception. The Dalmatian dog illusion is a perfect tool to study prior knowledge, where the picture is initially perceived as noise. Once the prior knowledge was introduced, a Dalmatian dog could be consciously seen, and the picture immediately became meaningful. Using pictures with hidden objects as standard stimuli and similar pictures without hidden objects as deviant stimuli, we investigated the neural representation of prior knowledge and its impact on conscious perception in an oddball paradigm using electroencephalogram (EEG) in both male and female human subjects. We found that the neural patterns between the prestimulus alpha band oscillations and poststimulus EEG activity were significantly more similar for the standard stimuli than for the deviant stimuli after prior knowledge was provided. Furthermore, decoding analysis revealed that persistent neural templates were evoked after the introduction of prior knowledge, similar to that evoked in the early stages of visual processing. In conclusion, the current study suggests that prior knowledge uses alpha band oscillations in a multivariate manner in the prestimulus period and induces specific persistent neural templates in the poststimulus period, enabling the conscious perception of the hidden objects.SIGNIFICANCE STATEMENT The visual world we live in is not always optimal. In dark or noisy environments, prior knowledge can help us interpret imperfect sensory signals and enable us to consciously perceive hidden objects. However, we still know very little about how prior knowledge works at the neural level. Using the Dalmatian dog illusion and multivariate methods, we found that prior knowledge uses prestimulus alpha band oscillations to carry information about the hidden object and exerts a persistent influence in the poststimulus period by inducing specific neural templates. Our findings provide a window into the neural underpinnings of prior knowledge and offer new insights into the role of alpha band oscillations and neural templates associated with conscious perception.


Asunto(s)
Ilusiones , Animales , Perros , Humanos , Masculino , Femenino , Ilusiones/fisiología , Percepción Visual/fisiología , Electroencefalografía/métodos , Encéfalo , Estado de Conciencia/fisiología , Estimulación Luminosa/métodos
17.
J Neurosci ; 43(38): 6508-6524, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37582626

RESUMEN

Humans constantly receive massive amounts of information, both perceived from the external environment and imagined from the internal world. To function properly, the brain needs to correctly identify the origin of information being processed. Recent work has suggested common neural substrates for perception and imagery. However, it has remained unclear how the brain differentiates between external and internal experiences with shared neural codes. Here we tested this question in human participants (male and female) by systematically investigating the neural processes underlying the generation and maintenance of visual information from voluntary imagery, veridical perception, and illusion. The inclusion of illusion allowed us to differentiate between objective and subjective internality: while illusion has an objectively internal origin and can be viewed as involuntary imagery, it is also subjectively perceived as having an external origin like perception. Combining fMRI, eye-tracking, multivariate decoding, and encoding approaches, we observed superior orientation representations in parietal cortex during imagery compared with perception, and conversely in early visual cortex. This imagery dominance gradually developed along a posterior-to-anterior cortical hierarchy from early visual to parietal cortex, emerged in the early epoch of imagery and sustained into the delay epoch, and persisted across varied imagined contents. Moreover, representational strength of illusion was more comparable to imagery in early visual cortex, but more comparable to perception in parietal cortex, suggesting content-specific representations in parietal cortex differentiate between subjectively internal and external experiences, as opposed to early visual cortex. These findings together support a domain-general engagement of parietal cortex in internally generated experience.SIGNIFICANCE STATEMENT How does the brain differentiate between imagined and perceived experiences? Combining fMRI, eye-tracking, multivariate decoding, and encoding approaches, the current study revealed enhanced stimulus-specific representations in visual imagery originating from parietal cortex, supporting the subjective experience of imagery. This neural principle was further validated by evidence from visual illusion, wherein illusion resembled perception and imagery at different levels of cortical hierarchy. Our findings provide direct evidence for the critical role of parietal cortex as a domain-general region for content-specific imagery, and offer new insights into the neural mechanisms underlying the differentiation between subjectively internal and external experiences.


Asunto(s)
Ilusiones , Percepción Visual , Humanos , Masculino , Femenino , Imaginación , Lóbulo Parietal , Encéfalo , Mapeo Encefálico , Imagen por Resonancia Magnética
18.
J Neurosci ; 43(29): 5365-5377, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37344236

RESUMEN

Bayesian models of perception posit that percepts result from the optimal integration of new sensory information and prior expectations. In turn, prominent models of perceptual disturbances in psychosis frame hallucination-like phenomena as percepts excessively biased toward perceptual prior expectations. Despite mounting support for this notion, whether this hallucination-related prior bias results secondarily from imprecise sensory representations at early processing stages or directly from alterations in perceptual priors-both suggested candidates potentially consistent with Bayesian models-remains to be tested. Using modified interval timing paradigms designed to arbitrate between these alternative hypotheses, we show in human participants (16 females and 24 males) from a nonclinical population that hallucination proneness correlates with a circumscribed form of prior bias that reflects selective differences in weighting of contextual prior variance, a prior bias that is unrelated to the effect of sensory noise and to a separate index of sensory resolution. Our results thus suggest distinct mechanisms underlying prior biases in perceptual inference and favor the notion that hallucination proneness could reflect direct alterations in the representation or use of perceptual priors independent of sensory noise.SIGNIFICANCE STATEMENT Current theories of psychosis posit that hallucination proneness results from excessive influence of prior expectations on perception. It is not clear whether this prior bias represents a primary top-down process related to the representation or use of prior beliefs or instead a secondary bottom-up process stemming from imprecise sensory representations at early processing stages. To address this question, we examined interval timing behaviors captured by Bayesian perceptual-inference models. Our data support the notion that excessive influence of prior expectations associated with hallucination propensity is not directly secondary to sensory imprecision and is instead more consistent with a primary top-down process. These results help refine computational theories of psychosis and may contribute to the development of improved intervention targets.


Asunto(s)
Ilusiones , Trastornos Psicóticos , Masculino , Femenino , Humanos , Teorema de Bayes , Alucinaciones , Sesgo
19.
J Neurosci ; 43(13): 2362-2380, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36801824

RESUMEN

Body ownership and the sense of agency are two central aspects of bodily self-consciousness. While multiple neuroimaging studies have investigated the neural correlates of body ownership and agency separately, few studies have investigated the relationship between these two aspects during voluntary movement when such experiences naturally combine. By eliciting the moving rubber hand illusion with active or passive finger movements during functional magnetic resonance imaging, we isolated activations reflecting the sense of body ownership and agency, respectively, as well as their interaction, and assessed their overlap and anatomic segregation. We found that perceived hand ownership was associated with activity in premotor, posterior parietal, and cerebellar regions, whereas the sense of agency over the movements of the hand was related to activity in the dorsal premotor cortex and superior temporal cortex. Moreover, one section of the dorsal premotor cortex showed overlapping activity for ownership and agency, and somatosensory cortical activity reflected the interaction of ownership and agency with higher activity when both agency and ownership were experienced. We further found that activations previously attributed to agency in the left insular cortex and right temporoparietal junction reflected the synchrony or asynchrony of visuoproprioceptive stimuli rather than agency. Collectively, these results reveal the neural bases of agency and ownership during voluntary movement. Although the neural representations of these two experiences are largely distinct, there are interactions and functional neuroanatomical overlap during their combination, which has bearing on theories on bodily self-consciousness.SIGNIFICANCE STATEMENT How does the brain generate the sense of being in control of bodily movement (agency) and the sense that body parts belong to one's body (body ownership)? Using fMRI and a bodily illusion triggered by movement, we found that agency is associated with activity in premotor cortex and temporal cortex, and body ownership with activity in premotor, posterior parietal, and cerebellar regions. The activations reflecting the two sensations were largely distinct, but there was overlap in premotor cortex and an interaction in somatosensory cortex. These findings advance our understanding of the neural bases of and interplay between agency and body ownership during voluntary movement, which has implications for the development of advanced controllable prosthetic limbs that feel like real limbs.


Asunto(s)
Ilusiones , Percepción del Tacto , Humanos , Imagen Corporal , Propiedad , Encéfalo , Lóbulo Temporal , Mano , Movimiento , Percepción Visual , Propiocepción
20.
J Cogn Neurosci ; 36(4): 700-705, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36951569

RESUMEN

Integrating visual and auditory information is an important ability in various cognitive processes, although its neural mechanisms remain unclear. Several studies indicated a close relationship between one's temporal binding window (TBW) for audio-visual interaction and their alpha rhythm in the brain (individual alpha frequency or IAF). A recent study by Buergers and Noppeney [Buergers, S., & Noppeney, U. The role of alpha oscillations in temporal binding within and across the senses. Nature Human Behaviour, 6, 732-742, 2022], however, challenged this view using a new approach to analyze behavioral data. Conforming to the same procedures by Buergers and Noppeney, here, I analyzed the data of my previous study and examined a relationship between TBW and IAF. In contrast to Buergers and Noppeney, a significant correlation was found between occipital IAF and a new behavioral measure of TBW. Some possibilities that caused these opposing results, such as a variability of "alpha band" across studies and a large inter-individual difference in magnitude of the fission illusion, are discussed.


Asunto(s)
Ilusiones , Humanos , Percepción Visual , Encéfalo , Ritmo alfa , Estimulación Luminosa/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda