Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 622
Filtrar
Más filtros

Publication year range
1.
Mol Microbiol ; 121(6): 1200-1216, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705589

RESUMEN

Through their involvement in the integration and excision of a large number of mobile genetic elements, such as phages and integrative and conjugative elements (ICEs), site-specific recombination systems based on heterobivalent tyrosine recombinases play a major role in genome dynamics and evolution. However, despite hundreds of these systems having been identified in genome databases, very few have been described in detail, with none from phages that infect Bacillota (formerly Firmicutes). In this study, we reanalyzed the recombination module of Lactobacillus delbrueckii subsp. bulgaricus phage mv4, previously considered atypical compared with classical systems. Our results reveal that mv4 integrase is a 369 aa protein with all the structural hallmarks of recombinases from the Tn916 family and that it cooperatively interacts with its recombination sites. Using randomized DNA libraries, NGS sequencing, and other molecular approaches, we show that the 21-bp core-attP and attB sites have structural similarities to classical systems only if considering the nucleotide degeneracy, with two 7-bp inverted regions corresponding to mv4Int core-binding sites surrounding a 7-bp strand-exchange region. We also examined the different compositional constraints in the core-binding regions, which define the sequence space of permissible recombination sites.


Asunto(s)
Sitios de Ligazón Microbiológica , Bacteriófagos , Integrasas , Recombinación Genética , Bacteriófagos/genética , Integrasas/metabolismo , Integrasas/genética , Sitios de Ligazón Microbiológica/genética , Lactobacillus delbrueckii/virología , Lactobacillus delbrueckii/genética , Recombinasas/metabolismo , Recombinasas/genética , Sitios de Unión
2.
Appl Environ Microbiol ; 90(3): e0193623, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376234

RESUMEN

In the context of sustainable diet, the development of soy-based yogurt fermented with lactic acid bacteria is an attractive alternative to dairy yogurts. To decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during soy juice (SJ) fermentation, the whole genome of the strain CIRM-BIA865 (Ld865) was sequenced and annotated. Then Ld865 was used to ferment SJ. Samples were analyzed throughout fermentation for their cell number, carbohydrate, organic acid, free amino acid, and volatile compound contents. Despite acidification, the number of Ld865 cells did not rise, and microscopic observations revealed the elongation of cells from 3.6 µm (inoculation) to 36.9 µm (end of fermentation). This elongation was observed in SJ but not in laboratory-rich medium MRS. Using transcriptomic analysis, we showed that the biosynthesis genes of peptidoglycan and membrane lipids were stably expressed, in line with the cell elongation observed, whereas no genes implicated in cell division were upregulated. Among the main sugars available in SJ (sucrose, raffinose, and stachyose), Ld865 only used sucrose. The transcriptomic analysis showed that Ld865 implemented the two transport systems that it contains to import sucrose: a PTS system and an ABC transporter. To fulfill its nitrogen needs, Ld865 probably first consumed the free amino acids of the SJ and then implemented different oligopeptide transporters and proteolytic/peptidase enzymes. In conclusion, this study showed that Ld865 enables fast acidification of SJ, despite the absence of cell division, leads to a product rich in free amino acids, and also leads to the production of aromatic compounds of interest. IMPORTANCE: To reduce the environmental and health concerns related to food, an alternative diet is recommended, containing 50% of plant-based proteins. Soy juice, which is protein rich, is a relevant alternative to animal milk, for the production of yogurt-like products. However, soy "beany" and "green" off-flavors limit the consumption of such products. The lactic acid bacteria (LAB) used for fermentation can help to improve the organoleptic properties of soy products. But metabolic data concerning LAB adapted to soy juice are lacking. The aim of this study was, thus, to decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during fermentation of a soy juice, based on a multidisciplinary approach. This result will contribute to give tracks for a relevant selection of starter. Indeed, the improvement of the organoleptic properties of these types of products could help to promote plant-based proteins in our diet.


Asunto(s)
Lactobacillales , Lactobacillus delbrueckii , Animales , Fermentación , Lactobacillus/metabolismo , Lactobacillales/metabolismo , Aminoácidos/metabolismo , Glycine max , Sacarosa/metabolismo , Lactobacillus delbrueckii/genética , Yogur/microbiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-38578275

RESUMEN

As required by Rule 54 of the International Code of Nomenclature of Prokaryotes, the authors propose the replacement specific epithet 'allocomposti' for the illegitimate prokaryotic name Sphingobacterium composti Yoo et al. 2007, the replacement subspecific epithet 'bovistauri' for Mycobacterium chelonae subsp. bovis Kim et al. 2017 and the replacement subspecific epithet 'allosunkii' for Lactobacillus delbrueckii subsp. sunkii Kudo et al. 2012. Meanwhile, new combinations Christiangramia oceanisediminis and Christiangramia crocea are also proposed as replacements for the illegitimate prokaryotic names Gramella oceanisediminis Yang et al. 2023 and Gramella crocea Zhang et al. 2023, respectively.


Asunto(s)
Lactobacillus delbrueckii , Lactobacillus , Mycobacteriaceae , Mycobacterium chelonae , Sphingobacterium , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Filogenia , Técnicas de Tipificación Bacteriana , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química
4.
Appl Microbiol Biotechnol ; 108(1): 361, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837050

RESUMEN

Lactobacillus delbrueckii subsp. bulgaricus and Lactiplantibacillus plantarum are two lactic acid bacteria (LAB) widely used in the food industry. The objective of this work was to assess the resistance of these bacteria to freeze- and spray-drying and study the mechanisms involved in their loss of activity. The culturability and acidifying activity were measured to determine the specific acidifying activity, while membrane integrity was studied by flow cytometry. The glass transitions temperature and the water activity of the dried bacterial suspensions were also determined. Fourier transform infrared (FTIR) micro-spectroscopy was used to study the biochemical composition of cells in an aqueous environment. All experiments were performed after freezing, drying and storage at 4, 23 and 37 °C. The results showed that Lb. bulgaricus CFL1 was sensitive to osmotic, mechanical, and thermal stresses, while Lpb. plantarum WCFS1 tolerated better the first two types of stress but was more sensitive to thermal stress. Moreover, FTIR results suggested that the sensitivity of Lb. bulgaricus CFL1 to freeze-drying could be attributed to membrane and cell wall degradation, whereas changes in nucleic acids and proteins would be responsible of heat inactivation of both strains associated with spray-drying. According to the activation energy values (47-85 kJ/mol), the functionality loss during storage is a chemically limited reaction. Still, the physical properties of the glassy matrix played a fundamental role in the rates of loss of activity and showed that a glass transition temperature 40 °C above the storage temperature is needed to reach good preservation during storage. KEY POINTS: • Specific FTIR bands are proposed as markers of osmotic, mechanic and thermal stress • Lb. bulgaricus CFL1 was sensitive to all three stresses, Lpb. plantarum WCFS1 to thermal stress only • Activation energy revealed chemically limited reactions ruled the activity loss in storage.


Asunto(s)
Liofilización , Liofilización/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Secado por Pulverización , Viabilidad Microbiana , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiología , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/fisiología , Lactobacillales/metabolismo , Lactobacillales/fisiología , Desecación
5.
Cell Biochem Funct ; 42(2): e3981, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38509733

RESUMEN

Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self-tolerance, resulting in disease onset and progression. Macrophages have been implicated as a factor in the development of SLE through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. For this purpose, blood monocytes were collected from lupus patients and healthy people and were cultured for 5 days to produce macrophages. For 48 h, the macrophages were then cocultured with either probiotics or lipopolysaccharides (LPS). Flow cytometry and real-time polymerase chain reaction were then used to analyze the expression of cluster of differentiation (CD) 14, CD80, and human leukocyte antigen - DR (HLADR) markers, as well as cytokine expression (interleukin [IL]1-ß, IL-12, tumor necrosis factor α [TNF-α], IL-10, and transforming growth factor beta [TGF-ß]). The results indicated three distinct macrophage populations, M0, M1, and M2. In both control and patient-derived macrophage-derived monocytes (MDMs), the probiotic groups showed a decrease in CD14, CD80, and HLADR expression compared to the LPS group. This decrease was particularly evident in M0 and M2 macrophages from lupus patients and M1 macrophages from healthy subjects. In addition, the probiotic groups showed increased levels of IL-10 and TGF-ß and decreased levels of IL-12, IL1-ß, and TNF-α in MDMs from both healthy and lupus subjects compared to the LPS groups. Although there was a higher expression of pro-inflammatory cytokines in lupus patients, there was a higher expression of anti-inflammatory cytokines in healthy subjects. In general, L. delbrueckii and L. rhamnosus could induce anti-inflammatory effects on MDMs from both healthy and lupus subjects.


Asunto(s)
Lacticaseibacillus rhamnosus , Lactobacillus delbrueckii , Lupus Eritematoso Sistémico , Probióticos , Humanos , Monocitos/metabolismo , Monocitos/patología , Interleucina-10 , Lactobacillus delbrueckii/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Citocinas/metabolismo , Antiinflamatorios/farmacología , Lupus Eritematoso Sistémico/tratamiento farmacológico , Interleucina-12/metabolismo , Interleucina-12/farmacología , Interleucina-12/uso terapéutico , Factor de Crecimiento Transformador beta/metabolismo , Probióticos/farmacología
6.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38521981

RESUMEN

It is a problem that influenza virus infection increases susceptibility to secondary bacterial infection in lungs leading to lethal pneumonia. We previously reported that exopolysaccharides (EPS) derived from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (OLL1073R-1) could prevent against influenza virus infection followed by secondary bacterial infection in vitro. Therefore, the present study assessed whether EPS derived OLL1073R-1 protects the alveolar epithelial barrier disfunction caused by influenza virus infection. After A549 cells treated with EPS or without EPS were infected influenza virus A/Puerto Rico/8/34 (IFV) for 12 h, the levels of tight junction genes expression and inflammatory genes expression were measured by reverse transcription polymerase chain reaction. As results, EPS treatment could protect against low-titer IFV infection, but not high-titer IFV infection, followed by suppression of the increased expression of inflammatory cytokine gene levels and recovery of the decrease in the expression level of ZO-1 gene that was caused by low-titer IFV infection, leading to an improvement trend in the barrier function. Our findings showed that EPS derived from OLL1073R-1 could inhibit low-titer IFV infection leading to maintenance of the epithelial barrier function through the suppression of inflammatory cytokine genes expression.


Asunto(s)
Infecciones Bacterianas , Gripe Humana , Lactobacillus delbrueckii , Orthomyxoviridae , Humanos , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/metabolismo , Uniones Estrechas , Citocinas/genética , Citocinas/metabolismo
7.
Food Microbiol ; 122: 104563, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839237

RESUMEN

Thermosonication (UT) prestress treatments combining with varied fermentation patterns has been revealed as an effective method to regulate post-acidification as exerted by Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii), but sono-biochemical controlling mechanisms remain elusive. This study employed physiological and transcriptomic analysis to explore the response mechanism of L. delbrueckii to UT-induced microstress (600 W, 33 kHz, 10 min). UT stress-induced inhibition of acidification of L. delbrueckii during (post)-fermentation was first confirmed, relying on the UT process parameters such as stress exposure duration and UT power. The significantly enhanced membrane permeability in cells treated by 600 W for 10 min than the microbes stressed by 420 W for 20 min suggested the higher dependence of UT-derived stresses on the treatment durations, relative to the ultrasonic powers. In addition, ultrasonication treatment-induced changes in cell membrane integrity enhanced and/or disrupted permeability of L. delbrueckii, resulting in an imbalance in intracellular conditions associated with corresponding alterations in metabolic behaviors and fermentation efficiencies. UT-prestressed inoculum exhibited a 21.46% decrease in the membrane potential during the lag phase compared to untreated samples, with an intracellular pH of 5.68 ± 0.12, attributed to the lower activities of H+-ATPase and lactate dehydrogenase due to UT stress pretreatments. Comparative transcriptomic analysis revealed that UT prestress influenced the genes related to glycolysis, pyruvate metabolism, fatty acid synthesis, and ABC transport. The genes encoding 3-oxoacyl-[acyl-carrier-protein] reductases I, II, and III, CoA carboxylase, lactate dehydrogenase, pyruvate oxidase, glucose-6-phosphate isomerase, and glycerol-3-phosphate dehydrogenase were downregulated, thus identifying the relevance of the UT microstresses-downregulated absorption and utilization of carbohydrates with the attenuated fatty acid production and energy metabolisms. These findings could contribute to provide a better understanding of the inactivated effects on the post-acidification of L. delbrueckii by ultrasonic pretreatments, thus providing theoretical basis for the targeted optimization of acidification inhibition efficiencies for yogurt products during chilled preservation processes.


Asunto(s)
Fermentación , Perfilación de la Expresión Génica , Lactobacillus delbrueckii , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/genética , Concentración de Iones de Hidrógeno , Transcriptoma , Sonicación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
8.
Food Microbiol ; 121: 104521, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637083

RESUMEN

Natural whey starters (NWS) are cultures with undefined multiple-strains species commonly used to speed up the fermentation process of cheeses. The aim of this study was to explore the diversity and the viability of Comté cheese NWS microbiota. Culture-dependent methods, i.e. plate counting and genotypic characterization, and culture-independent methods, i.e. qPCR, viability-qPCR, fluorescence microscopy and DNA metabarcoding, were combined to analyze thirty-six NWS collected in six Comté cheese factories at two seasons. Our results highlighted that NWS were dominated by Streptococcus thermophilus (ST) and thermophilic lactobacilli. These species showed a diversity of strains based on Rep-PCR. The dominance of Lactobacillus helveticus (LH) over Lactobacillus delbrueckii (LD) varied depending on the factory and the season. This highlighted two types of NWS: the type-ST/LD (LD > LH) and the type-ST/LH (LD < LH). The microbial composition varied depending on cheese factory. One factory was distinguished by its level of culturable microbial groups (ST, enterococci and yeast) and its fungi diversity. The approaches used to estimate the viability showed that most NWS cells were viable. Further investigations are needed to understand the microbial diversity of these NWS.


Asunto(s)
Queso , Lactobacillus delbrueckii , Lactobacillus helveticus , Suero Lácteo , Queso/microbiología , Microbiología de Alimentos , Proteína de Suero de Leche/análisis , Streptococcus thermophilus/genética
9.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34408021

RESUMEN

Energy-coupling factor (ECF)-type transporters are small, asymmetric membrane protein complexes (∼115 kDa) that consist of a membrane-embedded, substrate-binding protein (S component) and a tripartite ATP-hydrolyzing module (ECF module). They import micronutrients into bacterial cells and have been proposed to use a highly unusual transport mechanism, in which the substrate is dragged across the membrane by a toppling motion of the S component. However, it remains unclear how the lipid bilayer could accommodate such a movement. Here, we used cryogenic electron microscopy at 200 kV to determine structures of a folate-specific ECF transporter in lipid nanodiscs and detergent micelles at 2.7- and 3.4-Šresolution, respectively. The structures reveal an irregularly shaped bilayer environment around the membrane-embedded complex and suggest that toppling of the S component is facilitated by protein-induced membrane deformations. In this way, structural remodeling of the lipid bilayer environment is exploited to guide the transport process.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Microscopía por Crioelectrón/métodos , Ácido Fólico/metabolismo , Membrana Dobles de Lípidos/metabolismo , Microdominios de Membrana/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Transporte Biológico , Cristalografía por Rayos X , Lactobacillus delbrueckii/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica
10.
J Dairy Sci ; 107(7): 4248-4258, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38246550

RESUMEN

The health benefits conferred by probiotics is specific to individual probiotic strains, highlighting the importance of identifying specific strains for research and production purposes. Streptococcus thermophilus CICC 6038 and Lactobacillus delbrueckii ssp. bulgaricus CICC 6047 are exceedingly valuable for commercial use with an excellent mixed-culture fermentation. To differentiate these 2 strains from other S. thermophilus and L. delbrueckii ssp. bulgaricus, a specific, sensitive, accurate, rapid, convenient, and cost-effective method is required. In this study, we conducted a pan-genome analysis of S. thermophilus and L. delbrueckii ssp. bulgaricus to identify species-specific core genes, along with strain-specific SNPs. These genes were used to develop suitable PCR primers, and the conformity of sequence length and unique SNPs was confirmed by sequencing for qualitative identification at the strain level. The results demonstrated that SNPs analysis of PCR products derived from these primers could distinguish CICC 6038 and CICC 6047 accurately and reproducibly from the other strains of S. thermophilus and L. delbrueckii ssp. bulgaricus, respectively. The strain-specific PCR method based on SNPs herein is universally applicable for probiotics identification. It offers valuable insights into identifying probiotics at the strain level that is fit-for-purpose in quality control and compliance assessment of commercial dairy products.


Asunto(s)
Lactobacillus delbrueckii , Polimorfismo de Nucleótido Simple , Streptococcus thermophilus , Streptococcus thermophilus/genética , Lactobacillus delbrueckii/genética , Probióticos , Genómica , Reacción en Cadena de la Polimerasa
11.
J Dairy Sci ; 107(1): 123-140, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37641256

RESUMEN

This study aimed to investigate the symbiosis between Streptococcus thermophilus CICC 6038 and Lactobacillus delbrueckii ssp. bulgaricus CICC 6047. In addition, the effect of their different inoculum ratios was determined, and comparison experiments of fermentation characteristics and storage stability of milk fermented by their monocultures and cocultures at optimal inoculum ratio were performed. We found the time to obtain pH 4.6 and ΔpH during storage varied among 6 inoculum ratios (1:1, 2:1, 10:1, 19:1, 50:1, 100:1). By the statistical model to evaluate the optimal ratio, the ratio of 19:1 was selected, which exhibited high acidification rate and low postacidification with pH values remaining between 4.2 and 4.4 after a 50-d storage. Among the 3 groups included in our analyses (i.e., the monocultures of S. thermophilus CICC 6038 [St] and Lb. bulgaricus CICC 6047 [Lb] and their cocultures [St+Lb] at 19:1), the coculture group showed higher acidification activity, improved rheological properties, richer typical volatile compounds, more desirable sensor quality after the fermentation process than the other 2 groups. However, the continuous accumulation of acetic acid during storage showed that acetic acid was more highly correlated with postacidification than d-lactic acid for the Lb group and St+Lb group. Our study emphasized the importance of selecting an appropriate bacterial consortium at the optimal inoculum ratio to achieve favorable fermentation performance and enhanced postacidification stability during storage.


Asunto(s)
Lactobacillus delbrueckii , Yogur , Animales , Yogur/microbiología , Streptococcus thermophilus , Fermentación , Acetatos
12.
J Dairy Sci ; 107(6): 3443-3450, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38216036

RESUMEN

Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus are symbiotic starters widely used in yogurt fermentation. They exchange metabolites to meet their nutritional demands during fermentation, promoting mutual growth. Although S. thermophilus produces fumaric acid, and the addition of fumaric acid has been shown to promote the growth of L. bulgaricus monoculture, whether fumaric acid produced by S. thermophilus is used by L. bulgaricus during coculture remains unclear. Furthermore, the importance of fumaric acid metabolism in the growth of L. bulgaricus is yet to be elucidated. Therefore, in this study, we investigated the importance of fumaric acid metabolism in L. bulgaricus monocultures and coculture with S. thermophilus. We deleted the fumarate reductase gene (frd), which is responsible for the metabolism of fumaric acid to succinic acid, in L. bulgaricus strains 2038 and NCIMB 701373. Both Δfrd strains exhibited longer fermentation times than their parent strains, and fumaric acid was metabolized to malic acid rather than succinic acid. Coculture of Δfrd strains with S. thermophilus 1131 also resulted in a longer fermentation time, and the accumulation of malic acid was observed. These results indicated that fumaric acid produced by S. thermophilus is used by L. bulgaricus as a symbiotic substance during yogurt fermentation and that the metabolism of fumaric acid to succinic acid by fumarate reductase is a key factor determining the fermentation ability of L. bulgaricus.


Asunto(s)
Fermentación , Fumaratos , Lactobacillus delbrueckii , Yogur , Lactobacillus delbrueckii/metabolismo , Fumaratos/metabolismo , Yogur/microbiología , Succinato Deshidrogenasa/metabolismo , Streptococcus thermophilus/metabolismo
13.
J Dairy Sci ; 107(4): 1928-1949, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37939838

RESUMEN

This study evaluated 75 strains of lactic acid bacteria (LAB) isolated from traditional dairy products in western China for their probiotic properties. Among them, Limosilactobacillus fermentum WXZ 2-1, Lactiplantibacillus plantarum TXZ 2-35, Companilactobacillus crustorum QHS 9, and Companilactobacillus crustorum QHS 10 demonstrated potential probiotic characteristics. The antioxidant capacity of these 4 strains was assessed, revealing that L. fermentum WXZ 2-1 exhibited the highest antioxidant capacity. Furthermore, when cocultured with Streptococcus salivarius ssp. thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, L. fermentum WXZ 2-1 demonstrated a synergistic effect in growth medium and goat milk. To explore its effect on goat milk fermentation, different amounts of L. fermentum WXZ 2-1 were added to goat milk, and its physicochemical properties, antioxidant activity, flavor substances, and metabolomics were analyzed. The study found that the incorporation of L. fermentum WXZ 2-1 in goat milk fermentation significantly improved the texture characteristics, antioxidant capacity, and flavor of fermented goat milk. These findings highlight the potential of L. fermentum WXZ 2-1 as a valuable probiotic strain for enhancing the functionality and desirability of fermented goat milk, contributing to the development of novel functional foods with improved health benefits and enhanced quality attributes.


Asunto(s)
Lactobacillus delbrueckii , Lactobacillus plantarum , Limosilactobacillus fermentum , Probióticos , Animales , Leche/química , Antioxidantes/metabolismo , Lactobacillus plantarum/metabolismo , Lactobacillus delbrueckii/metabolismo , Cabras/metabolismo , Fermentación , Probióticos/metabolismo
14.
Prep Biochem Biotechnol ; 54(5): 668-679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38190739

RESUMEN

For complete utilization of high glucose at ∼100 g/L, a high cell density (HCD) continuous fermentation system was established using Lb. delbrueckii NCIM 2025 for the bioproduction of lactic acid (LA). An integrated membrane cell recycling system coupled with the continuous bioreactor, aided to achieve the highest 34.77 g/L h LA productivity and 0.94-0.98 g/g yield. ∼34 times higher productivity was observed (in comparison to batch fermentation conducted in this study), when the continuous operations were carried out at the maximum dilution rate and wet cell weight i.e. 0.36 h-1 and 230 g/L, respectively. These results show the potential of this method for large-scale lactic acid production because it not only produces high titers but also ensures that glucose is used effectively. The method's superior performance in comparison to earlier studies suggests it as an affordable and sustainable alternative for the production of LA.


Asunto(s)
Reactores Biológicos , Fermentación , Glucosa , Ácido Láctico , Lactobacillus delbrueckii , Ácido Láctico/metabolismo , Ácido Láctico/biosíntesis , Glucosa/metabolismo , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/crecimiento & desarrollo
15.
Molecules ; 29(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542894

RESUMEN

The lactic acid bacteria Streptococcus thermophilus and Lactobacillus helveticus are commonly used as starter cultures in dairy product production. This study aimed to investigate the characteristics of fermented milk using different ratios of these strains and analyze the changes in volatile compounds during fermentation and storage. A 10:1 ratio of Streptococcus thermophilus CICC 6063 to Lactobacillus helveticus CICC 6064 showed optimal fermentation time (4.2 h), viable cell count (9.64 log10 colony-forming units/mL), and sensory evaluation score (79.1 points). In total, 56 volatile compounds were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS), including aldehydes, ketones, acids, alcohols, esters, and others. Among these, according to VIP analysis, 2,3-butanedione, acetoin, 2,3-pentanedione, hexanoic acid, acetic acid, acetaldehyde, and butanoic acid were identified as discriminatory volatile metabolites for distinguishing between different time points. Throughout the fermentation and storage process, the levels of 2,3-pentanedione and acetoin exhibited synergistic dynamics. These findings enhance our understanding of the chemical and molecular characteristics of milk fermented with Streptococcus thermophilus and Lactobacillus helveticus, providing a basis for improving the flavor and odor of dairy products during fermentation and storage.


Asunto(s)
Lactobacillus delbrueckii , Lactobacillus helveticus , Pentanonas , Animales , Leche/química , Streptococcus thermophilus/metabolismo , Fermentación , Acetoína/análisis , Lactobacillus delbrueckii/metabolismo , Cetonas/análisis
16.
Molecules ; 29(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611811

RESUMEN

Lactic acid bacteria (LAB) play an important role in the ripening of cheeses and contribute to the development of the desired profile of aroma and flavor compounds. Therefore, it is very important to monitor the dynamics of bacterial proliferation in order to obtain an accurate and reliable number of their cells at each stage of cheese ripening. This work aimed to identify and conduct a quantitative assessment of the selected species of autochthonous lactic acid bacteria from raw cow's milk cheese by the development of primers and probe pairs based on the uniqueness of the genetic determinants with which the target microorganisms can be identified. For that purpose, we applied real-time quantitative PCR (qPCR) protocols to quantify Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactococcus lactis subsp. cremoris cells in cheese directly after production and over three-month and six-month ripening periods. While L. lactis subsp. cremoris shows good acidification ability and the ability to produce antimicrobial compounds, L. delbrueckii subsp. bulgaricus has good proteolytic ability and produces exo-polysaccharides, and S. thermophilus takes part in the formation of the diacetyl flavor compound by metabolizing citrate to develop aroma, they all play an important role in the cheese ripening. The proposed qPCR protocols are very sensitive and reliable methods for a precise enumeration of L. delbrueckii subsp. bulgaricus, S. thermophilus, and L. lactis subsp. cremoris in cheese samples.


Asunto(s)
Queso , Lactobacillales , Lactobacillus delbrueckii , Lactococcus lactis , Lactococcus , Animales , Bovinos , Femenino , Lactobacillales/genética , Leche , Reacción en Cadena en Tiempo Real de la Polimerasa , Lactobacillus delbrueckii/genética , Lactococcus lactis/genética
17.
World J Microbiol Biotechnol ; 40(8): 235, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850338

RESUMEN

Lactobacillus delbrueckii, a widely used lactic acid bacterium in the food industry, has been studied for its probiotic properties and reservoir of antibiotic-resistant genes, raising safety concerns for probiotic formulations and fermented products. This review consolidates findings from 60 articles published between 2012 and 2023, focusing on the global antibiotic resistance profile and associated genetic factors in L. delbrueckii strains. Resistance to aminoglycosides, particularly streptomycin, kanamycin, and gentamicin, as well as resistance to glycopeptides (vancomycin), fluoroquinolones (ciprofloxacin), and tetracyclines was predominant. Notably, although resistance genes have been identified, they have not been linked to mobile genetic elements, reducing the risk of dissemination. However, a significant limitation is the insufficient exploration of responsible genes or mobile elements in 80% of studies, hindering safety assessments. Additionally, most articles originated from Asian and Middle Eastern countries, with strains often isolated from fermented dairy foods. Therefore, these findings underscore the necessity for comprehensive analyses of new strains of L. delbrueckii for potential industrial and biotherapeutic applications and in combating the rise of antibiotic-resistant pathogens.


Asunto(s)
Antibacterianos , Lactobacillus delbrueckii , Probióticos , Probióticos/farmacología , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/efectos de los fármacos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Industria de Alimentos , Microbiología de Alimentos , Alimentos Fermentados/microbiología
18.
Bull Exp Biol Med ; 176(5): 543-547, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38717566

RESUMEN

We studied the dynamics of the main hemodynamic parameters in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats with visceral obesity and chemically induced colitis (CIC) against the background of probiotic therapy. Systolic BP, HR, and body temperature were recorded over 36 days using a wireless telemetry system. During 8 days (3 days before CIC induction and until the end of the experiment) the animals were intragastrically administered a probiotic based on Lactobacillus delbrueckii D5 strain. At baseline, systolic BP was significantly higher in the SHR group, while HR and body temperature did not differ in SHR and WKY rats. On day 8 after CIC induction, systolic BP, HR, and body temperature in SHR were significantly increased in comparison with the initial values. In the group of WKY rats, all indices at the end of the experiment remained at the initial levels. Probiotic therapy in SHR, in contrast to WKY rats, did not lead to normalization of body temperature and hemodynamic disorders resulting from CIC.


Asunto(s)
Temperatura Corporal , Colitis , Hemodinámica , Probióticos , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Animales , Probióticos/farmacología , Probióticos/administración & dosificación , Ratas , Masculino , Colitis/inducido químicamente , Colitis/fisiopatología , Colitis/microbiología , Hemodinámica/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Lactobacillus delbrueckii , Obesidad/fisiopatología , Obesidad Abdominal/fisiopatología , Obesidad Abdominal/inducido químicamente
19.
J Biomed Sci ; 30(1): 19, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959635

RESUMEN

BACKGROUND: Lactobacilli are essential microbiota that maintain a healthy, balanced vaginal environment. Vaginitis is a common infection in women during their reproductive years. Many factors are associated with vaginitis; one of them is the imbalance of microbiota in the vaginal environment. This study aimed to evaluate the antimicrobial properties of Lactobacillus delbrueckii 45E (Ld45E) against several species of bacteria, namely, Group B Streptococcus (GBS), Escherichia coli, Klebsiella spp., and Candida parapsilosis, as well as to determine the concentration of interleukin-17 (IL-17) in the presence of Ld45E. METHODS: The probiotic characteristics of Ld45E were evaluated by examining its morphology, pH tolerance, adhesive ability onto HeLa cells, hemolytic activity, antibiotic susceptibility, and autoaggregation ability. Then, the antimicrobial activity of Ld45E was determined using Ld45E culture, cell-free supernatant, and crude bacteriocin solution. Co-aggregation and competition ability assays against various pathogens were conducted. The immunoregulatory effects of Ld45E were analyzed by measuring the proinflammatory cytokine IL-17. A p-value less than 0.05 was considered statistical significance. RESULTS: Ld45E is 3-5 mm in diameter and round with a flat-shaped colony. pH 4 and 4.5 were the most favorable range for Ld45E growth within 12 h of incubation. Ld45E showed a strong adhesion ability onto HeLa cells (86%) and negative hemolytic activities. Ld45E was also sensitive to ceftriaxone, cefuroxime, ciprofloxacin, and doxycycline. We found that it had a good autoaggregation ability of 80%. Regarding antagonistic properties, Ld45E culture showed strong antimicrobial activity against GBS, E. coli, and Klebsiella spp. but only a moderate effect on C. parapsilosis. Cell-free supernatant of Ld45E exerted the most potent inhibitory effects at 40 °C against all genital pathogens, whereas bacteriocin showed a robust inhibition at 37 °C and 40 °C. The highest co-aggregation affinity was observed with GBS (81%) and E. coli (40%). Competition ability against the adhesion of GBS (80%), E. coli (76%), Klebsiella (72%), and C. parapsilosis (58%) was found. Ld45E was able to reduce the induction of the proinflammatory protein IL-17. CONCLUSIONS: Ld45E possessed antimicrobial and immunoregulatory properties, with better cell-on-cell activity than supernatant activity. Thus, Ld45E is a potential probiotic candidate for adjunct therapy to address vaginal infections.


Asunto(s)
Antiinfecciosos , Bacteriocinas , Lactobacillus delbrueckii , Probióticos , Femenino , Humanos , Interleucina-17 , Escherichia coli , Células HeLa , Bacteriocinas/farmacología
20.
Biotechnol Bioeng ; 120(8): 2186-2198, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37428554

RESUMEN

Genome-scale metabolic models and flux balance analysis (FBA) have been extensively used for modeling and designing bacterial fermentation. However, FBA-based metabolic models that accurately simulate the dynamics of coculture are still rare, especially for lactic acid bacteria used in yogurt fermentation. To investigate metabolic interactions in yogurt starter culture of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, this study built a dynamic metagenome-scale metabolic model which integrated constrained proteome allocation. The accuracy of the model was evaluated by comparing predicted bacterial growth, consumption of lactose and production of lactic acid with reference experimental data. The model was then used to predict the impact of different initial bacterial inoculation ratios on acidification. The dynamic simulation demonstrated the mutual dependence of S. thermophilus and L. d. bulgaricus during the yogurt fermentation process. As the first dynamic metabolic model of the yogurt bacterial community, it provided a foundation for the computer-aided process design and control of the production of fermented dairy products.


Asunto(s)
Lactobacillales , Lactobacillus delbrueckii , Yogur/microbiología , Metagenoma , Lactobacillus delbrueckii/genética , Fermentación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda