Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
BMC Plant Biol ; 24(1): 794, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39169281

RESUMEN

BACKGROUND: The theory of Condition Dependent Sex predicts that - everything else being equal - less fit individuals would outcross at higher rates compared with fitter ones. Here we used the mixed mating plant Lamium amplexicaule, capable of producing both self-pollinating closed flowers (CL), alongside open flowers (CH) that allow cross pollination to test it. We investigated the effects of abiotic stress - salt solution irrigation - on the flowering patterns of plants and their offspring. We monitored several flowering and vegetative parameters, including the number and distribution of flowers, CH fraction, and plant size. RESULTS: We found that stressed plants show an increased tendency for self-pollination and a deficit in floral and vegetative development. However, when parentally primed, stressed plants show a milder response. Un-stressed offspring of stressed parents show reversed responses and exhibit an increased tendency to outcross, and improve floral and vegetative development. CONCLUSIONS: In summary, we found that stress affects the reproduction strategy in the plants that experienced the stress and in subsequent offspring through F2 generation. Our results provide experimental evidence supporting a transgenerational extension to the theories of fitness associate sex and dispersal, where an individual's tendency for sex and dispersal may depend on the stress experienced by its parents.


Asunto(s)
Flores , Polinización , Reproducción , Flores/fisiología , Flores/crecimiento & desarrollo , Lamiales/fisiología , Lamiales/crecimiento & desarrollo , Estrés Fisiológico
2.
Proc Natl Acad Sci U S A ; 114(22): E4435-E4441, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28507139

RESUMEN

Utricularia gibba, the humped bladderwort, is a carnivorous plant that retains a tiny nuclear genome despite at least two rounds of whole genome duplication (WGD) since common ancestry with grapevine and other species. We used a third-generation genome assembly with several complete chromosomes to reconstruct the two most recent lineage-specific ancestral genomes that led to the modern U. gibba genome structure. Patterns of subgenome dominance in the most recent WGD, both architectural and transcriptional, are suggestive of allopolyploidization, which may have generated genomic novelty and led to instantaneous speciation. Syntenic duplicates retained in polyploid blocks are enriched for transcription factor functions, whereas gene copies derived from ongoing tandem duplication events are enriched in metabolic functions potentially important for a carnivorous plant. Among these are tandem arrays of cysteine protease genes with trap-specific expression that evolved within a protein family known to be useful in the digestion of animal prey. Further enriched functions among tandem duplicates (also with trap-enhanced expression) include peptide transport (intercellular movement of broken-down prey proteins), ATPase activities (bladder-trap acidification and transmembrane nutrient transport), hydrolase and chitinase activities (breakdown of prey polysaccharides), and cell-wall dynamic components possibly associated with active bladder movements. Whereas independently polyploid Arabidopsis syntenic gene duplicates are similarly enriched for transcriptional regulatory activities, Arabidopsis tandems are distinct from those of U. gibba, while still metabolic and likely reflecting unique adaptations of that species. Taken together, these findings highlight the special importance of tandem duplications in the adaptive landscapes of a carnivorous plant genome.


Asunto(s)
Carnivoría/fisiología , Genoma de Planta , Lamiales/genética , Lamiales/fisiología , Adaptación Fisiológica/genética , Proteasas de Cisteína/química , Proteasas de Cisteína/genética , Evolución Molecular , Duplicación de Gen , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Poliploidía , Análisis de Secuencia de ADN , Sintenía
3.
BMC Genomics ; 20(1): 234, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30898112

RESUMEN

BACKGROUND: Paulownia withes'-broom (PaWB) disease caused by phytoplasma is a serious infectious disease for Paulownia. However, the underlying molecular pathogenesis is not fully understood. Recent studies have demonstrated that histone modifications could play a role in plant defense responses to pathogens. But there is still no available genome-wide histone modification data in non-model ligneous species infected with phytoplasma. RESULTS: Here, we provided the first genome-wide profiles of three histone marks (H3K4me3, H3K36me3 and H3K9ac) in Paulownia fortunei under phytoplasma stress by using chromatin immunoprecipitation sequencing (ChIP-Seq). We found that H3K4me3, H3K36me3 and H3K9ac were mainly enriched in the genic regions in P. fortunei with (PFI) and without (PF) phytoplasma infection. ChIP-Seq analysis revealed 1738, 986, and 2577 genes were differentially modified by H3K4me3, H3K36me3 and H3K9ac marks in PFI under phytoplasma infection, respectively. The functional analysis of these genes suggested that most of them were mainly involved in metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, plant-pathogen interaction and plant hormone signal transduction. In addition, the combinational analysis of ChIP-Seq and RNA-Seq showed that differential histone methylation and acetylation only affected a small subset of phytoplasma-responsive genes. CONCLUSIONS: Taken together, this is the first report of integrated analysis of histone modifications and gene expression involved in Paulownia-phytoplasma interaction. Our results will provide the valuable resources for the mechanism studies of gene regulation in non-model plants upon pathogens attack.


Asunto(s)
Perfilación de la Expresión Génica , Genómica , Código de Histonas/genética , Lamiales/genética , Lamiales/microbiología , Phytoplasma/fisiología , Genoma de Planta/genética , Lamiales/anatomía & histología , Lamiales/fisiología , Estrés Fisiológico/genética
4.
Am Nat ; 194(4): 541-557, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31490725

RESUMEN

While native populations are often adapted to historical biotic and abiotic conditions at their home site, populations from other locations in the range may be better adapted to current conditions due to changing climates or extreme conditions in a single year. We examine whether local populations of a widespread species maintain a relative advantage over distant populations that have evolved at sites better matching the current climate. Specifically, we grew lines derived from low- and high-elevation annual populations in California and Oregon of the common monkeyflower (Erythranthe guttata) and conducted phenotypic selection analyses in low- and high-elevation common gardens in Oregon to examine relative fitness and the traits mediating relative fitness. Californian low-elevation populations have the highest relative fitness at the low-elevation site, and Californian high-elevation populations have the highest relative fitness at the high-elevation site. Relative fitness differences are mediated by selection for properly timed transitions to flowering, with selection favoring more rapid growth rates at the low-elevation site and greater vegetative biomass prior to flowering at the high-elevation site. Fitness advantages for Californian plants occur despite incurring higher herbivory at both sites than the native Oregonian plants. Our findings suggest that a lag in adaptation causes maladaptation in extreme years that may be more prevalent in future climates, but local populations still have high growth rates and thus are not yet threatened.


Asunto(s)
Adaptación Biológica , Clima , Herbivoria , Lamiales/genética , Lamiales/fisiología , Altitud , California , Flores/crecimiento & desarrollo , Aptitud Genética , Lamiales/crecimiento & desarrollo , Componentes Aéreos de las Plantas/crecimiento & desarrollo
5.
Plant Physiol ; 177(3): 1319-1338, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29789435

RESUMEN

The desiccation-tolerant plant Haberlea rhodopensis can withstand months of darkness without any visible senescence. Here, we investigated the molecular mechanisms of this adaptation to prolonged (30 d) darkness and subsequent return to light. H. rhodopensis plants remained green and viable throughout the dark treatment. Transcriptomic analysis revealed that darkness regulated several transcription factor (TF) genes. Stress- and autophagy-related TFs such as ERF8, HSFA2b, RD26, TGA1, and WRKY33 were up-regulated, while chloroplast- and flowering-related TFs such as ATH1, COL2, COL4, RL1, and PTAC7 were repressed. PHYTOCHROME INTERACTING FACTOR4, a negative regulator of photomorphogenesis and promoter of senescence, also was down-regulated. In response to darkness, most of the photosynthesis- and photorespiratory-related genes were strongly down-regulated, while genes related to autophagy were up-regulated. This occurred concomitant with the induction of SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASES (SnRK1) signaling pathway genes, which regulate responses to stress-induced starvation and autophagy. Most of the genes associated with chlorophyll catabolism, which are induced by darkness in dark-senescing species, were either unregulated (PHEOPHORBIDE A OXYGENASE, PAO; RED CHLOROPHYLL CATABOLITE REDUCTASE, RCCR) or repressed (STAY GREEN-LIKE, PHEOPHYTINASE, and NON-YELLOW COLORING1). Metabolite profiling revealed increases in the levels of many amino acids in darkness, suggesting increased protein degradation. In darkness, levels of the chloroplastic lipids digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylglycerol, and sulfoquinovosyldiacylglycerol decreased, while those of storage triacylglycerols increased, suggesting degradation of chloroplast membrane lipids and their conversion to triacylglycerols for use as energy and carbon sources. Collectively, these data show a coordinated response to darkness, including repression of photosynthetic, photorespiratory, flowering, and chlorophyll catabolic genes, induction of autophagy and SnRK1 pathways, and metabolic reconfigurations that enable survival under prolonged darkness.


Asunto(s)
Lamiales/fisiología , Metabolismo de los Lípidos/fisiología , Metaboloma/fisiología , Proteínas de Plantas/genética , Autofagia , Oscuridad , Deshidratación , Metabolismo Energético , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fotosíntesis/genética , Proteínas de Plantas/metabolismo
6.
Heredity (Edinb) ; 122(6): 864-876, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30518967

RESUMEN

Flowers and leaves each represent suites of functionally interrelated traits that are often involved in species divergence and local adaptation. However, a major unresolved issue is how the individual component traits that make up a complex trait such as a flower evolve in a coordinated fashion to retain a high degree of functionality. We use a quantitative trait loci (QTL) approach to elucidate the genetic architecture of divergence in flower and leaf traits between the sister species Primulina depressa and Primulina danxiaensis, which grow sympatrically but in contrasting microhabitats. We found that flower traits were controlled by multiple QTL of small effect, while leaf physiological and morphological traits tended to be controlled by QTL of larger effect. The observed floral integration, manifested by a high degree overlap in both individual trait QTL and QTL for principal component scores (PCA QTL), may have been critical for evolutionary divergence of floral morphology in relation to their pollinators. This overlap suggests that direct selection on only one or a few of the component traits could have caused substantial divergence in other floral traits due to genetic correlations, while the low QTL overlap between floral and vegetative traits suggests that these trait suites are genetically unlinked and can evolve independently in response to different selective pressures corresponding to their distinct functions.


Asunto(s)
Lamiales/genética , Sitios de Carácter Cuantitativo , Simpatría , Adaptación Fisiológica , Evolución Biológica , Flores/genética , Lamiales/fisiología , Hojas de la Planta/genética
7.
Ann Bot ; 123(1): 213-220, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30169570

RESUMEN

Background and Aims: Bird pollination is rare among species in the genus Utricularia, and has evolved independently in two lineages of this genus. In Western Australia, the Western Spinebill, Acanthorhynchus superciliosus, visits flowers of Utricularia menziesii (section Pleiochasia: subgenus Polypompholyx). This study aimed to examine the micromorphology of U. menziesii flowers to assess traits that might be linked to its pollination strategy. Methods: Light microscopy, histochemistry and scanning electron microscopy were used. Nectar sugar composition was analysed using high-performance liquid chromatography. Key Results: The flowers of U. menziesii fulfil many criteria that characterize bird-pollinated flowers: red colour, a large, tough nectary spur that can withstand contact with a hard beak, lack of visual nectar guides and fragrance. Trichomes at the palate and throat may act as tactile signals. Spur nectary trichomes did not form clearly visible patches, but were more frequently distributed along vascular bundles, and were small and sessile. Each trichome comprised a single basal cell, a unicellular short pedestal cell (barrier cell) and a multicelled head. These trichomes were much smaller than those of the U. vulgaris allies. Hexose-dominated nectar was detected in flower spurs. Fructose and glucose were present in equal quantities (43 ± 3.6 and 42 ± 3.6 g L-1). Sucrose was only detected in one sample, essentially at the limit of detection for the method used. This type of nectar is common in flowers pollinated by passerine perching birds. Conclusions: The architecture of nectary trichomes in U. menziesii was similar to that of capitate trichomes of insect-pollinated species in this genus; thus, the most important specializations to bird pollination were flower colour (red), and both spur shape and size modification. Bird pollination is probably a recent innovation in the genus Utricularia, subgenus Polypompholyx, and is likely to have evolved from bee-pollinated ancestors.


Asunto(s)
Flores/anatomía & histología , Lamiales/anatomía & histología , Polinización , Animales , Flores/fisiología , Flores/ultraestructura , Cadena Alimentaria , Lamiales/fisiología , Lamiales/ultraestructura , Microscopía Electrónica de Rastreo , Néctar de las Plantas/análisis , Pájaros Cantores/fisiología , Australia Occidental
8.
BMC Plant Biol ; 18(1): 351, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30541446

RESUMEN

BACKGROUND: Water shortage is a major factor that harms agriculture and ecosystems worldwide. Plants display various levels of tolerance to water deficit, but only resurrection plants can survive full desiccation of their vegetative tissues. Haberlea rhodopensis, an endemic plant of the Balkans, is one of the few resurrection plants found in Europe. We performed transcriptomic analyses of this species under slight, severe and full dehydration and recovery to investigate the dynamics of gene expression and associate them with existing physiological and metabolomics data. RESULTS: De novo assembly yielded a total of 142,479 unigenes with an average sequence length of 1034 nt. Among them, 18,110 unigenes were differentially expressed. Hierarchical clustering of all differentially expressed genes resulted in seven clusters of dynamic expression patterns. The most significant expression changes, involving more than 15,000 genes, started at severe dehydration (~ 20% relative water content) and were partially maintained at full desiccation (< 10% relative water content). More than a hundred pathways were enriched and functionally organized in a GO/pathway network at the severe dehydration stage. Transcriptomic changes in key pathways were analyzed and discussed in relation to metabolic processes, signal transduction, quality control of protein and DNA repair in this plant during dehydration and rehydration. CONCLUSION: Reprograming of the transcriptome occurs during severe dehydration, resulting in a profound alteration of metabolism toward alternative energy supply, hormone signal transduction, and prevention of DNA/protein damage under very low cellular water content, underlying the observed physiological and metabolic responses and the resurrection behavior of H. rhodopensis.


Asunto(s)
Lamiales/genética , Deshidratación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Lamiales/metabolismo , Lamiales/fisiología , Transcriptoma
9.
BMC Plant Biol ; 18(1): 204, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30236061

RESUMEN

BACKGROUND: ALOG (Arabidopsis LSH1 and Oryza G1) family with a conserved domain widely exists in plants. A handful of ALOG members have been functionally characterized, suggesting their roles as key developmental regulators. However, the evolutionary scenario of this gene family during the diversification of plant species remains largely unclear. METHODS: Here, we isolated seven ALOG genes from Torenia fournieri and phylogenetically analyzed them with different ALOG members from representative plants in major taxonomic clades. We further examined their gene expression patterns by RT-PCR, and regarding the protein subcellular localization, we co-expressed the candidates with a nuclear marker. Finally, we explored the functional diversification of two ALOG members, TfALOG1 in euALOG1 and TfALOG2 in euALOG4 sub-clades by obtaining the transgenic T. fournieri plants. RESULTS: The ALOG gene family can be divided into different lineages, indicating that extensive duplication events occurred within eudicots, grasses and bryophytes, respectively. In T. fournieri, seven TfALOG genes from four sub-clades exhibit distinct expression patterns. TfALOG1-6 YFP-fused proteins were accumulated in the nuclear region, while TfALOG7-YFP was localized both in nuclear and cytoplasm, suggesting potentially functional diversification. In the 35S:TfALOG1 transgenic lines, normal development of petal epidermal cells was disrupted, accompanied with changes in the expression of MIXTA-like genes. In 35S:TfALOG2 transgenic lines, the leaf mesophyll cells development was abnormal, favoring functional differences between the two homologous proteins. Unfortunately, we failed to observe any phenotypical changes in the TfALOG1 knock-out mutants, which might be due to functional redundancy as the case in Arabidopsis. CONCLUSION: Our results unraveled the evolutionary history of ALOG gene family, supporting the idea that changes occurred in the cis regulatory and/or nonconserved coding regions of ALOG genes may result in new functions during the establishment of plant architecture.


Asunto(s)
Evolución Molecular , Lamiales/fisiología , Proteínas de Plantas/genética , Proteínas de Unión al ARN/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Lamiales/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Familia de Multigenes , Fenotipo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
10.
J Plant Res ; 131(4): 599-610, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29460199

RESUMEN

Numerous bladderwort (Utricularia) species are distributed worldwide, but their reproductive biology is rarely investigated. Bladderworts are known to depend on tiny organisms to meet a significant proportion of their energy requirement by trapping them in bladders. However, information on the extent of their reliance on insects for pollination success is limited. We examined the reproductive strategy of two Utricularia species viz. Utricularia praeterita and U. babui, endemic to Western Ghats, India. The main aspects of the investigation involved floral biology, breeding system, pollination mechanism, and reproductive success. Flowers of both the species are structured for outbreeding through entomophilous floral suites, herkogamy, protandrous dichogamy and sensitive lobes of the stigma. With nearly 65% natural fruit-set, both the species appeared to be sufficiently open-pollinated. However, pollinators failed to show in plants of U. praeterita while in U. babui there was an apparent mismatch between the extent of fruit-set and pollinator visits. The study demonstrated that in the absence/insufficient visits of pollinators, the two species resort to autonomous selfing. In U. babui, denser patches of plants appeared to be crucial for attracting the pollinators. Both species are self-compatible, and reproductive success is predominantly achieved by delayed autonomous selfing. The sensitive stigma in the species fails to prevent selfing due to diminished herkogamy during the late anthetic stages. It is inferred that in the pollinator-limited environment, delayed selfing contributes to absolute natural fecundity in U. praeterita, while it produces a mixed progeny in U. babui.


Asunto(s)
Lamiales/fisiología , Ecología , Flores/anatomía & histología , Flores/fisiología , Flores/ultraestructura , Frutas/crecimiento & desarrollo , India , Microscopía Electrónica de Rastreo , Polinización , Reproducción , Autofecundación/fisiología
11.
J Evol Biol ; 30(12): 2189-2203, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28977720

RESUMEN

Local adaptation is commonly observed in nature: organisms perform well in their natal environment, but poorly outside it. Correlations between traits and latitude, or latitudinal clines, are among the most common pieces of evidence for local adaptation, but identifying the traits under selection and the selective agents is challenging. Here, we investigated a latitudinal cline in growth and photosynthesis across 16 populations of the perennial herb Erythranthe cardinalis (Phrymaceae). Using machine learning methods, we identify interannual variation in precipitation as a likely selective agent: southern populations from more variable environments had higher photosynthetic rates and grew faster. We hypothesize that selection may favour a more annualized life history - grow now rather than save for next year - in environments where severe droughts occur more often. Thus, our study provides insight into how species may adapt if Mediterranean climates become more variable due to climate change.


Asunto(s)
Adaptación Fisiológica , Lamiales/fisiología , Lluvia , Clima , Variación Genética , Lamiales/genética , Lamiales/crecimiento & desarrollo , Fotosíntesis , Temperatura
12.
J Anim Ecol ; 86(3): 484-489, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28191630

RESUMEN

Coexistence of organisms in nature is more likely when phenotypic similarities of individuals are reduced. Despite the lack of similarity, distantly related taxa still compete intensely for shared resources. No larger difference between organisms that share a common prey could exist than between carnivorous plants and animals. However, few studies have considered inter-Kingdom competition among carnivorous plants and animals. In order to evaluate interactions between a carnivorous plant (greater bladderwort, Utricularia vulgaris) and a vertebrate (bluegill, Lepomis macrochirus) on a shared prey (zooplankton), we conducted a mesocosm experiment. We deployed two levels of bladderwort presence (functional and crushed) and measured bluegill responses (survival and growth). Zooplankton abundance was reduced the greatest in bluegill and functional bladderwort treatments. Bluegill survival did not differ among treatments, but growth was greatest with crushed bladderwort. Thus, bluegill growth was facilitated by reducing interference competition in the presence of crushed bladderwort. The facilitating effect was dampened, however, when functional bladderwort removed a shared prey. To our knowledge, this is one of the first studies to experimentally demonstrate interactions between a carnivorous plant and a fish. Our data suggest that carnivorous plants may actively promote or reduce animal co-occurrence from some ecosystems via facilitation or competition.


Asunto(s)
Cadena Alimentaria , Lamiales/fisiología , Perciformes/fisiología , Animales , Dinámica Poblacional , Zooplancton
13.
Mol Biol Evol ; 32(5): 1284-95, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25637935

RESUMEN

Utricularia gibba is an aquatic carnivorous plant with highly specialized morphology, featuring fibrous floating networks of branches and leaf-like organs, no recognizable roots, and bladder traps that capture and digest prey. We recently described the compressed genome of U. gibba as sufficient to control the development and reproduction of a complex organism. We hypothesized intense deletion pressure as a mechanism whereby most noncoding DNA was deleted, despite evidence for three independent whole-genome duplications (WGDs). Here, we explore the impact of intense genome fractionation in the evolutionary dynamics of U. gibba's functional gene space. We analyze U. gibba gene family turnover by modeling gene gain/death rates under a maximum-likelihood statistical framework. In accord with our deletion pressure hypothesis, we show that the U. gibba gene death rate is significantly higher than those of four other eudicot species. Interestingly, the gene gain rate is also significantly higher, likely reflecting the occurrence of multiple WGDs and possibly also small-scale genome duplications. Gene ontology enrichment analyses of U. gibba-specific two-gene orthogroups, multigene orthogroups, and singletons highlight functions that may represent adaptations in an aquatic carnivorous plant. We further discuss two homeodomain transcription factor gene families (WOX and HDG/HDZIP-IV) showing conspicuous differential expansions and contractions in U. gibba. Our results 1) reconcile the compactness of the U. gibba genome with its accommodation of a typical number of genes for a plant genome, and 2) highlight the role of high gene family turnover in the evolutionary diversification of U. gibba's functional gene space and adaptations to its unique lifestyle and highly specialized body plan.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Molecular , Lamiales/genética , Carnivoría , Genoma de Planta , Lamiales/fisiología , Familia de Multigenes/genética , Filogenia
14.
J Evol Biol ; 29(3): 528-40, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26663030

RESUMEN

Decoupling between floral and leaf traits is expected in plants with specialized pollination systems to assure a precise flower-pollinator fit, irrespective of leaf variation associated with environmental heterogeneity (functional modularity). Nonetheless, developmental interactions among floral traits also decouple flowers from leaves regardless of selection pressures (developmental modularity). We tested functional modularity in the hummingbird-pollinated flowers of the Ameroglossum pernambucense complex while controlling for developmental modularity. Using two functional traits responsible for flower-pollinator fit [floral tube length (TL) and anther-nectary distance (AN)], one floral trait not linked to pollination [sepal length (SL), control for developmental modularity] and one leaf trait [leaf length (LL)], we found evidence of flower functional modularity. Covariation between TL and AN was ca. two-fold higher than the covariation of either of these traits with sepal and leaf lengths, and variations in TL and AN, important for a precise flower-pollinator fit, were smaller than SL and LL variations. Furthermore, we show that previously reported among-population variation of flowers associated with local pollinator phenotypes was independent from SL and LL variations. These results suggest that TL and AN are functionally linked to fit pollinators and sufficiently decoupled from developmentally related floral traits (SL) and vegetative traits (LL). These results support previous evidences of population differentiation due to local adaptation in the A. pernambucense complex and shed light on the role of flower-leaf decoupling for local adaptation in species distributed across biotic and abiotic heterogeneous landscapes.


Asunto(s)
Adaptación Fisiológica , Flores/fisiología , Lamiales/fisiología , Hojas de la Planta/fisiología , Animales , Aves , Polinización
15.
Ann Bot ; 118(7): 1257-1268, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27582362

RESUMEN

BACKGROUND AND AIMS: Limestone karst areas possess high floral diversity and endemism. The genus Primulina, which contributes to the unique calcicole flora, has high species richness and exhibit specific soil-based habitat associations that are mainly distributed on calcareous karst soils. The adaptive molecular evolutionary mechanism of the genus to karst calcium-rich environments is still not well understood. The Ca2+-permeable channel TPC1 was used in this study to test whether its gene is involved in the local adaptation of Primulina to karst high-calcium soil environments. METHODS: Specific amplification and sequencing primers were designed and used to amplify the full-length coding sequences of TPC1 from cDNA of 76 Primulina species. The sequence alignment without recombination and the corresponding reconstructed phylogeny tree were used in molecular evolutionary analyses at the nucleic acid level and amino acid level, respectively. Finally, the identified sites under positive selection were labelled on the predicted secondary structure of TPC1. KEY RESULTS: Seventy-six full-length coding sequences of Primulina TPC1 were obtained. The length of the sequences varied between 2220 and 2286 bp and the insertion/deletion was located at the 5' end of the sequences. No signal of substitution saturation was detected in the sequences, while significant recombination breakpoints were detected. The molecular evolutionary analyses showed that TPC1 was dominated by purifying selection and the selective pressures were not significantly different among species lineages. However, significant signals of positive selection were detected at both TPC1 codon level and amino acid level, and five sites under positive selective pressure were identified by at least three different methods. CONCLUSIONS: The Ca2+-permeable channel TPC1 may be involved in the local adaptation of Primulina to karst Ca2+-rich environments. Different species lineages suffered similar selective pressure associated with calcium in karst environments, and episodic diversifying selection at a few sites may play a major role in the molecular evolution of Primulina TPC1.


Asunto(s)
Adaptación Biológica/genética , Canales de Calcio/genética , Evolución Molecular , Genes de Plantas/genética , Lamiales/genética , Adaptación Biológica/fisiología , Calcio/metabolismo , Canales de Calcio/fisiología , Ecosistema , Lamiales/fisiología , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Suelo
16.
Rev Biol Trop ; 64(3): 1297-1310, 2016 Sep.
Artículo en Español | MEDLINE | ID: mdl-29462545

RESUMEN

Utricularia is a genus of carnivorous plants that capture a wide range of aquatic organisms. Most of these plants grow in environments with nutrients deficiency and have the ability to change the conditions of their microenvironment. The aim of this research was to study the selectivity in the zooplankton capture by Utricularia foliosa in the Ciénaga de Paredes. Our study was undertaken between February and November, 2014. We tried to determine if there is selection in the plant's food resources by the Czekanowski's index, and the selection degree by the Savage and Ivlev's indexes. Additionally, we studied the possible relationship between the patterns of zooplankton capture and selection, with physicochemical variables in the swamp. The Czekanowski's index showed a food selection in plant resources throughout the flood pulse, with values between 0.28 and 0.41. We also found a significant positive selection with Savage's index for Lecane sp., Alona sp., Ceriodaphnia sp., and Bosmina sp. (p < 0.05); similar results were obtained with Ivlev's index. The intensity in the selection of each captured genus varied significantly between hydrological periods and between high and low water levels in the swamp. It was possible to identify some changes in the ammonia and nitrate concentration and some variability in the electric conductivity of the swamp, which influenced the captures made by U. foliosa. This is the first paper that allows an approach to understand the selection of food resources for the species, using a selectivity index, and one of the few for the genus.


Asunto(s)
Lamiales/fisiología , Zooplancton/clasificación , Animales , Análisis por Conglomerados , Colombia , Preferencias Alimentarias , Ríos/química , Estaciones del Año , Estadísticas no Paramétricas , Temperatura , Zooplancton/fisiología
17.
Sci Rep ; 11(1): 15725, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344949

RESUMEN

The most studied DNA methylation pathway in plants is the RNA Directed DNA Methylation (RdDM), a conserved mechanism that involves the role of noncoding RNAs to control the expansion of the noncoding genome. Genome-wide DNA methylation levels have been reported to correlate with genome size. However, little is known about the catalog of noncoding RNAs and the impact on DNA methylation in small plant genomes with reduced noncoding regions. Because of the small length of intergenic regions in the compact genome of the carnivorous plant Utricularia gibba, we investigated its repertoire of noncoding RNA and DNA methylation landscape. Here, we report that, compared to other angiosperms, U. gibba has an unusual distribution of small RNAs and reduced global DNA methylation levels. DNA methylation was determined using a novel strategy based on long-read DNA sequencing with the Pacific Bioscience platform and confirmed by whole-genome bisulfite sequencing. Moreover, some key genes involved in the RdDM pathway may not represented by compensatory paralogs or comprise truncated proteins, for example, U. gibba DICER-LIKE 3 (DCL3), encoding a DICER endonuclease that produces 24-nt small-interfering RNAs, has lost key domains required for complete function. Our results unveil that a truncated DCL3 correlates with a decreased proportion of 24-nt small-interfering RNAs, low DNA methylation levels, and developmental abnormalities during female gametogenesis in U. gibba. Alterations in female gametogenesis are reminiscent of RdDM mutant phenotypes in Arabidopsis thaliana. It would be interesting to further study the biological implications of the DCL3 truncation in U. gibba, as it could represent an initial step in the evolution of RdDM pathway in compact genomes.


Asunto(s)
Metilación de ADN , Endonucleasas/genética , Endonucleasas/metabolismo , Gametogénesis , Lamiales/fisiología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN de Planta , ARN no Traducido/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
18.
Curr Biol ; 30(4): R143-R144, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32097633
19.
Science ; 367(6473): 91-96, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31753850

RESUMEN

Leaves vary from planar sheets and needle-like structures to elaborate cup-shaped traps. Here, we show that in the carnivorous plant Utricularia gibba, the upper leaf (adaxial) domain is restricted to a small region of the primordium that gives rise to the trap's inner layer. This restriction is necessary for trap formation, because ectopic adaxial activity at early stages gives radialized leaves and no traps. We present a model that accounts for the formation of both planar and nonplanar leaves through adaxial-abaxial domains of gene activity establishing a polarity field that orients growth. In combination with an orthogonal proximodistal polarity field, this system can generate diverse leaf forms and account for the multiple evolutionary origins of cup-shaped leaves through simple shifts in gene expression.


Asunto(s)
Evolución Biológica , Lamiales/anatomía & histología , Lamiales/fisiología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Expresión Génica , Lamiales/genética , Hojas de la Planta/genética
20.
Sci Total Environ ; 704: 135307, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31812382

RESUMEN

Heavy metal contamination and tropospheric ozone (O3) pollution often co-occur in heavy industrial urban areas, adversely affecting urban plant health. Little is known about the characteristics of growth, physiological metabolism, bioaccumulation of cadmium (Cd) and mineral nutrients in urban trees under the combination of soil Cd contamination and elevated O3 exposure. In this study, one-year-old street tree Catalpa ovata G. Don seedlings were exposed to Cd contaminated soil (0, 100, 500 mg/kg soil) with 40 µg/m3 O3 (ambient air) and 120 µg/m3 O3 (elevated O3 exposure) for 4 weeks. The results revealed that 500 mg/kg soil Cd addition alone decreased net photosynthetic rate, stomatal conductance, peroxidase activity and increased abscisic acid content and oxidative injury in the leaves of C. ovata. Furthermore, Cd soil contamination decreased leaf, stem, root and total biomass and affected Cd, Mg, Fe, and Zn contents in leaves (P < 0.01), but it did not affect Mg, Fe and Zn contents in roots. O3 exposure did not affect growth, net photosynthetic rate, Cd accumulation and mineral nutrient contents of C. ovata. No interactive effect between Cd and O3 was found on growth, oxidative injury, photosynthetic rate, and the contents of Cd, Mg, Fe and Zn in plant tissues (P > 0.05). Our findings suggest that C. ovata is an appropriate tree species for urban greening and afforestation in heavy industrial urban areas with high O3 pollution in Northeast China. To ensure successful afforestation in heavy industrial areas, the long-term and large scale studies are needed to advance our understanding of the combined effects from extreme climate conditions and multi-pollutant exposure on the metabolism of mature urban trees.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Cadmio/toxicidad , Lamiales/fisiología , Ozono/toxicidad , China , Lamiales/efectos de los fármacos , Fotosíntesis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda