Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sci Rep ; 14(1): 11335, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760417

RESUMEN

Crude oil hydrocarbons are considered major environmental pollutants and pose a significant threat to the environment and humans due to having severe carcinogenic and mutagenic effects. Bioremediation is one of the practical and promising technology that can be applied to treat the hydrocarbon-polluted environment. In this present study, rhamnolipid biosurfactant (BS) produced by Pseudomonas aeruginosa PP4 and green synthesized iron nanoparticles (G-FeNPs) from Lawsonia inermis was used to evaluate the biodegradation efficiency (BE) of crude oil. The surface analysis of G-FeNPs was carried out by using FESEM and HRTEM to confirm the size and shape. Further, the average size of the G-FeNPs was observed around 10 nm by HRTEM analysis. The XRD and Raman spectra strongly confirm the presence of iron nanoparticles with their respective peaks. The BE (%) of mixed degradation system-V (PP4+BS+G-FeNPs) was obtained about 82%. FTIR spectrum confirms the presence of major functional constituents (C=O, -CH3, C-O, and OH) in the residual oil content. Overall, this study illustrates that integrated nano-based bioremediation could be an efficient approach for hydrocarbon-polluted environments. This study is the first attempt to evaluate the G-FeNPs with rhamnolipid biosurfactant on the biodegradation of crude oil.


Asunto(s)
Biodegradación Ambiental , Hidrocarburos , Petróleo , Hidrocarburos/metabolismo , Hidrocarburos/química , Petróleo/metabolismo , Lawsonia (Planta)/química , Lawsonia (Planta)/metabolismo , Pseudomonas aeruginosa/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro/química , Tensoactivos/metabolismo , Tensoactivos/química , Glucolípidos/química , Glucolípidos/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Ambientales/metabolismo
2.
J Biomol Struct Dyn ; 41(23): 13752-13765, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36905654

RESUMEN

Lawsonia inermis (henna) has been used in traditional medicine throughout the world and biological property of its flower has been least explored. In the present study, the phytochemical characterization and biological activity (in vitro radical scavenging activity, anti-alpha glucosidase and anti-acetylcholinesterase) of aqueous extract prepared from henna flower (HFAE) was carried out by both Qualitative and quantitative phytochemical analysis and Fourier-transform infrared spectroscopy revealed the functional group of the phytoconstituents such as phenolics, flavonoids, saponin, tannins and glycosides. The phytochemicals present in HFAE was preliminary identified by liquid chromatography/electrospray ionization tandem mass spectrometry. The HFAE showed potent in vitro antioxidant activity and the HFAE inhibited mammalian α-glucosidase (IC50 = 129.1 ± 5.3 µg/ml; Ki = 38.92 µg/ml) and acetylcholinesterase (AChE; IC50 = 137.77 ± 3.5 µg/ml; Ki = 35.71 µg/ml) activity by competitive manner. In silico molecular docking analysis revealed the interaction of active constituents identified in HFAE with human α-glucosidase and AChE. Molecular dynamics simulation for 100 ns showed the stable binding of top two ligand/enzyme complexes with lowest binding energy such as 1,2,3,6-Tetrakis-O-galloyl-beta-D-glucose (TGBG)/human α-glucosidase, Kaempferol 3-glucoside-7-rhamnoside (KGR)/α-glucosidase, agrimonolide 6-O-ß-D-glucopyranoside (AMLG)/human AChE and KGR/AChE. Through MM/GBSA analysis, the binding energy for TGBG/human α-glucosidase, KGR/α-glucosidase, AMLG/human AChE and KGR/AChE was found to be -46.3216, -28.5772, -45.0077 and -47.0956 kcal/mol, respectively. Altogether, HFAE showed an excellent antioxidant, anti-alpha glucosidase and anti-AChE activity under in vitro. This study suggest HFAE with remarkable biological activities could be further explored for therapeutics against type 2 diabetes and diabetes-associated cognitive decline.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Diabetes Mellitus Tipo 2 , Lawsonia (Planta) , Animales , Humanos , alfa-Glucosidasas/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Simulación de Dinámica Molecular , Lawsonia (Planta)/metabolismo , Simulación del Acoplamiento Molecular , Acetilcolinesterasa/metabolismo , Flores/química , Flores/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/química , Antioxidantes/farmacología , Antioxidantes/química , Mamíferos/metabolismo
3.
Parasitol Res ; 111(5): 2023-33, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21993881

RESUMEN

In the present work, we describe inexpensive, nontoxic, unreported and simple procedure for synthesis of silver nanoparticles (Ag NPs) using leaf aqueous extract of Lawsonia inermis as eco-friendly reducing and capping agent. The aim of the present study was to assess the lousicidal activity of synthesized Ag NPs against human head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae), and sheep body louse, Bovicola ovis Schrank (Phthiraptera: Trichodectidae). Direct contact method was conducted to determine the potential of pediculocidal activity and impregnated method was used with slight modifications to improve practicality and efficiency of tested materials of synthesized Ag NPs against B. ovis. The synthesized Ag NPs characterized with the UV showing peak at 426 nm. X-ray diffraction (XRD) spectra clearly shows that the diffraction peaks in the pattern indexed as the silver with lattice constants. XRD analysis showed intense peaks at 2θ values of 38.34°, 44.59°, 65.04°, and 77.77° corresponding to (111), (200), (220), and (311) Bragg's reflection based on the fcc structure of Ag NPs. Fourier transform infrared spectroscopy (FTIR) spectra of Ag NPs exhibited prominent peaks at 3,422.13, 2,924.12, 2,851.76, 1,631.41, 1,381.60, 1,087.11, and 789.55 cm(-1). Scanning electron microscopy (SEM) micrograph showed mean size of 59.52 nm and aggregates of spherical shape Ag NPs. Energy dispersive X-ray spectroscopy (EDX) showed the complete chemical composition of the synthesized Ag NPs. In pediculocidal activity, the results showed that the optimal times for measuring percent mortality effects of synthesized Ag NPs were 26, 61, 84, and 100 at 5, 10, 15, and 20 min, respectively. The average percent mortality for synthesized Ag NPs was 33, 84, 91, and 100 at 10, 15, 20, and 35 min, respectively against B. ovis. The maximum activity was observed in the aqueous leaf extract of L. inermis, 1 mM AgNO(3) solution, and synthesized Ag NPs against P. humanus capitis with LC(50) values of 18.26, 7.77, and 1.33 mg l(-1) and r (2) values of 0.863, 0.900, and 0.803 and against B. ovis showed with LC(50) values of 21.19, 8.49, and 1.41 mg l(-1) and r (2) values of 0.920, 0.938 and 0.870, respectively. The findings revealed that synthesized Ag NPs possess excellent anti-lousicidal activity.


Asunto(s)
Insecticidas/farmacología , Ischnocera/efectos de los fármacos , Lawsonia (Planta)/metabolismo , Nanopartículas , Pediculus/efectos de los fármacos , Plata/farmacología , Animales , Insecticidas/aislamiento & purificación , Microscopía Electrónica de Rastreo , Pruebas de Sensibilidad Parasitaria , Extractos Vegetales/metabolismo , Hojas de la Planta/metabolismo , Plata/química , Plata/metabolismo , Espectrometría por Rayos X , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Análisis de Supervivencia , Difracción de Rayos X
4.
Bioresour Technol ; 211: 80-6, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27003793

RESUMEN

Anaerobic co-fermentation of waste activated sludge (WAS) and henna plant biomass (HPB) for the enhanced production of volatile fatty acids (VFAs) was investigated. The results indicated that VFAs was the main constituents of the released organics; the accumulation of VFAs was much higher than that of soluble carbohydrates and proteins. HPB was an advantageous substrate compared to WAS for VFAs production; and the maximum VFAs concentration in an HPB mono-fermentation system was about 2.6-fold that in a WAS mono-fermentation system. In co-fermentation systems, VFAs accumulation was positively related to the proportion of HPB in the mixed substrate, and the accumulated VFAs concentrations doubled when HPB was increased from 25% to 75%. HPB not only adjust the C/N ratio; the associated and/or released lawsone might also have a positive electron-shuttling effect on VFAs production.


Asunto(s)
Ácidos Grasos Volátiles/metabolismo , Fermentación/fisiología , Lawsonia (Planta)/metabolismo , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Carbohidratos/química , Concentración de Iones de Hidrógeno , Lawsonia (Planta)/química , Proteínas/metabolismo , Aguas del Alcantarillado/química
5.
J Hazard Mater ; 299: 158-64, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26101969

RESUMEN

Effects of henna plant biomass (stem) packed in an up-flow anaerobic bio-filter (UAF) on an azo dye (AO7) removal were investigated. AO7 removal, sulfanilic acid (SA) formation, and pseudo first-order kinetic constants for these reactions (kAO7 and kSA) were higher in the henna-added UAF (R2) than in the control UAF without henna (R1). The maximum kAO7 in R1 and R2 were 0.0345 and 0.2024 cm(-1), respectively, on day 18; the corresponding molar ratios of SA formation to AO7 removal were 0.582 and 0.990. Adsorption and endogenous bio-reduction were the main AO7 removal pathways in R1, while in R2 bio-reduction was the dominant. Organics in henna could be released and fermented to volatile fatty acids, acting as effective electron donors for AO7 reduction, which was accelerated by soluble and/or fixed lawsone. Afterwards, the removal process weakened over time, indicating the demand of electron donation and lawsone-releasing during the long-term operation of UAF.


Asunto(s)
Compuestos Azo/aislamiento & purificación , Biomasa , Colorantes/aislamiento & purificación , Filtración/instrumentación , Lawsonia (Planta)/metabolismo , Anaerobiosis , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda