Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 9.240
Filtrar
Más filtros

Colección SES
Publication year range
1.
J Biol Chem ; 299(12): 105391, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898402

RESUMEN

Ether-a-go-go (EAG) channels are key regulators of neuronal excitability and tumorigenesis. EAG channels contain an N-terminal Per-Arnt-Sim (PAS) domain that can regulate currents from EAG channels by binding small molecules. The molecular mechanism of this regulation is not clear. Using surface plasmon resonance and electrophysiology we show that a small molecule ligand imipramine can bind to the PAS domain of EAG1 channels and inhibit EAG1 currents via this binding. We further used a combination of molecular dynamics (MD) simulations, electrophysiology, and mutagenesis to investigate the molecular mechanism of EAG1 current inhibition by imipramine binding to the PAS domain. We found that Tyr71, located at the entrance to the PAS domain cavity, serves as a "gatekeeper" limiting access of imipramine to the cavity. MD simulations indicate that the hydrophobic electrostatic profile of the cavity facilitates imipramine binding and in silico mutations of hydrophobic cavity-lining residues to negatively charged glutamates decreased imipramine binding. Probing the PAS domain cavity-lining residues with site-directed mutagenesis, guided by MD simulations, identified D39 and R84 as residues essential for the EAG1 channel inhibition by imipramine binding to the PAS domain. Taken together, our study identified specific residues in the PAS domain that could increase or decrease EAG1 current inhibition by imipramine binding to the PAS domain. These findings should further the understanding of molecular mechanisms of EAG1 channel regulation by ligands and facilitate the development of therapeutic agents targeting these channels.


Asunto(s)
Canales de Potasio Éter-A-Go-Go , Imipramina , Fenómenos Electrofisiológicos , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Imipramina/química , Imipramina/farmacología , Unión Proteica , Animales , Dominios Proteicos , Ratones , Xenopus
2.
J Cutan Pathol ; 51(2): 105-107, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37818708

RESUMEN

Imipramine is a tricyclic antidepressant typically reserved for patients with treatment-resistant mood disorders. A rare side effect of long-term use of imipramine is a slowly progressive melanin-associated, slate gray-blue hyperpigmentation of the skin in a photo-distributed pattern. We report a case of imipramine-induced hyperpigmentation developing 50 years after initiating imipramine therapy, whose lesions were essentially devoid of melanin on histopathological exam. This differs from all other reported cases of imipramine-induced hyperpigmentation in two notable respects. First, the time between initiating imipramine therapy and the onset of pigmentation changes was nearly 30 years longer than prior case reports. Second, the lack of melanin in our samples suggests a divergence from the hypothesized melanin-imipramine complex mechanism of hyperpigmentation. Instead, we propose a novel pathogenesis of imipramine-induced hyperpigmentation that is unrelated to melanin.


Asunto(s)
Hiperpigmentación , Imipramina , Humanos , Imipramina/efectos adversos , Melaninas , Hiperpigmentación/inducido químicamente , Hiperpigmentación/patología , Antidepresivos Tricíclicos/efectos adversos , Piel/patología
3.
Luminescence ; 39(4): e4745, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38644416

RESUMEN

This study introduces a novel chemiluminescence (CL) approach utilizing FeS2 nanosheets (NSs) catalyzed luminol-O2 CL reaction for the measurement of three pharmaceuticals, namely venlafaxine hydrochloride (VFX), imipramine hydrochloride (IPM), and cefazolin sodium (CEF). The CL method involved the phenomenon of quenching induced by the pharmaceuticals in the CL reaction. To achieve the most quenching efficacy of the pharmaceuticals in the CL reaction, the concentrations of reactants comprising luminol, NaOH, and FeS2 NSs were optimized accordingly. The calibration curves demonstrated exceptional linearity within the concentration range spanning from 4.00 × 10-7 to 1.00 × 10-3 mol L-1, 1.00 × 10-7 to 1.00 × 10-4 mol L-1, and 4.00 × 10-6 to 2.00 × 10-4 mol L-1 with detection limits (3σ) of 3.54 × 10-7, 1.08 × 10-8, and 2.63 × 10-6 mol L-1 for VFX, IPM, and CEF, respectively. This study synthesized FeS2 NSs using a facile hydrothermal approach, and then the synthesized FeS2 NSs were subjected to a comprehensive characterization using a range of spectroscopic methods. The proposed CL method was effective in measuring the aforementioned pharmaceuticals in pharmaceutical formulations as well as different water samples. The mechanism of the CL system has been elucidated.


Asunto(s)
Cefazolina , Compuestos Ferrosos , Imipramina , Mediciones Luminiscentes , Luminol , Clorhidrato de Venlafaxina , Cefazolina/análisis , Cefazolina/química , Clorhidrato de Venlafaxina/análisis , Clorhidrato de Venlafaxina/química , Imipramina/análisis , Imipramina/química , Mediciones Luminiscentes/métodos , Luminol/química , Nanoestructuras/química , Luminiscencia
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732055

RESUMEN

Knowledge of gender-specific drug distributions in different organs are of great importance for personalized medicine and reducing toxicity. However, such drug distributions have not been well studied. In this study, we investigated potential differences in the distribution of imipramine and chloroquine, as well as their metabolites, between male and female kidneys. Kidneys were collected from mice treated with imipramine or chloroquine and then subjected to atmospheric pressure matrix-assisted laser desorption ionization-mass spectrometry imaging (AP-MALDI-MSI). We observed differential distributions of the drugs and their metabolites between male and female kidneys. Imipramine showed prominent distributions in the cortex and medulla in male and female kidneys, respectively. Desipramine, one of the metabolites of imipramine, showed significantly higher (*** p < 0.001) distributions in the medulla of the male kidney compared to that of the female kidney. Chloroquine and its metabolites were accumulated in the pelvis of both male and female kidneys. Interestingly, they showed a characteristic distribution in the medulla of the female kidney, while almost no distributions were observed in the same areas of the male kidney. For the first time, our study revealed that the distributions of imipramine, chloroquine, and their metabolites were different in male and female kidneys.


Asunto(s)
Cloroquina , Imipramina , Riñón , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Imipramina/metabolismo , Masculino , Cloroquina/metabolismo , Cloroquina/farmacología , Femenino , Ratones , Riñón/metabolismo , Factores Sexuales , Caracteres Sexuales , Distribución Tisular
5.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063212

RESUMEN

Mass spectrometry imaging (MSI) is essential for visualizing drug distribution, metabolites, and significant biomolecules in pharmacokinetic studies. This study mainly focuses on imipramine, a tricyclic antidepressant that affects endogenous metabolite concentrations. The aim was to use atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI)-MSI combined with different dimensionality reduction methods to examine the distribution and impact of imipramine on endogenous metabolites in the brains of treated wild-type mice. Brain sections from both control and imipramine-treated mice underwent AP-MALDI-MSI. Dimensionality reduction methods, including principal component analysis, multivariate curve resolution, and sparse autoencoder (SAE), were employed to extract valuable information from the MSI data. Only the SAE method identified phosphorylcholine (ChoP) as a potential marker distinguishing between the control and treated mice brains. Additionally, a significant decrease in ChoP accumulation was observed in the cerebellum, hypothalamus, thalamus, midbrain, caudate putamen, and striatum ventral regions of the treated mice brains. The application of dimensionality reduction methods, particularly the SAE method, to the AP-MALDI-MSI data is a novel approach for peak selection in AP-MALDI-MSI data analysis. This study revealed a significant decrease in ChoP in imipramine-treated mice brains.


Asunto(s)
Encéfalo , Imipramina , Fosforilcolina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Imipramina/metabolismo , Ratones , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fosforilcolina/metabolismo , Fosforilcolina/análogos & derivados , Masculino , Antidepresivos Tricíclicos/farmacocinética , Antidepresivos Tricíclicos/farmacología , Antidepresivos Tricíclicos/metabolismo , Ratones Endogámicos C57BL , Análisis de Componente Principal
6.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474165

RESUMEN

Cisplatin (CDDP) stands out as an effective chemotherapeutic agent; however, its application is linked to the development of significant adverse effects, notably nephro- and ototoxicity. The human organic cation transporter 2 (hOCT2), found in abundance in the basolateral membrane domain of renal proximal tubules and the Corti organ, plays a crucial role in the initiation of nephro- and ototoxicity associated with CDDP by facilitating its uptake in kidney and ear cells. Given its limited presence in cancer cells, hOCT2 emerges as a potential druggable target for mitigating unwanted toxicities associated with CDDP. Potential strategies for mitigating CDDP toxicities include competing with the uptake of CDDP by hOCT2 or inhibiting hOCT2 activity through rapid regulation mediated by specific signaling pathways. This study investigated the interaction between the already approved cationic drugs disopyramide, imipramine, and orphenadrine with hOCT2 that is stably expressed in human embryonic kidney cells. Regarding disopyramide, its influence on CDDP cellular transport by hOCT2 was further characterized through inductively coupled plasma isotope dilution mass spectrometry. Additionally, its potential protective effects against cellular toxicity induced by CDDP were assessed using a cytotoxicity test. Given that hOCT2 is typically expressed in the basolateral membrane of polarized cells, with specific regulatory mechanisms, this work studied the regulation of hOCT2 that is stably expressed in Madin-Darby Canine Kidney (MDCK) cells. These cells were cultured in a matrix to induce the formation of cysts, exposing hOCT2 in the basolateral plasma membrane domain, which was freely accessible to experimental solutions. The study specifically tested the regulation of ASP+ uptake by hOCT2 in MDCK cysts through the inhibition of casein kinase II (CKII), calmodulin, or p56lck tyrosine kinase. Furthermore, the impact of this manipulation on the cellular toxicity induced by CDDP was examined using a cytotoxicity test. All three drugs-disopyramide, imipramine, and orphenadrine-demonstrated inhibition of ASP+ uptake, with IC50 values in the micromolar (µM) range. Notably, disopyramide produced a significant reduction in the CDDP cellular toxicity and platinum cellular accumulation when co-incubated with CDDP. The activity of hOCT2 in MDCK cysts experienced a significant down-regulation under inhibition of CKII, calmodulin, or p56lck tyrosine kinase. Interestingly, only the inhibition of p56lck tyrosine kinase demonstrated the capability to protect the cells against CDDP toxicity. In conclusion, certain interventions targeting hOCT2 have demonstrated the ability to reduce CDDP cytotoxicity, at least in vitro. Further investigations in in vivo systems are warranted to ascertain their potential applicability as co-treatments for mitigating undesired toxicities associated with CDDP in patients.


Asunto(s)
Quistes , Ototoxicidad , Humanos , Animales , Perros , Transportador 2 de Cátion Orgánico , Proteínas de Transporte de Catión Orgánico/metabolismo , Cisplatino/metabolismo , Disopiramida , Calmodulina/metabolismo , Imipramina , Orfenadrina , Células de Riñón Canino Madin Darby , Proteínas Tirosina Quinasas/metabolismo
7.
Pharm Res ; 40(3): 661-674, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36829100

RESUMEN

INTRODUCTION: A physiologically based pharmacokinetic (PBPK) model is developed that focuses on the kinetic parameters of drug association and dissociation with albumin, alpha-1 acid glycoprotein (AGP), and brain tissue proteins, as well as drug permeability at the blood-brain barrier, drug metabolism, and brain blood flow. GOAL: The model evaluates the extent to which plasma protein-mediated uptake (PMU) of drugs by brain influences the concentration of free drug both within the brain capillary compartment in vivo and the brain compartment. The model also studies the effect of drug binding to brain tissue proteins on the concentration of free drug in brain. METHODS: The steady state and non-steady state PBPK models are comprised of 11-12 variables, and 18-23 parameters, respectively. Two model drugs are analyzed: propranolol, which undergoes modest PMU from the AGP-bound pool, and imipramine, which undergoes a high degree of PMU from both the albumin-bound and AGP-bound pools in plasma. RESULTS: The free propranolol concentration in brain is under-estimated 2- to fourfold by in vitro measurements of free plasma propranolol, and the free imipramine concentration in brain is under-estimated by 18- to 31-fold by in vitro measurements of free imipramine in plasma. The free drug concentration in brain in vivo is independent of drug binding to brain tissue proteins. CONCLUSIONS: In vitro measurement of free drug concentration in plasma under-estimates the free drug in brain in vivo if PMU in vivo from either the albumin and/or the AGP pools in plasma takes place at the BBB surface.


Asunto(s)
Imipramina , Propranolol , Propranolol/farmacocinética , Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Preparaciones Farmacéuticas , Albúminas/metabolismo , Unión Proteica
8.
J Sep Sci ; 46(21): e2300323, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37691072

RESUMEN

This study introduces a reliable and inexpensive magnetic dispersive solid phase extraction to extract imipramine and its primary metabolite (desipramine) from urine samples. To accomplish this aim, Fe3 O4 magnetic nanoparticles were synthesized by sonication, subsequently, polycarbonate was precipitated gradually onto the surface of them to form the adsorbent. Extraction recoveries of 85% and 76%, enrichment factors of 57 and 51, limits of detection of 2.5 and 2.8 µg/L, and limits of quantification of 8.3 and 9.3 µg/L were obtained for imipramine and desipramine under the optimal conditions, respectively. In addition, relative standard deviations for intra- (n = 6) and inter-day (n = 5) precisions at two concentrations (50 and 100 µg/L of each analyte) were less than or equal to 4%. Short extraction time, good repeatability, high enrichment factors, and simplicity are the main advantages of the proposed method.


Asunto(s)
Imipramina , Nanopartículas de Magnetita , Desipramina , Extracción en Fase Sólida , Cromatografía Líquida de Alta Presión , Fenómenos Magnéticos
9.
Metab Brain Dis ; 38(7): 2243-2254, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37490224

RESUMEN

OBJECTIVE: Ferulic acid (FA) is a common food ingredient that is abundantly present in various routinely consumed food and beverages. Like many cinnamic acid derivatives, FA produces wide-ranging effects in a dose-dependent manner and various studies link FA consumption with reduced risk of depressive disorders. The aim of this study was to exploit the neuroprotective mechanisms of FA including indoleamine 2,3-dioxygenase (IDO), brain-derived neurotrophic factor (BDNF), and other pro-inflammatory cytokines by employing lipopolysaccharide (LPS)-induced depressive-like behaviour model. METHODS: C57BL/6J male mice were divided into 4 groups consisting of saline (SAL), LPS, FA and Imipramine (IMI). Animals were pretreated orally with FA (10 mg/kg) and IMI (10 mg/kg) for 21 days once daily and all groups except SAL were challenged with LPS (0.83 mg/kg) intraperitoneally on day 21. RESULTS: LPS administration produced a biphasic change in the behaviour of the animals where the animals lost a significant weight and express high immobility time at 24 h. Proinflammatory cytokines including, TNF-α, IL-6, IL-1ß, and IFN-γ were significantly increased along with increased lipid peroxidation and reduced BDNF. Furthermore, the increased kynurenine to tryptophan ratio was indicative of elevated IDO activity. CONCLUSION: The results of this study emphasise that low dose of FA is effective in attenuating depressive-like behaviour by modulating IDO, BDNF and reducing neuroinflammation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Animales , Ratones , Masculino , Depresión/tratamiento farmacológico , Depresión/inducido químicamente , Lipopolisacáridos/toxicidad , Indolamina-Pirrol 2,3,-Dioxigenasa , Ratones Endogámicos C57BL , Citocinas , Imipramina
10.
Mikrochim Acta ; 190(6): 218, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37178178

RESUMEN

Composite nanofibers, namely, polyvinyl alcohol (PVA), citric acid (CA), ß-cyclodextrin (ß-CD), and copper oxide nanoparticles (PVA/CA/ß-cyclodextrin/CuO NPs), were developed as a novel, green, and efficient adsorbent in the pipette tip-micro-solid-phase extraction method (PT-µSPE), for the simultaneous extraction of three antidepressants drugs namely imipramine (IMP), citalopram (CIT), and clozapine (CLZ) in biological fluids before quantification by gas chromatography (GC-FID). Based on the obtained results from field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD), the successful synthesis of composite nanofibers was approved. Due to the presence of ß-cyclodextrins and CuO NPs rich of functional groups on their surface, the nanofibers have high extraction efficiency. Under the optimal conditions, the linear range for imipramine, citalopram, and clozapine was 0.1 to 1000.0 ng mL-1 with a determination coefficient ≥ 0.99. The limits of detection (LODs) were in the range 0.03 to 0.15 ng mL-1. The relative standard deviation was 4.8 to 8.7% (within-day, n = 4) and 5.1 to 9.2% (between-day, n = 3) for 3 consecutive days. In addition, excellent clean-up was achieved which is a great advantage over other sample preparation methods. Finally, the ability of the developed method to extract the target analytes from the biological samples was evaluated.


Asunto(s)
Clozapina , Nanofibras , beta-Ciclodextrinas , Alcohol Polivinílico , Nanofibras/química , Citalopram , Espectroscopía Infrarroja por Transformada de Fourier , Imipramina , Cromatografía de Gases , beta-Ciclodextrinas/química , Antidepresivos
11.
Croat Med J ; 64(4): 231-242, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37654035

RESUMEN

AIM: To assess the protective effects of goji berry (Lycium barbarum L.) polysaccharides (LBP) on depression-like behavior in ovariectomized rats and to elucidate the mechanisms underlying these effects. METHODS: One hundred female Wistar albino rats (three months old) were randomly assigned either to ovariectomy (n=50) or sham surgery (n=50). After a 14-day recovery period, the groups were divided into five treatment subgroups (10 per group): high-dose LBP (200 mg/kg), low-dose LBP (20 mg/kg), imipramine (IMP, 2.5 mg/kg), 17-beta estradiol (E2, 1 mg/kg), and distilled water. Then, rats underwent a forced swimming test. We also determined the levels of serum antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde), E2 levels, hippocampal brain-derived neurotrophic factor (BDNF), 5HT2A receptor, and transferase dUTP nick end labeling (TUNEL)-positive cells. RESULTS: Both low-dose LBP and imipramine decreased depression-like behavior by increasing serum superoxide dismutase activity and by decreasing serum malondialdehyde level. Furthermore, low-dose LPB, high-dose LBP, and imipramine increased the number of 5-HT2A receptor- and BDNF-positive cells but decreased the number of TUNEL-positive cells in the hippocampus. CONCLUSION: This is the first study to show the antidepressant effect of LBP. Although additional research is needed, LBP may be considered a potential new antidepressant.


Asunto(s)
Lycium , Fármacos Neuroprotectores , Femenino , Ratas , Animales , Fármacos Neuroprotectores/farmacología , Ratas Wistar , Factor Neurotrófico Derivado del Encéfalo , Imipramina/farmacología , Depresión/tratamiento farmacológico , Depresión/prevención & control , Polisacáridos/farmacología , Malondialdehído
12.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38203414

RESUMEN

The HSP70 and HSP90 family members belong to molecular chaperones that exhibit protective functions during the cellular response to stressful agents. We investigated whether the exposure of rats to chronic mild stress (CMS), a validated model of depression, affects the expression of HSP70 and HSP90 in the prefrontal cortex (PFC), hippocampus (HIP) and thalamus (Thal). Male Wistar rats were exposed to CMS for 3 or 8 weeks. The antidepressant imipramine (IMI, 10 mg/kg, i.p., daily) was introduced in the last five weeks of the long-term CMS procedure. Depressive-like behavior was verified by the sucrose consumption test. The expression of mRNA and protein was quantified by real-time PCR and Western blot, respectively. In the 8-week CMS model, stress alone elevated HSP72 and HSP90B mRNA expression in the HIP. HSP72 mRNA was increased in the PFC and HIP of rats not responding to IMI treatment vs. IMI responders. The CMS exposure increased HSP72 protein expression in the cytosolic fraction of the PFC and HIP, and this effect was diminished by IMI treatment. Our results suggest that elevated levels of HSP72 may serve as an important indicator of neuronal stress reactions accompanying depression pathology and could be a potential target for antidepressant strategy.


Asunto(s)
Imipramina , Chaperonas Moleculares , Masculino , Ratas , Animales , Imipramina/farmacología , Ratas Wistar , Proteínas HSP70 de Choque Térmico , Hipocampo , Proteínas HSP90 de Choque Térmico/genética , Corteza Prefrontal , ARN Mensajero/genética , Antidepresivos/farmacología
13.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176029

RESUMEN

Clinical studies have shown that periodontitis is associated with non-alcoholic fatty liver disease (NAFLD). However, it remains unclear if periodontitis contributes to the progression of NAFLD. In this study, we generated a mouse model with high-fat diet (HFD)-induced metabolic syndrome (MetS) and NAFLD and oral P. gingivalis inoculation-induced periodontitis. Results showed that the presence of periodontitis increased insulin resistance and hepatic inflammation and exacerbated the progression of NAFLD. To determine the role of sphingolipid metabolism in the association between NAFLD and periodontitis, we also treated mice with imipramine, an inhibitor of acid sphingomyelinase (ASMase), and demonstrated that imipramine treatment significantly alleviated insulin resistance and hepatic inflammation, and improved NAFLD. Studies performed in vitro showed that lipopolysaccharide (LPS) and palmitic acid (PA), a major saturated fatty acid associated with MetS and NAFLD, synergistically increased the production of ceramide, a bioactive sphingolipid involved in NAFLD progression in macrophages but imipramine effectively reversed the ceramide production stimulated by LPS and PA. Taken together, this study showed for the first time that the presence of periodontitis contributed to the progression of NAFLD, likely due to alterations in sphingolipid metabolism that led to exacerbated insulin resistance and hepatic inflammation. This study also showed that targeting ASMase with imipramine improves NAFLD by reducing insulin resistance and hepatic inflammation.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Enfermedad del Hígado Graso no Alcohólico , Periodontitis , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Síndrome Metabólico/complicaciones , Síndrome Metabólico/metabolismo , Hígado/metabolismo , Lipopolisacáridos/farmacología , Imipramina/farmacología , Periodontitis/complicaciones , Periodontitis/metabolismo , Ácido Palmítico/farmacología , Dieta Alta en Grasa/efectos adversos , Esfingolípidos/metabolismo , Ceramidas/metabolismo , Inflamación/metabolismo , Ratones Endogámicos C57BL
14.
Acta Neuropsychiatr ; 35(1): 35-49, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36101010

RESUMEN

The Wistar Hannover rat (WHR) is a strain commonly used for toxicity studies but rarely used in studies investigating depression neurobiology. In this study, we aimed to characterise the behavioural responses of WHR to acute and repeated antidepressant treatments upon exposure to the forced swim test (FST) or learned helplessness (LH) test. WHR were subjected to forced swimming pre-test and test with antidepressant administration (imipramine, fluoxetine, or escitalopram) at 0, 5 h and 23 h after pre-test. WHR displayed high immobility in the test compared to unstressed controls (no pre-swim) and failed to respond to the antidepressants tested. The effect of acute and repeated treatment (imipramine, fluoxetine, escitalopram or s-ketamine) was then tested in animals not previously exposed to pre-test. Only imipramine (20 mg/kg, 7 days) and s-ketamine (acute) reduced the immobility time in the test. To further investigate the possibility that the WHR were less responsive to selective serotonin reuptake inhibitors, the effect of repeated treatment with fluoxetine (20 mg/kg, 7 days) was investigated in the LH model. The results demonstrated that fluoxetine failed to reduce the number of escape failures in two different protocols. These data suggest that the WHR do not respond to the conventional antidepressant treatment in the FST or the LH. Only s-ketamine and repeated imipramine were effective in WHR in a modified FST protocol. Altogether, these results indicate that WHR may be an interesting tool to investigate the mechanisms associated with the resistance to antidepressant drugs and identify more effective treatments.


Asunto(s)
Fluoxetina , Imipramina , Ratas , Animales , Fluoxetina/farmacología , Ratas Wistar , Imipramina/farmacología , Imipramina/uso terapéutico , Depresión/tratamiento farmacológico , Escitalopram , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Natación , Conducta Animal , Modelos Animales
15.
Artículo en Inglés | MEDLINE | ID: mdl-36892144

RESUMEN

Pharmaceuticals are frequently detected in natural and wastewater bodies, and are very important in environmental toxicology because of their stable nature. Advanced oxidation methods used to remove contaminants are of great benefit, especially removing pharmaceuticals unsuitable for biodegradation. In this study, imipramine was degraded by anodic oxidation and subcritical water oxidation, which are advanced oxidation methods. The determination of degradation products was performed by Q-TOF LC/MS analysis. The genotoxicity and cytotoxicity of the degradation samples were determined by the in vivo Allium Cepa method. Among the anodic oxidation samples, the lowest cytotoxicity was obtained after using 400 mA current, and 420 min of degradation time. No cytotoxic effect was observed in any subcritical water oxidation sample. However, when 10 mM hydrogen peroxide as an oxidant was used at 150 °C and the reaction time was 90 min, the subcritical water oxidation sample showed a genotoxic effect. The results of the study showed that it is crucial to evaluate the toxicity levels of the degradation products and which advanced oxidation methods are preferred for removing imipramine. The optimum conditions determined for both oxidation methods can be used as a preliminary step for biological oxidation methods in the degradation of imipramine.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Imipramina/toxicidad , Aguas Residuales , Cebollas , Oxidación-Reducción , Agua , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/toxicidad , Peróxido de Hidrógeno , Purificación del Agua/métodos
16.
Biochem Biophys Res Commun ; 634: 92-99, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36240654

RESUMEN

Porphyromonas gingivalis (P. gingivalis) is a Gram-negative anaerobe involved in the pathogenesis of chronic periodontitis, including local inflammation of the oral cavity. However, periodontal disease has recently been identified as a significant factor in the pathogenesis of neural diseases, including Alzheimer's disease. A virulence factor, P. gingivalis-lipopolysaccharide (LPS-PG), is involved in pro-inflammatory responses, not only in peripheral tissues but also in the brain. In this study, we examined whether P. gingivalis-induced brain inflammation could be ameliorated by pharmacotherapy, using in vivo and in vitro studies. In an animal experiment, peripheral administration of LPS-PG induced inflammation in the hippocampus via microglial activation, which was inhibited by pre-treatment with the antidepressant imipramine. Similarly, LPS-PG-induced inflammation in MG-6 cells, a mouse microglial cell line, was inhibited by pre-treatment with imipramine, which caused imipramine-induced inhibition of NF-κB signaling. Culture media obtained from LPS-PG-treated MG-6 cells induced neuronal cell death in Neuro-2A cells, a mouse neuroblastoma cell line, which was prevented by pre-treatment of MG-6 cells with imipramine. These results indicate that imipramine inhibits LPS-PG-induced inflammatory responses in microglia and ameliorates periodontal disease-related neural damage.


Asunto(s)
Enfermedades Periodontales , Porphyromonas gingivalis , Ratones , Animales , Porphyromonas gingivalis/metabolismo , Lipopolisacáridos/farmacología , Microglía/metabolismo , Imipramina/farmacología , FN-kappa B/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Inflamación/metabolismo
17.
Mol Pharm ; 19(5): 1526-1539, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35435696

RESUMEN

Gauging the chemical stability of active pharmaceutical ingredients (APIs) is critical at various stages of pharmaceutical development to identify potential risks from drug degradation and ensure the quality and safety of the drug product. Stress testing has been the major experimental method to study API stability, but this analytical approach is time-consuming, resource-intensive, and limited by API availability, especially during the early stages of drug development. Novel computational chemistry methods may assist in screening for API chemical stability prior to synthesis and augment contemporary API stress testing studies, with the potential to significantly accelerate drug development and reduce costs. In this work, we leverage quantum chemical calculations and automated reaction mechanism generation to provide new insights into API degradation studies. In the continuation of part one in this series of studies [Grinberg Dana et al., Mol. Pharm. 2021 18 (8), 3037-3049], we have generated the first ab initio predictive chemical kinetic model of free-radical oxidative degradation for API stress testing. We focused on imipramine oxidation in an azobis(isobutyronitrile) (AIBN)/H2O/CH3OH solution and compared the model's predictions with concurrent experimental observations. We analytically determined iminodibenzyl and desimipramine as imipramine's two major degradation products under industry-standard AIBN stress testing conditions, and our ab initio kinetic model successfully identified both of them in its prediction for the top three degradation products. This work shows the potential and utility of predictive chemical kinetic modeling and quantum chemical computations to elucidate API chemical stability issues. Further, we envision an automated digital workflow that integrates first-principle models with data-driven methods that, when actively and iteratively combined with high-throughput experiments, can substantially accelerate and transform future API chemical stability studies.


Asunto(s)
Imipramina , Modelos Químicos , Estabilidad de Medicamentos , Radicales Libres , Cinética , Oxidación-Reducción
18.
Pharm Res ; 39(2): 223-237, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35112227

RESUMEN

PURPOSE: The present study aimed to elucidate the transport properties of imipramine and paroxetine, which are the antidepressants, across the blood-brain barrier (BBB) in rats. METHODS: In vivo influx and efflux transport of imipramine and paroxetine across the BBB were tested using integration plot analysis and a combination of brain efflux index and brain slice uptake studies, respectively. Conditionally immortalized rat brain capillary endothelial cells, TR-BBB13 cells, were utilized to characterize imipramine and paroxetine transport at the BBB in vitro. RESULTS: The in vivo influx clearance of [3H]imipramine and [3H]paroxetine in rats was determined to be 0.322 mL/(min·g brain) and 0.313 mL/(min·g brain), respectively. The efflux clearance of [3H]imipramine and [3H]paroxetine was 0.380 mL/(min·g brain) and 0.126 mL/(min·g brain), respectively. These results suggest that the net flux of paroxetine, but not imipramine, at the BBB in vivo was dominated by transport to the brain from the circulating blood. The uptake of imipramine and paroxetine by TR-BBB13 cells exhibited time- and temperature-dependence and one-saturable kinetics with a Km of 37.6 µM and 89.2 µM, respectively. In vitro uptake analyses of extracellular ion dependency and the effect of substrates/inhibitors for organic cation transporters and transport systems revealed minor contributions to known transporters and transport systems and the difference in transport properties in the BBB between imipramine and paroxetine. CONCLUSIONS: Our study showed the comprehensive outcomes of imipramine and paroxetine transport at the BBB, implying that molecular mechanism(s) distinct from previously reported transporters and transport systems are involved in the transport.


Asunto(s)
Antidepresivos de Segunda Generación/metabolismo , Antidepresivos Tricíclicos/metabolismo , Barrera Hematoencefálica/metabolismo , Imipramina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Paroxetina/metabolismo , Animales , Antidepresivos de Segunda Generación/administración & dosificación , Antidepresivos Tricíclicos/administración & dosificación , Transporte Biológico , Línea Celular , Imipramina/administración & dosificación , Inyecciones Intravenosas , Cinética , Masculino , Modelos Biológicos , Paroxetina/administración & dosificación , Permeabilidad , Ratas Wistar
19.
J Periodontal Res ; 57(1): 173-185, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34748647

RESUMEN

BACKGROUND AND OBJECTIVE: Clinical studies have shown that metabolic syndrome (MetS) exacerbates periodontitis. However, the underlying mechanisms remain largely unknown. Since our animal study has shown that high-fat diet-induced MetS exacerbates lipopolysaccharide (LPS)-stimulated periodontitis in mouse model and our in vitro study showed that acid sphingomyelinase (aSMase) plays a key role in the amplification of LPS-triggered pro-inflammatory response by palmitic acid (PA) in macrophages, we tested our hypothesis that inhibitor of aSMase attenuates MetS-exacerbated periodontitis in animal model. Furthermore, to explore the potential underlying mechanisms, we tested our hypothesis that aSMase inhibitor downregulates pro-inflammatory and pro-osteoclastogenic gene expression in macrophages in vitro. MATERIAL AND METHODS: We induced MetS and periodontitis in C57BL/6 mice by feeding high-fat diet (HFD) and periodontal injection of A. actinomycetemcomitans LPS, respectively, and treated mice with imipramine, a well-established inhibitor of aSMase. Micro-computed tomography (micro-CT), tartrate-resistant acid phosphatase staining, histological and pathological evaluations as well as cell cultures were performed to evaluate alveolar bone loss, osteoclast formation, periodontal inflammation and pro-inflammatory gene expression. RESULTS: Analysis of metabolic parameter showed that while HFD induced MetS by increasing bodyweight, insulin resistance, cholesterol and free fatty acids, imipramine reduced free fatty acids but had no significant effects on other metabolic parameters. MicroCT showed that either MetS or periodontitis significantly reduced bone volume fraction (BVF) of maxilla and the combination of MetS and periodontitis further reduced BVF. However, imipramine increased BVF in mice with both MetS and periodontitis to a level similar to that in mice with periodontitis alone, suggesting that imipramine abolished the synergy between MetS and periodontitis on alveolar bone loss. Consistently, results showed that imipramine inhibited osteoclast formation and periodontal inflammation in mice with both MetS and periodontitis. To elucidate the mechanisms by which imipramine attenuates MetS-exacerbated periodontitis, we showed that imipramine inhibited the upregulation of pro-inflammatory cytokines and transcription factor c-FOS as well as ceramide production by LPS plus PA in macrophages. CONCLUSION: This study has shown that imipramine as an inhibitor of aSMase abolishes the synergy between MetS and periodontitis on alveolar bone loss in animal model and inhibits pro-inflammatory and pro-osteoclastogenic gene expression in macrophages in vitro. This study provides the first evidence that aSMase is a potential therapeutic target for MetS-exacerbated periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Síndrome Metabólico , Periodontitis , Pérdida de Hueso Alveolar/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Imipramina/farmacología , Lipopolisacáridos , Síndrome Metabólico/complicaciones , Síndrome Metabólico/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Osteoclastos , Periodontitis/tratamiento farmacológico , Esfingomielina Fosfodiesterasa , Microtomografía por Rayos X
20.
Anal Bioanal Chem ; 414(24): 7243-7252, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35976423

RESUMEN

The effect of LC mobile phase composition and flow rate (2-50 µL/min) on mobility behavior in vacuum differential mobility spectrometry (vDMS) was investigated for electrosprayed isobaric antidepressant drugs (AD); amitriptyline, maprotiline, venlafaxine; and structurally related antidepressants nortriptyline, imipramine, and desipramine. While at 2 µL/min, no difference in compensation voltage was observed with methanol and acetonitrile, at 50 µL/min, acetonitrile used for LC elution of analytes enabled the selectivity of the mobility separation to be improved. An accurate and sensitive method could be developed for the quantification of six AD drugs in human plasma using trap/elute micro-LC setup hyphenated to vDMS with mass spectrometric detection in the selected ion monitoring mode. The assay was found to be linear over three orders of magnitude, and the limit of quantification was of 25 ng/mL for all analytes. The LC-vDMS-SIM/MS method was compared to a LC-MRM/MS method, and in both cases, inter-assay precisions were lower than 12.5 and accuracies were in the range 91.5-110%, but with a four times reduced analysis time (2 min) for the LC-vDMS-SIM/MS method. This work illustrates that with vDMS, the LC mobile phase composition can be used to tune the ion mobility separation and to improve assay selectivity without additional hardware.


Asunto(s)
Imipramina , Nortriptilina , Acetonitrilos , Amitriptilina , Antidepresivos , Desipramina , Humanos , Maprotilina , Espectrometría de Masas , Metanol , Reproducibilidad de los Resultados , Análisis Espectral , Vacio , Clorhidrato de Venlafaxina
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda