Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 3.906
Filtrar
Más filtros

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(35): e2202118119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994641

RESUMEN

Textiles hold great promise as a soft yet durable material for building comfortable robotic wearables and assistive devices at low cost. Nevertheless, the development of smart wearables composed entirely of textiles has been hindered by the lack of a viable sheet-based logic architecture that can be implemented using conventional fabric materials and textile manufacturing processes. Here, we develop a fully textile platform for embedding pneumatic digital logic in wearable devices. Our logic-enabled textiles support combinational and sequential logic functions, onboard memory storage, user interaction, and direct interfacing with pneumatic actuators. In addition, they are designed to be lightweight, easily integrable into regular clothing, made using scalable fabrication techniques, and durable enough to withstand everyday use. We demonstrate a textile computer capable of input-driven digital logic for controlling untethered wearable robots that assist users with functional limitations. Our logic platform will facilitate the emergence of future wearables powered by embedded fluidic logic that fully leverage the innate advantages of their textile construction.


Asunto(s)
Robótica , Industria Textil , Textiles , Dispositivos Electrónicos Vestibles , Biotecnología , Lógica
2.
BMC Microbiol ; 24(1): 210, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877404

RESUMEN

Efficiently mitigating and managing environmental pollution caused by the improper disposal of dyes and effluents from the textile industry is of great importance. This study evaluated the effectiveness of Streptomyces albidoflavus 3MGH in decolorizing and degrading three different azo dyes, namely Reactive Orange 122 (RO 122), Direct Blue 15 (DB 15), and Direct Black 38 (DB 38). Various analytical techniques, such as Fourier Transform Infrared (FTIR) spectroscopy, High-Performance Liquid Chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS) were used to analyze the degraded byproducts of the dyes. S. albidoflavus 3MGH demonstrated a strong capability to decolorize RO 122, DB 15, and DB 38, achieving up to 60.74%, 61.38%, and 53.43% decolorization within 5 days at a concentration of 0.3 g/L, respectively. The optimal conditions for the maximum decolorization of these azo dyes were found to be a temperature of 35 °C, a pH of 6, sucrose as a carbon source, and beef extract as a nitrogen source. Additionally, after optimization of the decolorization process, treatment with S. albidoflavus 3MGH resulted in significant reductions of 94.4%, 86.3%, and 68.2% in the total organic carbon of RO 122, DB 15, and DB 38, respectively. After the treatment process, we found the specific activity of the laccase enzyme, one of the mediating enzymes of the degradation mechanism, to be 5.96 U/mg. FT-IR spectroscopy analysis of the degraded metabolites showed specific changes and shifts in peaks compared to the control samples. GC-MS analysis revealed the presence of metabolites such as benzene, biphenyl, and naphthalene derivatives. Overall, this study demonstrated the potential of S. albidoflavus 3MGH for the effective decolorization and degradation of different azo dyes. The findings were validated through various analytical techniques, shedding light on the biodegradation mechanism employed by this strain.


Asunto(s)
Compuestos Azo , Biodegradación Ambiental , Colorantes , Streptomyces , Streptomyces/metabolismo , Compuestos Azo/metabolismo , Compuestos Azo/química , Colorantes/metabolismo , Colorantes/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Textiles , Cromatografía de Gases y Espectrometría de Masas , Concentración de Iones de Hidrógeno , Temperatura , Industria Textil , Contaminantes Químicos del Agua/metabolismo , Cromatografía Líquida de Alta Presión , Carbono/metabolismo
3.
Arch Microbiol ; 206(6): 262, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753198

RESUMEN

The employment of versatile bacterial strains for the efficient degradation of carcinogenic textile dyes is a sustainable technology of bioremediation for a neat, clean, and evergreen globe. The present study has explored the eco-friendly degradation of complex Reactive Green 12 azo dye to its non-toxic metabolites for safe disposal in an open environment. The bacterial degradation was performed with the variable concentrations (50, 100, 200, 400, and 500 mg/L) of Reactive Green 12 dye. The degradation and toxicity of the dye were validated by high-performance liquid chromatography, Fourier infrared spectroscopy analysis, and phytotoxicity and genotoxicity assay, respectively. The highest 97.8% decolorization was achieved within 12 h. Alternations in the peaks and retentions, thus, along with modifications in the functional groups and chemical bonds, confirmed the degradation of Reactive Green 12. The disappearance of a major peak at 1450 cm-1 corresponding to the -N=N- azo link validated the breaking of azo bonds and degradation of the parent dye. The 100% germination of Triticum aestivum seed and healthy growth of plants verified the lost toxicity of degraded dye. Moreover, the chromosomal aberration of Allium cepa root cell treatment also validated the removal of toxicity through bacterial degradation. Thereafter, for efficient degradation of textile dye, the bacterium is recommended for adaptation to the sustainable degradation of dye and wastewater for further application of degraded metabolites in crop irrigation for sustainable agriculture.


Asunto(s)
Biodegradación Ambiental , Colorantes , Cebollas , Industria Textil , Triticum , Colorantes/metabolismo , Colorantes/química , Colorantes/toxicidad , Triticum/microbiología , Cebollas/efectos de los fármacos , Compuestos Azo/metabolismo , Compuestos Azo/toxicidad , Textiles , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Bacterias/genética , Pruebas de Mutagenicidad
4.
Environ Res ; 242: 117716, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995999

RESUMEN

The textile industry is a major contributor to global waste, with millions of tons of textiles being discarded annually. Material and energy recovery within circular economy offer sustainable solutions to this problem by extending the life cycle of textiles through repurposing, recycling, and upcycling. These initiatives not only reduce waste but also contribute to the reduction of the demand for virgin materials (i.e. cotton, wool), ultimately benefiting the environment and society. The circular economy approach, which aims to recreate environmental, economic, and societal value, is based on three key principles: waste reduction, material circulation, and ecological restoration. Given these difficulties, circularity incorporates the material recovery approach, which is focused on the conversion of waste into secondary raw resources. The goal of this notion is to extract more value from resources by prolonging final disposal as long as feasible. When a textile has outlived its functional life, material recovery is critical for returning the included materials or energy into the manufacturing cycle. The aim of this paper is to examine the material and energy recovery options of main raw materials used in the fashion industry while highlighting the need of close observation of the relation between circularity and material recovery, including the investigation of barriers to the transition towards a truly circular fashion industry. The final results refer to the main barriers of circular economy transition within the industry and a framework is proposed. These insights are useful for academia, engineers, policy makers and other key stakeholders for the clear understanding of the industry from within and highlight beyond circular economy targets, SDGs interactions with energy and material recovery of textile waste (SDG 7, SDG 11, SDG 12 etc.).


Asunto(s)
Reciclaje , Administración de Residuos , Animales , Textiles , Industrias , Industria Textil
5.
Environ Res ; 258: 119427, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38889840

RESUMEN

This review approach is divided into two scopes to focus the pollution threats. We cover the applications of nanomaterials to curtail the pollution induced by fossil fuel combustion, and textile dye effluents. Toxic emissions released from automobile exhaust that comprise of NOX. SOX and PAHs compile to harsh breathing and respiratory troubles. The effluents generated from the mammoth textile and leather industry is potential threat to beget massive health issues to human life, and environmental problem. Part I projects the broad envisage on role of nano materials in production of alternative biofuels. In addition, green sources for synthesizing nanomaterials are given special importance. Nano catalyst's utilization in bio-derived fuels such as biogas, bio-oil, bioethanol, and biodiesel are catered to this article. Part II cover the current statistics of textile effluent pollution level in India and its steps in confronting the risks of pollution are discussed. A clear picture of the nano techniques in pre-treatment, and the recent nano related trends pursued in industries to eliminate the dyes and chemicals from the discharges is discussed. The substantial aspect of nano catalysis in achieving emission-free fuel and toxic-free effluents and the augmentation in this field is conferred. This review portrays the dependency on nano materials & technology for sustainable future.


Asunto(s)
Combustibles Fósiles , Nanoestructuras , Industria Textil , Nanoestructuras/química , Combustibles Fósiles/análisis , Residuos Industriales/análisis , Textiles/análisis , Biocombustibles/análisis
6.
Biodegradation ; 35(2): 173-193, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37656273

RESUMEN

Textile industries release major fraction of dyestuffs in effluents leading to a major environmental concern. These effluents often contain more than one dyestuff, which complicates dye degradation. In this study ten reactive dyes (Reactive Yellow 145, Reactive Yellow 160, Reactive Orange 16, Reactive Orange 107, Reactive Red 195, Reactive Blue 21, Reactive Blue 198, Reactive Blue 221, Reactive Blue 250, and Reactive Black 5) that are used in textile industries were subjected to biodegradation by a bacterial consortium VITPBC6, formulated in our previous study. Consortium VITPBC6 caused single dye degradation of all the mentioned dyes except for Reactive Yellow 160. Further, VITPBC6 efficiently degraded a five-dye mixture (Reactive Red 195, Reactive Orange 16, Reactive Black 5, Reactive Blue 221, and Reactive Blue 250). Kinetic studies revealed that the five-dye mixture was decolorized by VITPBC6 following zero order reaction kinetic; Vmax and Km values of the enzyme catalyzed five-dye decolorization were 128.88 mg L-1 day-1 and 1003.226 mg L-1 respectively. VITPBC6 degraded the dye mixture into delta-3,4,5,6-Tetrachlorocyclohexene, sulfuric acid, 1,2-dichloroethane, and hydroxyphenoxyethylaminohydroxypropanol. Phytotoxicity, cytogenotoxicity, microtoxicity, and biotoxicity assays conducted with the biodegraded metabolites revealed that VITPBC6 lowered the toxicity of five-dye mixture significantly after biodegradation.


Asunto(s)
Compuestos Azo , Bacterias , Naftalenosulfonatos , Compuestos Organometálicos , Cinética , Compuestos Azo/metabolismo , Biodegradación Ambiental , Bacterias/metabolismo , Colorantes/metabolismo , Colorantes/toxicidad , Textiles , Industria Textil
7.
An Acad Bras Cienc ; 96(4): e20230851, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39194029

RESUMEN

Textile industries stand out as one of the main polluters of water resources, generating large amounts of liquid effluents with variable composition and intense coloration. The objective of this work is the integration of the reductive process using commercial steel wool, combined with oxidative processes, in the treatment of textile effluent. The effect of the variables of the reductive process were studied using a 32 factorial design. After 30 minutes, the reductive process allowed a reduction of 68% COD, 46% TOC, 62% true color and 72% of total phenols, but showed an increase in color apparent and turbidity, due to the iron species formed by the oxidation of steel wool during the process. With the combined process using sunlight, the reduction was 73% COD, 50% TOC, 97% phenols, 93% true color and 48% apparent color. With artificial light, the reduction was 94% COD, 63% TOC, 95% phenols, 98% true color and 65% apparent color. The evaluation of the acute toxicity against Daphnia magna indicated that after the proposed treatments, the effluent did not present toxicity or the toxicity was reduced. It is concluded that the combined process can be considered an efficient alternative for the treatment of textile effluent.


Asunto(s)
Oxidación-Reducción , Acero , Industria Textil , Eliminación de Residuos Líquidos , Acero/química , Animales , Eliminación de Residuos Líquidos/métodos , Residuos Industriales/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Daphnia/efectos de los fármacos , Lana/química
8.
Arch Environ Contam Toxicol ; 86(4): 375-382, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38775938

RESUMEN

Alkylphenol ethoxylates comprise of many anthropogenic chemicals such as nonylphenol (NP), octylphenol (OP) and nonylphenol ethoxylates (NPEOs). The objectives of this study were to assess the frequency and magnitude of detections of 4-NP, OP and NPEOs in Canadian sediment downstream of textile associated municipal wastewater treatment plants (MWWTPs) to determine if regulatory actions have had a beneficial impact on the receiving environment. Surficial sediments were obtained in four locations in the province of Québec (Canada) and were analyzed for nonylphenol, nonylphenol monoethoxylates (NP1EO), nonylphenol diethoxylates (NP2EO) and octylphenol from 2015 to 2018. Individual concentrations of the compounds varied from non detect to 419 ng/g. Of the four compounds analyzed, NP was detected the most frequently with a 75% detection rate while OPs were not detected in any of the samples. Since the Canadian regulatory actions have drastically reduced NP/NPEOs usage in textile mill factories and manufactured products, the potential source of these compounds in sediment for this study could stem from the outfall from the MWWTPs but not related to textile mills as well as from the usage of these compounds as formulants in pesticide products. Lastly, there were no exceedances to the Canadian Sediment Quality guideline toxic equivalency approach (TEQ) of 1400 ng/g or the 1310 ng/g guideline for NP in freshwater sediment from the European Scientific Committee on Health, Environmental and Emerging Risks. We hypothesize that the significant concentrations of these compounds in sediment may be a relevant and continuous source of 4NP in surface waters due to resuspension of sediment in the water column.


Asunto(s)
Monitoreo del Ambiente , Agua Dulce , Sedimentos Geológicos , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Aguas Residuales/química , Aguas Residuales/análisis , Agua Dulce/química , Fenoles/análisis , Quebec , Eliminación de Residuos Líquidos , Textiles/análisis , Industria Textil
9.
Int J Phytoremediation ; 26(8): 1231-1242, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38279798

RESUMEN

This study focuses on the improvement of bioremediation of textile dye Reactive Red 195 using agro-industrial waste, groundnut oil cake (GNOC) obtained after oil-pressing. The treatment of GNOC with 1 N H2SO4 had resulted in physiochemical changes on the insoluble porous adsorbent, which improved their adsorption efficiency. The dye removal efficiency increased from 55% to 94% on acidification of GNOC. The raw groundnut oil cake (RGNOC) and acid-treated groundnut oil cake (AGNOC) were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction, and zeta potential. The rate and efficiency of dye adsorption were examined using adsorption kinetics and isotherm models. The results confirm that acid-treated GNOC eliminates impurities, alter the surface functional groups, and significantly increase porous surface areas of RGNOC. The investigation of key factors such as contact time, initial concentration of dye, static/agitation impact, particle size, and adsorbent dose had significantly influenced adsorption capacity of GNOC. Adsorption of dye fits best into the Langmuir model and equilibrium data of dye on AGNOC was explained by psuedo-second-order reaction with maximum adsorption capacity of 12.65 mg/g. This emphasis AGNOC has a very excellent potential to remove the textile dye Reactive Red dye from industrial effluent.


This study reports the primary investigation exploring the application of groundnut oil cake (RGNOC) and its acid-modified (AGNOC) version for the bioremediation of industrially used textile dye Reactive Red 195 (RR195). The core objective of this study is to use a low-cost biosorbent to remove RR195 dye from effluent that pose risk to the health and environment. This study analyses the adsorption capacity of RGNOC and its acid-modified version AGNOC to treat contaminated water and the influencing parameters. AGNOC adsorption potential for RR195 dye sequestration was shown to be higher compared to RGNOC. Acidification of the adsorbent is simple, cost expensive, and more efficient alternate approaches to scale up for industrial application. As a result, an attempt has been made to add a new adsorbent to the database.


Asunto(s)
Compuestos Azo , Biodegradación Ambiental , Colorantes , Contaminantes Químicos del Agua , Adsorción , Colorantes/química , Residuos Industriales , Eliminación de Residuos Líquidos/métodos , Textiles , Cinética , Industria Textil , Naftalenosulfonatos
10.
J Environ Manage ; 358: 120845, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599093

RESUMEN

High-rate membrane bioreactors (MBR), where the wastewater undergoes partial oxidation due to the applied short sludge retention time (SRT) and hydraulic retention time (HRT) values, retain the majority of the organic substances in the sludge through growth and biological flocculation. Thus, a raw material source with a high biomethane production potential is created for the widespread use of circular economy or energy-neutral plants in wastewater treatment. While high-rate MBRs have been successfully employed for energy-efficient treatment of domestic wastewater, there is a lack of research specifically focused on textile wastewater. This study aimed to investigate the textile wastewater treatment and organic matter recovery performances of an aerobic MBR system containing a hollow fiber ultrafiltration membrane with a 0.04 µm pore diameter. The system was initially operated at short SRTs (5 and 3 d) and different SRT/HRT ratios (5, 10, and 20) and subsequently at high-rate conditions (SRT of 0.5-2 d and HRT of 1.2-9.6 h) which are believed to be the most limiting conditions tested for treatment of real textile wastewater. The results showed that chemical oxygen demand (COD) removal averaged 77% even at SRT of 0.5 d and HRT of 1.2 h. Slowly biodegradable substrates and soluble microbial products (SMP) accumulated within the MBR at SRT of 0.5 and 1 d, which resulted in decreased sludge filterability. The observed sludge yield (Yobs) exhibited a considerable increase when SRT was reduced from 5 to 1 d. On the other hand, the SRT/HRT ratio displayed a decisive effect on the energy requirement for aeration.


Asunto(s)
Reactores Biológicos , Textiles , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Aguas del Alcantarillado , Análisis de la Demanda Biológica de Oxígeno , Membranas Artificiales , Industria Textil
11.
J Environ Manage ; 363: 121337, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850903

RESUMEN

The accelerating environmental impact of the textile industry, especially in water management, requires efficient wastewater treatment strategies. This study examines the effectiveness of various electrode pairs in the Electrocoagulation (EC) process for treating textile wastewater, focusing on removing of Total Suspended Solids (TSS), turbidity, Chemical Oxygen Demand (COD), and Total Organic Carbon (TOC). A comprehensive analysis was conducted using thirty-six electrode pair combinations, consisting of six materials: Aluminium (Al), Zinc (Zn), Carbon (C), Copper (Cu), Mild Steel (MS), and Stainless Steel (SS). The results demonstrated that different electrode pairs yielded varying removal efficiencies for various pollutants, with the highest efficiencies being 92.09% for COD (Al-C pair), 99.66% for TSS (Al-Cu pair), 99.17% for turbidity (Al-MS pair), and 70.99% for TOC (SS-SS pair). However, no single electrode pair excelled in removing all pollutant categories. To address this, three Multi-Criteria Decision Making (MCDM) methods such as TOPSIS, VIKOR, and PROMETHEE II were used to assess the most effective electrode pair. The results indicated that the Al-Zn combination was the most efficient, exhibiting high removal efficiencies for various pollutants (99.32% for TSS, 98.88% for turbidity, 68.62% for COD, and 57.96% for TOC). This study demonstrates that the EC process can effectively treat textile effluent and emphasizes the importance of selecting suitable electrode materials. Furthermore, pollutant removal was optimal with the Al-Zn electrode pair, offering a balanced and efficient approach to textile wastewater treatment. Thus, MCDM methods offer a robust framework for assessing and optimizing electrode selection, providing valuable insights for sustainable environmental management practices.


Asunto(s)
Electrodos , Textiles , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Toma de Decisiones , Análisis de la Demanda Biológica de Oxígeno , Contaminantes Químicos del Agua/química , Industria Textil , Purificación del Agua/métodos
12.
J Environ Manage ; 353: 120103, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280248

RESUMEN

Textile dyes are the burgeoning environmental contaminants across the world. They might be directly disposed of from textile industries into the aquatic bodies, which act as the direct source for the entire ecosystem, ultimately impacting the human beings. Hence, it is essential to dissect the potential adverse outcomes of textile dye exposure on aquatic plants, aquatic fauna, terrestrial entities, and humans. Analysis of appropriate literature has revealed that textile dye effluents could affect the aquatic biota by disrupting their growth and reproduction. Various aquatic organisms are targeted by textile dye effluents. In such organisms, these chemicals affect their development, behavior, and induce oxidative stress. General populations of humans are exposed to textile dyes via the food chain and drinking contaminated water. In humans, textile dyes are biotransformed into electrophilic intermediates and aromatic amines by the enzymes of the cytochrome family. Textile dyes and their biotransformed products form the DNA and protein adducts at sub-cellular moiety. Moreover, these compounds catalyze the production of free radicals and oxidative stress, and trigger the apoptotic cascades to produce lesions in multiple organs. In addition, textile dyes modulate epigenetic factors like DNA methyltransferase and histone deacetylase to promote carcinogenesis. Several bioremediation approaches involving algae, fungi, bacteria, biomembrane filtration techniques, etc., have been tested and some other hybrid systems are currently under investigation to treat textile dye effluents. However, many such approaches are at the trial stage and require further research to develop more efficient, cost-effective, and easy-to-handle techniques.


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Humanos , Colorantes/metabolismo , Ecosistema , Biodegradación Ambiental , Plantas/metabolismo , Textiles , ADN , Industria Textil , Contaminantes Químicos del Agua/metabolismo
13.
Molecules ; 29(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930836

RESUMEN

The development of the textile industry has negative effects on the natural environment. Cotton cultivation, dyeing fabrics, washing, and finishing require a lot of water and energy and use many chemicals. One of the most dangerous pollutants generated by the textile industry is dyes. Most of them are characterized by a complex chemical structure and an unfavorable impact on the environment. Especially azo dyes, whose decomposition by bacteria may lead to the formation of carcinogenic aromatic amines and raise a lot of concern. Using the metabolic potential of microorganisms that biodegrade dyes seems to be a promising solution for their elimination from contaminated environments. The development of omics sciences such as genomics, transcriptomics, proteomics, and metabolomics has allowed for a comprehensive approach to the processes occurring in cells. Especially multi-omics, which combines data from different biomolecular levels, providing an integrative understanding of the whole biodegradation process. Thanks to this, it is possible to elucidate the molecular basis of the mechanisms of dye biodegradation and to develop effective methods of bioremediation of dye-contaminated environments.


Asunto(s)
Biodegradación Ambiental , Colorantes , Genómica , Metabolómica , Textiles , Colorantes/metabolismo , Colorantes/química , Genómica/métodos , Metabolómica/métodos , Industria Textil , Proteómica/métodos , Bacterias/metabolismo , Bacterias/genética
14.
J Environ Sci (China) ; 140: 123-145, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331495

RESUMEN

The clothing industry is considered one of the most polluting industries on the planet due to the high consumption of water, energy, chemicals/dyes, and high generation of solid waste and effluents. Faced with environmental concerns, the textile ennoblement sector is the most critical of the textile production chain, especially the traditional dyeing processes. As an alternative to current problems, dyeing with supercritical CO2 (scCO2) has been presented as a clean and efficient process for a sustainable textile future. Supercritical fluid dyeing (SFD) has shown a growing interest due to its significant impact on environmental preservation and social, economic, and financial gains. The main SFD benefits include economy and reuse of non-adsorbed dyes; reduction of process time and energy expenditure; capture of atmospheric CO2 (greenhouse gas); use and recycling of CO2 in SFD; generation of carbon credits; water-free process; effluent-free process; reduction of CO2 emission and auxiliary chemicals. Despite being still a non-scalable and evolving technology, SFD is the future of dyeing. This review presented a comprehensive overview of the environmental impacts caused by traditional processes and confronted the advantages of SFD. The SFD technique was introduced, along with its latest advances and future perspectives. Financial and environmental gains were also discussed.


Asunto(s)
Dióxido de Carbono , Industria Textil , Colorantes , Tecnología , Textiles , Residuos Industriales/análisis , Eliminación de Residuos Líquidos/métodos
15.
Environ Sci Technol ; 57(50): 21038-21049, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38064758

RESUMEN

Microplastic fibers from textiles have been known to significantly contribute to marine microplastic pollution. However, little is known about the microfiber formation and discharge during textile production. In this study, we have quantified microfiber emissions from one large and representative textile factory during different stages, spanning seven different materials, including cotton, polyester, and blended fabrics, to further guide control strategies. Wet-processing steps released up to 25 times more microfibers than home laundering, with dyeing contributing to 95.0% of the total emissions. Microfiber release could be reduced by using white coloring, a lower dyeing temperature, and a shorter dyeing duration. Thinner, denser yarns increased microfiber pollution, whereas using tightly twisted fibers mitigated release. Globally, wet textile processing potentially produced 6.4 kt of microfibers in 2020, with China, India, and the US as significant contributors. The study underlined the environmental impact of textile production and the need for mitigation strategies, particularly in dyeing processes and fiber choice. In addition, no significant difference was observed between the virgin polyesters and the used ones. Replacing virgin fibers with recycled fibers in polyester fabrics, due to their increasing consumption, might offer another potential solution. The findings highlighted the substantial impact of textile production on microfiber released into the environment, and optimization of material selection, knitting technologies, production processing, and recycled materials could be effective mitigation strategies.


Asunto(s)
Microplásticos , Plásticos , Textiles , Poliésteres , Ambiente , Industria Textil
16.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36724285

RESUMEN

Environmental contamination brought on by the discharge of wastewater from textile industries is a growing concern on a global scale. Textile industries produce a huge quantity of effluents containing a myriad of chemicals, mostly dyes. The discharge of such effluents into the aquatic environment results in pollution that adversely affects aquatic organisms. Synthetic dyes are complex aromatic chemical structures with carcinogenic and mutagenic properties in addition to high biological oxygen demand (BOD) and chemical oxygen demand (COD). This complex aromatic structure resists degradation by conventional techniques. The bioremediation approach is the biological clean-up of toxic contaminants from industrial effluents. Biological treatment methods produce less or no sludge and are cost-effective, efficient, and eco-friendly. Microorganisms, mostly microalgae and bacteria, and, in some instances, fungi, yeast, and enzymes decolorize textile dye compounds into simple, non-toxic chemical compounds. Following a thorough review of the literature, we are persuaded that microalgae and bacteria might be one of the potential decolorizing agents substituting for most other biological organisms in wastewater treatment. This article presents extensive literature information on textile dyes, their classification, the toxicity of dyes, and the bioremediation of toxic textile industry effluent utilizing microalgae and bacteria. Additionally, it combines data on factors influencing textile dye bioremediation, and a few suggestions for future research are proposed.


Asunto(s)
Residuos Industriales , Industria Textil , Humanos , Biodegradación Ambiental , Residuos Industriales/análisis , Colorantes/metabolismo , Textiles
17.
Occup Environ Med ; 80(3): 129-136, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36717255

RESUMEN

OBJECTIVES: To assess the association of exposure in cotton mills in Karachi with different definitions of byssinosis and lung health. METHODS: This cross-sectional survey took place between June 2019 and October 2020 among 2031 workers across 38 spinning and weaving mills in Karachi. Data collection involved questionnaire-based interviews, spirometry and measurements of personal exposure to inhalable dust. Byssinosis was defined using both WHO symptoms-based (work-related chest tightness), and Schilling's criteria (symptoms with decreased forced expiratory volume in 1 s (FEV1). Values of FEV1/forced vital capacity ratio below the lower limit of normality on postbronchodilator test were considered as 'chronic airflow obstruction' (CAO). RESULTS: 56% of participants had at least one respiratory symptom, while 43% had shortness of breath (grade 1). Prevalence of byssinosis according to WHO criteria was 3%, it was 4% according to Schilling's criteria, and likewise for CAO. We found low inhalable dust exposures (geometric mean: 610 µg/m3). Cigarette smoking (≥3.5 pack-years), increasing duration of employment in the textile industry and work in the spinning section were important factors found to be associated with several respiratory outcomes. CONCLUSION: We found a high prevalence of respiratory symptoms but a low prevalence of byssinosis. Most respiratory outcomes were associated with duration of employment in textile industry. We have discussed the challenges faced in using current, standard guidelines for identifying byssinosis.


Asunto(s)
Bisinosis , Exposición Profesional , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Bisinosis/epidemiología , Bisinosis/etiología , Pakistán/epidemiología , Estudios Transversales , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Pulmón , Polvo/análisis , Textiles , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Industria Textil
19.
Environ Res ; 228: 115868, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37040856

RESUMEN

Enzymatic (laccase mediated) decolorization of dyes remains inefficient for recalcitrant dyes, which can be better handled by electrocoagulation (EC). However, EC is energy intensive and produce large amount of sludge. In light of the same, present study offers a promising solution for the treatment of textile effluent meeting surface discharge norms, using hybridization of enzymatic and electrocoagulation treatment. The findings revealed best color removal (90%) of undiluted (raw) textile effluent (4592 hazen) is achievable by employing EC using zinc-coated iron electrode at current density 25 mA cm-2 followed by partially purified laccase (LT) treatment, and activated carbon (AC) polishing at ambient conditions. Overall, the decolorization performance of Hybrid EC-LT integrated AC approach was 1.95 times better than only laccase treatment. Also, the sludge generation from Hybrid EC-LT integrated AC (0.7 g L-1) was 3.3 times lesser than EC alone (2.1 g L-1). Therefore, the present study recommends Hybrid EC-LT integrated AC could be potential approach to treat complex textile effluent sustainably with lower energy input and waste sludge generation.


Asunto(s)
Lacasa , Aguas del Alcantarillado , Industria Textil , Electrocoagulación , Colorantes , Carbón Orgánico , Residuos Industriales/análisis
20.
Environ Res ; 234: 116545, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429404

RESUMEN

Although biological treatment of textile effluent is a preferred option for industries avoiding toxic chemical sludge production and disposal, requirement of several extra pre-treatment units like neutralization, cooling systems or additives, results in higher operational cost. In the present study, a pilot scale sequential microbial-based anaerobic-aerobic reactor technology (SMAART) was developed and operated for the treatment of real textile effluent in the industrial premises in continuous mode for 180 d. The results showed an average ∼95% decolourization along with ∼92% reduction in the chemical oxygen demand establishing the resilience against fluctuations in the inlet parameters and climate conditions. Moreover, the pH of treated effluent was also reduced from alkaline range (∼11.05) to neutral range (∼7.76) along with turbidity reduction from ∼44.16 NTU to ∼0.14 NTU. A comparative life cycle assessment (LCA) of SMAART with the conventional activated sludge process (ASP) showed that ASP caused 41.5% more negative impacts on environment than SMAART. Besides, ASP had 46.15% more negative impact on human health, followed by 42.85% more negative impact on ecosystem quality as compared to SMAART. This was attributed to less electricity consumption, absence of pre-treatment units (cooling and neutralization) and less volume of sludge generation (∼50%) while using SMAART. Hence, integration of SMAART within the industrial effluent treatment plant is recommended to achieve a minimum waste discharge system in pursuit of sustainability.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Humanos , Animales , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Ecosistema , Reactores Biológicos , Tecnología , Textiles , Estadios del Ciclo de Vida , Residuos Industriales/análisis , Industria Textil
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda