Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Regul Toxicol Pharmacol ; 151: 105670, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936798

RESUMEN

Given the widespread applications in industrial and agricultural production, the health effects of rare earth elements (REEs) have garnered public attention, and the genotoxicity of REEs remains unclear. In this study, we evaluated the genetic effects of lanthanum nitrate, a typical representative of REEs, with guideline-compliant in vivo and in vitro methods. Genotoxicity assays, including the Ames test, comet assay, mice bone marrow erythrocyte micronucleus test, spermatogonial chromosomal aberration test, and sperm malformation assay were conducted to assess mutagenicity, chromosomal damage, DNA damage, and sperm malformation. In the Ames test, no statistically significant increase in bacterial reverse mutation frequencies was found as compared with the negative control. Mice exposed to lanthanum nitrate did not exhibit a statistically significant increase in bone marrow erythrocyte micronucleus frequencies, spermatogonial chromosomal aberration frequencies, or sperm malformation frequencies compared to the negative control (P > 0.05). Additionally, after a 24-h treatment with lanthanum nitrate at concentrations of 1.25, 5, and 20 µg/ml, no cytotoxicity was observed in CHL cells. Furthermore, the comet assay results indicate no significant DNA damage was observed even after exposure to high doses of lanthanum nitrate (20 µg/ml). In conclusion, our findings suggest that lanthanum nitrate does not exhibit genotoxicity.


Asunto(s)
Aberraciones Cromosómicas , Ensayo Cometa , Daño del ADN , Lantano , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Espermatozoides , Lantano/toxicidad , Animales , Masculino , Ratones , Daño del ADN/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Aberraciones Cromosómicas/inducido químicamente , Aberraciones Cromosómicas/efectos de los fármacos , Ensayo Cometa/métodos , Pruebas de Micronúcleos/métodos , Espermatozoides/efectos de los fármacos , Mutágenos/toxicidad , Relación Dosis-Respuesta a Droga , Ratones Endogámicos ICR , Línea Celular
2.
J Appl Toxicol ; 44(4): 542-552, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37908164

RESUMEN

Lanthanum (La) is widely used in modern industry and agriculture because of its unique physicochemical properties and is broadly exposed in the population. Some studies have shown that La may have some effects on adipogenesis, but there is a lack of related in vivo evidence. In this study, the effects of La(NO3 )3 on adipogenesis and its associated mechanism were studied using C57BL/6J mouse model. The results showed that La(NO3 )3 exposure caused a decrease in body weight and the percentage of fat content in mice. In addition, the adipose marker molecules and specific adipogenic transcription factors decreased in both white adipose tissue (WAT) and brown adipose tissue (BAT). Detection of signaling pathway-related molecules revealed that canonical wnt/ß-catenin pathway-related molecules were upregulated in both adipose tissues. In summary, in vivo exposure to La(NO3 )3 might inhibited adipogenesis in mice, possibly through upregulation of the canonical Wnt/ß-catenin signaling pathway.


Asunto(s)
Adipogénesis , Lantano , Ratones , Animales , Lantano/toxicidad , Ratones Endogámicos C57BL , Vía de Señalización Wnt , beta Catenina/metabolismo , Diferenciación Celular
3.
Ecotoxicol Environ Saf ; 271: 115928, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215666

RESUMEN

Nephrotoxicity is a common adverse effect induced by various chemicals, necessitating the development of reliable toxicity screening models for nephrotoxicity assessment. In this study, we assessed a group of nephrotoxicity indicators derived from different toxicity pathways, including conventional endpoints and kidney tubular injury biomarkers such as clusterin (CLU), kidney injury molecule-I (KIM-1), osteopontin (OPN), and neutrophil gelatinase-associated lipocalin (NGAL), using HK-2 and induced pluripotent stem cells (iPSCs)-derived renal proximal tubular epithelial-like cells (PTLs). Among the biomarkers tested, OPN emerged as the most discerning and precise marker. The predictive potential of OPN was tested using a panel of 10 nephrotoxic and 5 non-nephrotoxic compounds. The results demonstrated that combining OPN with the half-maximal inhibitory concentration (IC50) enhanced the diagnostic accuracy in both cellular models. Additionally, PTLs cells showed superior predictive efficacy for nephrotoxicity compared to HK-2 cells in this investigation. The two cellular models were utilized to evaluate the nephrotoxicity of lanthanum. The findings indicated that lanthanum possesses nephrotoxic properties; however, the degree of nephrotoxicity was relatively low, consistent with the outcomes of in vivo experiments.


Asunto(s)
Lantano , Osteopontina , Humanos , Osteopontina/metabolismo , Lantano/toxicidad , Lantano/metabolismo , Riñón , Túbulos Renales/metabolismo , Biomarcadores/metabolismo
4.
Ecotoxicol Environ Saf ; 281: 116576, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878562

RESUMEN

The accumulation of rare earth elements (REEs) in the global environment poses a threat to plant health and ecosystem stability. Stomata located on leaves serve as the primary site for plant responses to REE-related threats. This study focused on lanthanum [La(III)], a prevalent REE in the atmospheric environment. Using interdisciplinary techniques, it was found that La(III) (≤80 µM) interfered with the fundamental rhythms of stomatal opening, related gene expression, and evapotranspiration in plants. Specifically, when exposed to low concentrations of La(III) (15 and 30 µM), the expression levels of six genes were increased, stomatal opening was enhanced, and the evapotranspiration rate was accelerated. The interference on stomatal rhythms was enhanced with higher concentrations of La(III) (60 and 80 µM), increasing the expression levels of six genes, stomatal opening, and evapotranspiration rate. To counter the interference of low concentrations of La(III) (15 and 30 µM), plants accelerated nutrient replenishment through La(III)-induced endocytosis, which the redundant nutrients enhanced photosynthesis. However, replenished nutrients failed to counter the disruption of plant biological rhythms at higher concentrations of La(III) (60 and 80 µM), thus inhibiting photosynthesis due to nutrient deficit. The interference of La(III) on these biological rhythms negatively affected plant health and ecosystem stability.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Lantano , Estomas de Plantas , Transpiración de Plantas , Lantano/toxicidad , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transpiración de Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos
5.
Cell Mol Neurobiol ; 43(3): 1181-1196, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35661286

RESUMEN

Lanthanum (La) is a natural rare-earth element that can damage the central nervous system and impair learning and memory. However, its neurotoxic mechanism remains unclear. In this study, adult female rats were divided into 4 groups and given distilled water solution containing 0%, 0.125%, 0.25%, and 0.5% LaCl3, respectively, and this was done from conception to the end of the location. Their offspring rats were used to establish animal models to investigate LaCl3 neurotoxicity. Primary neurons cultured in vitro were treated with LaCl3 and infected with LKB1 overexpression lentivirus. The results showed that LaCl3 exposure resulted in abnormal axons in the hippocampus and primary cultured neurons. LaCl3 reduced the expression of LKB1, p-LKB1, STRAD and MO25 proteins, and directly or indirectly affected the expression of LKB1, leading to decreased activity of LKB1-MARK2 and LKB1-STK25-GM130 pathways. This study indicated that LaCl3 exposure could interfere with the normal effects of LKB1 in the brain and downregulate LKB1-MARK2 and LKB1-STK25-GM130 signaling pathways, resulting in abnormal axon in offspring rats.


Asunto(s)
Axones , Lantano , Ratas , Femenino , Animales , Lantano/toxicidad , Ratas Wistar , Transducción de Señal , Proteínas Serina-Treonina Quinasas
6.
J Appl Toxicol ; 43(3): 402-415, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36065135

RESUMEN

Lanthanum (La) as a rare earth element is widely used in agriculture, industry, and medicine. It has been suggested in several studies that La might influence glycolipid metabolism in vivo. In this study, we used 3T3-L1 preadipocytes as in vitro cell model to elucidate the effects of La(NO3 )3 on adipogenesis and the underlying mechanisms. The results showed that La(NO3 )3 could inhibit the adipogenic differentiation of 3T3-L1 preadipocytes, which showed a decrease in lipid accumulation and the downregulation of specific adipogenic transcription factors. La(NO3 )3 exerted its inhibitory effect mainly at the early differentiation stage. Furthermore, La(NO3 )3 influenced the S-phase entry and cell cycle process during the mitotic clonal expansion and regulated the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and expressions of the proteins in phosphatidylinositol 3-kinase (PI3K)/Akt pathway at the early stage of differentiation. Besides, La(NO3 )3 upregulated the expressions of wnt10b mRNA and ß-catenin protein and promoted the nucleus translocation of ß-catenin. Additionally, we found that La(NO3 )3 could promote the growth of 3T3-L1 preadipocytes both with and without MDI (3-isobutyl-1-methylxanthine [IBMX], dexamethasone [Dex], and insulin) stimulation. Collectively, these results indicated that La(NO3 )3 could inhibit adipogenesis in 3T3-L1 preadipocytes and influence cell proliferation.


Asunto(s)
Adipogénesis , Lantano , Animales , Ratones , Lantano/toxicidad , Células 3T3-L1 , Fosfatidilinositol 3-Quinasas , Diferenciación Celular
7.
Ecotoxicol Environ Saf ; 251: 114538, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36652740

RESUMEN

The increasing use of Rare Earth Elements (REE) in emerging technologies, medicine and agriculture has led to chronic aquatic compartment contamination. In this context, this aimed to evaluate the acute toxic effects of lanthanum (La), neodymium (Nd) and samarium (Sm), as both single and binary and ternary mixtures on the survival of the microcrustacean Daphnia similis. A metal solution medium with (MS) and without EDTA and cyanocobalamin (MSq) as chelators was employed as the assay dilution water to assess REE bioavailability effects. In the single exposure experiments, toxicity in the MS medium decreased following the order La > Sm > Nd, while the opposite was noted for the MSq medium, which was also more toxic than the MS medium. The highest MS toxicity was observed for the binary Nd + La (1:1) mixture (EC50 48 h of 11.57 ± 1.22 mg.L-1) and the lowest, in the ternary Sm + La + Nd (2:2:1) mixture (EC50 48 h 41.48 ± 1.40 mg.L-1). The highest toxicity in the MSq medium was observed in the single assays and in the binary Sm + Nd (1:1) mixture (EC50 48 h 10.60 ± 1.57 mg.L-1), and the lowest, in the ternary Sm + La + Nd (1:2:2) mixture (EC50 48 h 36.76 ± 1.54 mg.L-1). Concerning the MS medium, 75 % of interactions were additive, 19 % antagonistic, and 6 % synergistic. In the MSq medium, 56 % of interactions were synergistic and 44 % additive. The higher toxicity observed in the MSq medium indicates that the absence of chelators can increase the concentrations of more toxic free ions, suggesting that the MS medium should be avoided in REE assays. Additive interactions were observed in greater or equivalent amounts in both media and were independent of elemental mixture ratios. These findings improve the understanding of environmental REE effects, contributing to the establishment of future guidelines and ecological risk calculations.


Asunto(s)
Daphnia , Metales de Tierras Raras , Animales , Metales de Tierras Raras/toxicidad , Samario , Lantano/toxicidad , Neodimio/farmacología , Quelantes/farmacología
8.
Ecotoxicol Environ Saf ; 267: 115627, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37890244

RESUMEN

Rare earth elements (REEs) are emerging as an anticipated pollution in the environment due to their active use in many areas. However, the effects of REEs on the photosynthesis of rice have not been thoroughly explored. Therefore, this study emphasizes how high levels of La(III) affect the thylakoid membrane of rice seedlings, thereby inhibiting photosynthesis and growth. Here, we reported that rice plants treated with La(III) exhibited an increase in La accumulation in the leaves, accompanied by a decrease in chlorophyll content and photosynthetic capacity. La(III) exposure decreased Mg content in leaves, but possibly increased other nutrients including Cu, Mn, and Zn through systemic endocytosis. K-band and L-band appeared in the fluorescence OJIP transients, indicating La(III) stress destroyed the donor and receptor sides of photosystem II (PSII). Numerous reaction centers (RC/CSm) were inactivated by La(III) treatment, which resulted in a reduction in electron transport capacity (decreased ETo/RC and ETo/CSm) and an increase in the dissipation of the excess excitation energy by heat (increased DIo/RC and DIo/CSm). The BN-PAGE analysis of thylakoid membrane protein complexes showed that La(III) induced the degradation of supercomplexes, PSII core, LHCII, PSI core, LHCI, and F1-ATPase binding Cyt b6f complex. Collectively, this study revealed that La(III) causes significant degradation of thylakoid membrane proteins, thereby promoting the decomposition of photosynthetic complexes, ultimately destroying the chloroplast structure and reducing the photosynthetic performance of rice seedlings.


Asunto(s)
Oryza , Tilacoides , Proteínas de la Membrana , Lantano/toxicidad , Plantones , Fluorescencia , Cloroplastos , Fotosíntesis , Proteínas de las Membranas de los Tilacoides , Clorofila
9.
Bull Environ Contam Toxicol ; 110(3): 65, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922429

RESUMEN

Rare earth elements (REEs) cerium (Ce) and lanthanum (La) and their combination were tested across a concentration range, from toxic (10-4 to 10-5 M) to lower concentrations (10-6 to 10-8 M) for their effects on sea urchin (Sphaerechinus granularis) sperm. A significantly decreased fertilization rate (FR) was found for sperm exposed to 10-5 M Ce, La and their combination, opposed to a significant increase of FR following 10-7 and 10-8 M REE sperm exposure. The offspring of REE-exposed sperm showed significantly increased developmental defects following sperm exposure to 10-5 M REEs vs. untreated controls, while exposure to 10-7 and 10-8 M REEs resulted in significantly decreased rates of developmental defects. Both of observed effects-on sperm fertilization success and on offspring quality-were closely exerted by Ce or La or their combination.


Asunto(s)
Cerio , Metales de Tierras Raras , Animales , Masculino , Lantano/toxicidad , Cerio/toxicidad , Semen , Erizos de Mar , Metales de Tierras Raras/toxicidad , Espermatozoides
10.
Ecotoxicology ; 31(6): 897-908, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35610399

RESUMEN

The increasing exploitation and application of rare earth elements (REEs) may induce hazardous risks to freshwater aquatic organisms. Due to the lack of water quality criteria (WQC) and sufficient reliable toxicity data, little information is available on the ecological risk of REEs in surface water. In this study, lanthanum (La) toxicity data were collected from published toxicological studies, and the data quality was assessed using a toxicological data reliability assessment tool. To obtain more toxicity data, Daphnia magna, Cyprinus carpio, and Dania rerio embryos were selected as surrogate species, and an interspecies correlation estimation (ICE) model was used to predict the toxicity of La for untested species. The species sensitivity distributions (SSDs) of La toxicity and WQC were investigated. Differences were observed in the hazardous concentrations for 5% of species (HC5), but no statistically significant differences were noted in the SSD curves between the measured acute toxicity data and the predicted data. For the SSDs constructed from the measured toxicity data, the ICE-predicted toxicity data and all acute data supplemented with the ICE-predicted data, the acute WQC values of La were 88, 1022 and 256 µg/L, respectively. According to the SSD and corresponding HC5 of chronic toxicity data, the chronic WQC was 14 µg/L. The results provide a scientific reference for establishing WQC for freshwater aquatic organisms and ecological risk assessments of REEs.


Asunto(s)
Carpas , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Agua Dulce , Lantano/toxicidad , Reproducibilidad de los Resultados , Especificidad de la Especie , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua
11.
Environ Sci Technol ; 55(2): 1155-1166, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33373191

RESUMEN

Increasing rare earth element (REE) mining and refining activities have led to a considerable release of these substances into aquatic environment, yet the knowledge of their impacts on aquatic organisms is still limited. Here, we explored the developmental effects of 16 REEs (concentration ranged from 0.46 to 1000 mg/L) to zebrafish embryos and highlighted the adverse effects of lanthanum (La) and praseodymium (Pr). Among the multiple developmental parameters measured, the significant effects on swimming behavior and cardiac physiology were the most prominent. Transcriptomic analysis of La and Pr at concentrations of 1.1 to 10 mg/L revealed their rather uniform effects at molecular levels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis revealed that among others, notch, glutamate, and serotonin signaling, as well as cardiac hypertrophy and cardiac muscle contraction, were significantly affected. These changes of neural signaling were consistent with behavior effects observed and supported by neurotransmitter changes and thus provide a reasonable molecular mechanistic explanation. Furthermore, increased DNA damage and apoptotic activity at high concentrations were observed, especially in the heart. They may contribute to explain the observed adverse morphological and physiological outcomes, such as pericardial edema. The effect concentrations observed in the present study were comparable to the concentrations of REE residues at highly contaminated sites (several mg/L), indicating ecotoxicological effects at environmentally relevant concentrations. Overall, the present data help to clarify the potential developmental toxicity of REEs that was not yet fully recognized and thus contribute to their environmental risk assessment.


Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , Animales , Lantano/toxicidad , Metales de Tierras Raras/análisis , Metales de Tierras Raras/toxicidad , Minería , Praseodimio , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
12.
Ecotoxicol Environ Saf ; 212: 111996, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33545409

RESUMEN

Rhizosphere microbes are essential partners for plant stress tolerance. Recent studies indicate that arbuscular mycorrhizal fungi (AMF) can facilitate the revegetation of soils contaminated by heavy metals though interacting with rhizosphere microbiome. However, it is unclear how AMF affect rhizosphere microbiome to improve the growth of plant under rare earth elements (REEs) stress. AMF (Claroideoglomus etunicatum) was inoculated to maize grown in soils spiked with Lanthanum (0 mg kg-1, La0; 10 mg kg-1, La10; 100 mg kg-1, La100; 500 mg kg-1, La500). Plant biomass, nutrient uptake, REE uptake and rhizosphere bacterial and fungal community were evaluated. The results indicated that La100 and La500 decreased significantly root colonization rates and nutrition uptake (K, P, Ca and Mg content). La500 decreased significantly α-diversity indexes of bacterial and fungal community. AMF enhanced significantly the shoot and root fresh and dry weight of maize in all La treatments (except for the root fresh and dry weight of La0 and La10 treatment). For La100 and La500 treatments, AMF increased significantly nutrition uptake (K, P, Ca and Mg content) in shoot of maize by 27.40-441.77%. For La500 treatment, AMF decreased significantly shoot La concentration by 51.53% in maize, but increased significantly root La concentration by 30.45%. In addition, AMF decreased bacterial and fungal Shannon index in La0 treatment, but increased bacterial Shannon index in La500 treatment. Both AMF and La500 affected significantly the bacterial and fungal community composition, and AMF led to more influence than La. AMF promoted the enrichment of bacteria, including Planomicrobium, Lysobacter, Saccharothrix, Agrococcus, Microbacterium, Streptomyces, Penicillium and other unclassified genus, and fungi (Penicillium) in La500, which showed the function for promoting plant growth and tolerance of heavy metal. The study revealed that AMF can regulate the rhizosphere bacterial and fungal composition and foster certain beneficial microbes to enhance the tolerance of maize under La stress. Phytoremediation assisted by AMF is an attractive approach to ameliorate REEs-contaminated soils.


Asunto(s)
Hongos/crecimiento & desarrollo , Lantano/toxicidad , Micorrizas/fisiología , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Zea mays/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Biodegradación Ambiental , Biomasa , Glomeromycota/crecimiento & desarrollo , Lantano/análisis , Microbiota , Raíces de Plantas/química , Raíces de Plantas/microbiología , Suelo/química , Contaminantes del Suelo/análisis , Zea mays/crecimiento & desarrollo , Zea mays/microbiología
13.
Ecotoxicol Environ Saf ; 221: 112429, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34147864

RESUMEN

Rare earth elements (REEs) are emerging as a serious threat to ecological safety due to their increasing accumulation in environments. The accumulation of REEs in environments has significantly increased its accumulation in the leaves of edible plants. However, the accumulation pathway of REEs in the leaves of edible plants are still unknown. In this study, lanthanum [La(III), a widely used and accumulated REE] and four edible plants (soybean, lettuce, pakchoi, and celery) with short growth cycles were selected as research objects. By using interdisciplinary research techniques, we found that low-dose La(III) activated endocytosis (mainly the clathrin-mediated endocytosis) in the leaf cells of four edible plants, which provided an accumulation pathway for low-dose La in the leaf cells of these edible plants. The accumulation of La in the leaf cells was positively correlated with the intensity of endocytosis, while the intensity of endocytosis was negatively correlated with the density of leaf trichomes. In addition to the accumulation of La, low-dose La(III) also brought other risks. For example, the harmful element (Pb) can also be accumulated in the leaf cells via La(III)-activated endocytosis; the homeostasis of the essential elements (K, Ca, Fe, Mg) was disrupted, although the chlorophyll synthesis and the growth of these leaf cells were accelerated; and the expression of stress response genes (GmNAC20, GmNAC11) in soybean leaves was increased. These results provided an insight to further analyze the toxicity and mechanism of REEs in plants, and sounded the alarm for the application of REEs in agriculture.


Asunto(s)
Endocitosis/efectos de los fármacos , Homeostasis/efectos de los fármacos , Lantano/metabolismo , Lantano/toxicidad , Plomo/metabolismo , Hojas de la Planta/efectos de los fármacos , Plantas Comestibles/efectos de los fármacos , Agricultura , Metales de Tierras Raras/metabolismo , Metales de Tierras Raras/toxicidad , Hojas de la Planta/metabolismo , Plantas Comestibles/metabolismo , Oligoelementos/metabolismo
14.
Environ Toxicol ; 36(3): 408-416, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33098623

RESUMEN

China is the world's largest rare earth producer and exporter, previous studies have shown that rare earth elements can cause oxidative damage in animal testis. However, the molecular mechanisms underlying these observations have yet to be elucidated. In this paper, male mice were fed with different doses (10, 20, and 40 mg/kg BW) of LaCl3 for 90 consecutive days, regulatory role of nuclear factor erythroid-2 related factor 2 (Nrf-2)/antioxidant response element (ARE) pathway in testicular oxidative stress induced by LaCl3 were investigated. Analysis showed that LaCl3 exposure could lead to severe testicular pathological changes and apoptosis in spermatogenic cells, it up-regulated the peroxidation of lipids, proteins and DNA, and induced the excessive levels of reactive oxygen species (ROS) production in mouse testis, reduced the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione S epoxide transferase (GST) as well as the glutathione (GSH) content. Furthermore, exposure to LaCl3 also downregulated the expression of Nrf2 and its target gene products, including heme oxygenase 1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), NAD(P)H dehydrogenase [quinine] 1(NQO1), protein kinase C (PKC), and phosphatidylinositol 3-kinase (PI3K), but upregulated the expression of Kelch-like ECH-related protein 1 (Keap1) in damaged mouse testes. Collectively, our data imply that the oxidative damage induced by LaCl3 in testis was related to inhibition of the Nrf-2/AREs pathway activation.


Asunto(s)
Lantano/toxicidad , Estrés Oxidativo/fisiología , Animales , Elementos de Respuesta Antioxidante , Apoptosis , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Hemo-Oxigenasa 1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Testículo/metabolismo
15.
Environ Monit Assess ; 194(1): 11, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34877637

RESUMEN

Among the environmental emerging concern rare earth elements, lanthanum (La) is one of the most common and reactive. Lanthanum is widely used in numerous modern technologies and applications, and its intense usage results in increasing discharges into the environment, with potentially deleterious consequences to earthlings. Therefore, we exposed the important food resource and powerful monitoring tool Manila clam to two environmentally relevant concentrations of La (0.3 µg L-1 and 0.9 µg L-1) for 6 days, through water, to assess the bioaccumulation pattern in the gills, digestive gland, and remaining body. The La bioaccumulation was measured after 1 (T1), 2 (T2), and 6 (T6) days of exposure. Lanthanum was bioaccumulated after 2 days, and the levels increased in all tissues in a dose-dependent manner. When exposed to 0.3 µg L-1, the enrichment factor pattern was gills > body > digestive gland. However, when exposed to 0.9 µg L-1, the pattern appears to change to gills > digestive gland > body. Tissue portioning appears to be linked with exposed concentration: In higher exposure levels, digestive gland seems to gain importance, probably associated with detoxification mechanisms. Here, we describe for the first time La bioaccumulation in these different tissues in a bivalve species. Future studies dealing with the bioaccumulation and availability of La should connect them with additional water parameters (such as temperature, pH, and major cations).


Asunto(s)
Bivalvos , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Branquias/química , Lantano/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
16.
Cell Mol Neurobiol ; 40(3): 459-475, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31776842

RESUMEN

Lanthanum (La) is a natural rare earth element. It has neurotoxic effects which can impair learning and memory in humans. However, its mechanism of neurotoxicity is unclear. Learning and memory are coordinated by dendritic spines which form tiny protruding structures on the dendritic branches of neurons. This study investigated the effect of LaCl3 exposure to pregnant and lactating rats on the offspring rats' learning and memory ability. In this study, rats were divided into 4 groups and given distilled water solution containing 0%, 0.125%, 0.25%, 0.5% LaCl3, respectively, and this was done from conception to the end of the location. The effects of LaCl3 on spatial learning and memory ability in offspring rats and in the development of dendritic spines in CA1 pyramidal cells were investigated. The results showed that LaCl3 impaired spatial learning and memory ability in offspring rats, and decreased dendritic spine density during development. In addition, LaCl3 can affect the expression of CaMKII, miRNA132, p250GAP, Tiam1, PARD3, and down-regulated the activation of Rac1 which led to a decrease in the expression of Rac1/PAK signaling pathway and downstream regulatory proteins Cortactin and actin-related protein 2/3 complex (Arp2/3 complex). This study indicated that the learning and memory impairment and the decrease of dendritic spine density in the offspring of LaCl3 exposure may be related to the down-regulation of the Rac1/PAK signaling pathway regulated by Tiam1 and p250GAP.


Asunto(s)
Espinas Dendríticas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Lantano/toxicidad , Discapacidades para el Aprendizaje/inducido químicamente , Exposición Materna/efectos adversos , Trastornos de la Memoria/inducido químicamente , Animales , Animales Recién Nacidos , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Regulación hacia Abajo/efectos de los fármacos , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Lactancia/efectos de los fármacos , Lactancia/fisiología , Discapacidades para el Aprendizaje/fisiopatología , Discapacidades para el Aprendizaje/psicología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/psicología , Síndromes de Neurotoxicidad/fisiopatología , Síndromes de Neurotoxicidad/psicología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Efectos Tardíos de la Exposición Prenatal/psicología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Aprendizaje Espacial/efectos de los fármacos , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/metabolismo
17.
Environ Res ; 191: 110051, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32818498

RESUMEN

Cumulative and continuing human emissions of greenhouse gases to the atmosphere are causing ocean warming. Rising temperature is a major threat to aquatic organisms and may affect physiological responses, such as acid-base balance, often compromising species fitness and survival. It is also expected that warming may influence the availability and toxicological effects of pollutants, including Rare Earth Elements. These are contaminants of environmental emerging concern with great economic interest. This group comprises yttrium, scandium and lanthanides, being Lanthanum (La) one of the most common. The European eel (Anguilla anguilla) is critically endangered and constitutes a delicacy in South East Asia and Europe, being subject to an increasing demand on a global scale. Considering the vulnerability of early life stages to contaminants, we exposed glass eels to 1.5 µg L-1 of La for five days, plus five days of depuration, under a present-day temperature and warming scenarios (△T = +4 °C). The aim of this study was to assess the bioaccumulation, elimination and specific biochemical enzymatic endpoints in glass eels (Anguilla anguilla) tissues, under warming and La. Overall, our results showed that the accumulation and toxicity of La were enhanced with increasing temperature. The accumulation was higher in the viscera, followed by the head, and ultimately the body. Elimination was less effective under warming. Exposure to La did not impact acetylcholinesterase activity. Moreover, lipid peroxidation peaked after five days under the combined exposure of La and warming. The expression of heat shock proteins was majorly suppressed in glass eels exposed to La, at both tested temperatures. This result suggests that, when exposed to La, glass eels were unable to efficiently prevent cellular damage, with a particularly dramatic setup in a near-future scenario. Further studies are needed towards a better understanding of the effects of lanthanum in a changing world.


Asunto(s)
Anguilla , Animales , Anguilas , Europa (Continente) , Humanos , Lantano/toxicidad , Temperatura
18.
Ecotoxicol Environ Saf ; 167: 196-203, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30340084

RESUMEN

The accumulation of rare earth elements (REEs) in the environment has become an environmental safety issue that cannot be ignored. However, previous studies on the environmental risks of REEs have mostly been performed at the individual level. In this work, to explore the effects of REE pollution at the population level, the effects of lanthanum (III) [La(III)] on the aboveground modules of soybean (Glycine max L) populations at different planting densities were investigated by simulating La(III) pollution, and the underlying mechanism was revealed on the physiological and biochemical levels of respiration. The results showed that the addition of 0.4 and 1.2 mM La(III) decreased the aboveground module growth parameters of the soybean populations, and this effect was more evident in the 1.2 mM La(III) treatment. At a certain dose of La(III), the effects of La(III) on the aboveground module growth parameters decreased with increasing plant densities. In addition, the effects of La(III) on the aboveground module growth parameters of soybean plants at different planting densities were related to plant respiration, in particular, to changes in the activities of respiratory key enzymes. The results indicated that the inhibitory effects of La(III) depended on the dose and on the planting density. This finding could provide a novel perspective and a basis for the objective assessment of potential environmental risks of REEs. ONE SENTENCE SUMMARY: La(III) pollution effects on the aboveground modules of soybean populations are related to the changes of the population respiration and the respiratory key enzymes; moreover, these effects are restricted by the population density.


Asunto(s)
Glycine max/efectos de los fármacos , Lantano/toxicidad , Contaminantes del Suelo/toxicidad , Análisis de Varianza , Respiración de la Célula/efectos de los fármacos , Contaminación Ambiental , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Plantones/efectos de los fármacos , Glycine max/metabolismo
19.
Ecotoxicol Environ Saf ; 167: 20-28, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30292972

RESUMEN

Lanthanum (La) and cerium (Ce) are one of the most abundant rare earth elements (REEs). In spite of quite extensive studying of the effects of these lanthanides on biota, some contradictions remain in the results. Also little is known about the effect of lanthanum and cerium on plant cells and their mitotic cycle, especially in soils. In this study, the effects of La and Ce in solutions and soil samples on root growth, mitotic index (MI) and frequency of aberrant cells (FAC) were assayed using one of the most convenient objects for testing of cytotoxicity - onion Allium cepa L. Bulbs were germinated on media containing La and Ce in concentrations 0-200 mg/l and 0-50 mg/l respectively for solutions and 0-200 mg/kg for soil samples. After 5 days of germination in solutions, a significant decrease in root elongation and MI in apical meristem cells are shown. We have also observed an increase in the number of cells with aberrations at 50 mg/l La and Ce concentration. The number of observed stickiness and disturbed metaphase has increased significantly. Soil samples turned out to be less toxic compared to the solutions probably due to the decreased availability of REEs. In spite of this, significant cytotoxicity of soil samples containing the highest concentration of La and Ce (200 mg/kg) is observed. The latter may indicate the importance of considering the cytotoxicity of soils containing high lanthanides concentrations - in extraction and production areas and actively fertilized fields.


Asunto(s)
Cerio/toxicidad , Lantano/toxicidad , Suelo/química , Pruebas de Toxicidad , Meristema/efectos de los fármacos , Meristema/metabolismo , Metales de Tierras Raras/toxicidad , Cebollas , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Contaminantes del Suelo
20.
Ecotoxicol Environ Saf ; 180: 656-667, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31136876

RESUMEN

Owing to the active use of rare-earth elements in many areas, it is necessary to study their behavior in the environment and their biological impact on plants. Despite the role of melatonin and sulfur in plant growth, development and abiotic stress tolerance; it is still not clear how they have a strong regulatory influence and synergistic effect on growth, physiological and biochemical characteristics of plants under different environmental stresses. Therefore, this study highlights how melatonin and sulfur together potentially involved in a reversal of lanthanum-inhibited photosynthetic and growth responses in tomato seedlings. Here, we reported that seedlings grown in a medium containing 150 µM lanthanum exhibited increased overproduction of reactive oxygen species (ROS) and lipid peroxidation together with increased Chlorophyll degradation, and activity of chlorophyllase, proline dehydrogenase and glycolate oxidase (GOx), and decreased photosynthesis and growth. However, the application of melatonin and sulfur showed significant responses on tomato seedlings, although the response of their combined treatment was more effective by further increasing photosynthesis and growth under lanthanum toxicity. Melatonin supplied with sulfur suppressed ROS formation, lipid peroxidation and activity of GOx, and increased photosynthesis by upregulating activities of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase. Also, sulfur supplementation with melatonin to seedlings resulted in an elevation in the accumulation of Chl and proline by increasing δ-aminolevulinic acid and activity of δ-aminolevulinic acid dehydratase and Δ1-pyrroline-5-carboxylate synthetase activity. The administration of melatonin with sulfur substantially induced upregulation of enzymes (superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase) activities involved in the antioxidant system, thereby mitigating ROS-induced oxidative damage. Thus, this study provides strong evidence that melatonin and sulfur have strong regulatory influence and synergistic role in alleviating the adverse effect of lanthanum-toxicity by increasing photosynthesis and growth.


Asunto(s)
Contaminantes Ambientales/toxicidad , Lantano/toxicidad , Melatonina/farmacología , Solanum lycopersicum/efectos de los fármacos , Azufre/farmacología , Antioxidantes/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Fotosíntesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda