Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 168(1-2): 121-134.e12, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28086085

RESUMEN

C2c2, the effector of type VI CRISPR-Cas systems, has two RNase activities-one for cutting its RNA target and the other for processing the CRISPR RNA (crRNA). Here, we report the structures of Leptotrichia shahii C2c2 in its crRNA-free and crRNA-bound states. While C2c2 has a bilobed structure reminiscent of all other Class 2 effectors, it also exhibits different structural characteristics. It contains the REC lobe with a Helical-1 domain and the NUC lobe with two HEPN domains. The two RNase catalytic pockets responsible for cleaving pre-crRNA and target RNA are independently located on Helical-1 and HEPN domains, respectively. crRNA binding induces significant conformational changes that are likely to stabilize crRNA binding and facilitate target RNA recognition. These structures provide important insights into the molecular mechanism of dual RNase activities of C2c2 and establish a framework for its future engineering as a RNA editing tool.


Asunto(s)
Sistemas CRISPR-Cas , Leptotrichia/química , Leptotrichia/enzimología , Ribonucleasas/química , Secuencia de Aminoácidos , Dominio Catalítico , Leptotrichia/clasificación , Leptotrichia/metabolismo , Modelos Moleculares , Mutagénesis , Procesamiento Postranscripcional del ARN , ARN Bacteriano/química , ARN no Traducido/química , Alineación de Secuencia
2.
Cell ; 170(4): 714-726.e10, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28757251

RESUMEN

Cas13a, a type VI-A CRISPR-Cas RNA-guided RNA ribonuclease, degrades invasive RNAs targeted by CRISPR RNA (crRNA) and has potential applications in RNA technology. To understand how Cas13a is activated to cleave RNA, we have determined the crystal structure of Leptotrichia buccalis (Lbu) Cas13a bound to crRNA and its target RNA, as well as the cryo-EM structure of the LbuCas13a-crRNA complex. The crRNA-target RNA duplex binds in a positively charged central channel of the nuclease (NUC) lobe, and Cas13a protein and crRNA undergo a significant conformational change upon target RNA binding. The guide-target RNA duplex formation triggers HEPN1 domain to move toward HEPN2 domain, activating the HEPN catalytic site of Cas13a protein, which subsequently cleaves both single-stranded target and collateral RNAs in a non-specific manner. These findings reveal how Cas13a of type VI CRISPR-Cas systems defend against RNA phages and set the stage for its development as a tool for RNA manipulation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Leptotrichia/inmunología , Proteínas Bacterianas/ultraestructura , Secuencia de Bases , Proteínas Asociadas a CRISPR/ultraestructura , Leptotrichia/química , Leptotrichia/metabolismo , Leptotrichia/virología , Modelos Moleculares , Procesamiento Postranscripcional del ARN , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/ultraestructura , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/ultraestructura , ARN Viral/química , Difracción de Rayos X
3.
Mol Cell ; 81(5): 1100-1115.e5, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33472057

RESUMEN

Bacteria and archaea apply CRISPR-Cas surveillance complexes to defend against foreign invaders. These invading genetic elements are captured and integrated into the CRISPR array as spacer elements, guiding sequence-specific DNA/RNA targeting and cleavage. Recently, in vivo studies have shown that target RNAs with extended complementarity with repeat sequences flanking the target element (tag:anti-tag pairing) can dramatically reduce RNA cleavage by the type VI-A Cas13a system. Here, we report the cryo-EM structure of Leptotrichia shahii LshCas13acrRNA in complex with target RNA harboring tag:anti-tag pairing complementarity, with the observed conformational changes providing a molecular explanation for inactivation of the composite HEPN domain cleavage activity. These structural insights, together with in vitro biochemical and in vivo cell-based assays on key mutants, define the molecular principles underlying Cas13a's capacity to target and discriminate between self and non-self RNA targets. Our studies illuminate approaches to regulate Cas13a's cleavage activity, thereby influencing Cas13a-mediated biotechnological applications.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Endodesoxirribonucleasas/química , Leptotrichia/genética , ARN Guía de Kinetoplastida/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Clonación Molecular , Microscopía por Crioelectrón , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Leptotrichia/metabolismo , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , División del ARN , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
4.
Mol Cell ; 78(5): 850-861.e5, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32348779

RESUMEN

Cas13 has demonstrated unique and broad utility in RNA editing, nucleic acid detection, and disease diagnosis; however, a constantly active Cas enzyme may induce unwanted effects. Bacteriophage- or prophage-region-encoded anti-CRISPR (acr) gene molecules provide the potential to control targeting specificity and potency to allow for optimal RNA editing and nucleic acid detection by spatiotemporally modulating endonuclease activities. Using integrated approaches to screen acrVI candidates and evaluate their effects on Cas13 function, we discovered a series of acrVIA1-7 genes that block the activities of Cas13a. These VI-A CRISPR inhibitors substantially attenuate RNA targeting and editing by Cas13a in human cells. Strikingly, type VI-A anti-CRISPRs (AcrVIAs) also significantly muffle the single-nucleic-acid editing ability of the dCas13a RNA-editing system. Mechanistically, AcrVIA1, -4, -5, and -6 bind LwaCas13a, while AcrVIA2 and -3 can only bind the LwaCas13-crRNA (CRISPR RNA) complex. These identified acr molecules may enable precise RNA editing in Cas13-based application and study of phage-bacterium interaction.


Asunto(s)
Proteínas Asociadas a CRISPR/antagonistas & inhibidores , Sistemas CRISPR-Cas/fisiología , Edición de ARN/fisiología , Animales , Bacterias/genética , Bacteriófagos/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edición Génica , Células HEK293 , Humanos , Leptotrichia/genética , Leptotrichia/metabolismo , ARN/genética , Edición de ARN/genética
5.
Sci Adv ; 10(17): eadl0164, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38657076

RESUMEN

Type VI CRISPR-Cas systems are among the few CRISPR varieties that target exclusively RNA. The CRISPR RNA-guided, sequence-specific binding of target RNAs, such as phage transcripts, activates the type VI effector, Cas13. Once activated, Cas13 causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from the phage spread. We show here that the principal form of collateral RNA degradation elicited by Leptotrichia shahii Cas13a expressed in Escherichia coli cells is the cleavage of anticodons in a subset of transfer RNAs (tRNAs) with uridine-rich anticodons. This tRNA cleavage is accompanied by inhibition of protein synthesis, thus providing defense from the phages. In addition, Cas13a-mediated tRNA cleavage indirectly activates the RNases of bacterial toxin-antitoxin modules cleaving messenger RNA, which could provide a backup defense. The mechanism of Cas13a-induced antiphage defense resembles that of bacterial anticodon nucleases, which is compatible with the hypothesis that type VI effectors evolved from an abortive infection module encompassing an anticodon nuclease.


Asunto(s)
Anticodón , Sistemas CRISPR-Cas , Escherichia coli , ARN de Transferencia , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Leptotrichia/genética , Leptotrichia/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Bacteriófagos/genética , División del ARN
6.
Mol Oral Microbiol ; 27(1): 34-44, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22230464

RESUMEN

Leptotrichia buccalis ATCC 14201 is a gram-negative, anaerobic rod-shaped bacterium resident in oral biofilm at the tooth surface. The sequenced genome of this organism reveals three contiguous genes at loci: Lebu_1525, Lebu_1526 and Lebu_1527. The translation products of these genes exhibit significant homology with phospho-α-glucosidase (Pagl), a regulatory protein (GntR) and a phosphoenol pyruvate-dependent sugar transport protein (EIICB), respectively. In non-oral bacterial species, these genes comprise the sim operon that facilitates sucrose isomer metabolism. Growth studies showed that L. buccalis fermented a wide variety of carbohydrates, including four of the five isomers of sucrose. Growth on the isomeric disaccharides elicited expression of a 50-kDa polypeptide comparable in size to that encoded by Lebu_1525. The latter gene was cloned, and the expressed protein was purified to homogeneity from Escherichia coli TOP10 cells. In the presence of two cofactors, NAD(+) and Mn(2+) ions, the enzyme readily hydrolyzed p-nitrophenyl-α-glucopyranoside 6-phosphate (pNPαG6P), a chromogenic analogue of the phosphorylated isomers of sucrose. By comparative sequence alignment, immunoreactivity and signature motifs, the enzyme can be assigned to the phospho-α-glucosidase (Pagl) clade of Family 4 of the glycosyl hydrolase super family. We suggest that the products of Lebu_1527 and Lebu_1525, catalyze the phosphorylative translocation and hydrolysis of sucrose isomers in L. buccalis, respectively. Four genetically diverse, but 16S rDNA-related, species of Leptotrichia have recently been described: L. goodfellowii, L. hofstadii, L. shahii and L. wadei. The phenotypic traits of these new species, with respect to carbohydrate utilization, have also been determined.


Asunto(s)
Proteínas Bacterianas/genética , Disacaridasas/metabolismo , Leptotrichia/genética , Leptotrichia/metabolismo , Sacarosa/metabolismo , Proteínas de Unión al ADN/metabolismo , Placa Dental/microbiología , Genes Bacterianos , Glicósido Hidrolasas/genética , Isoenzimas , Proteínas de Transporte de Monosacáridos/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato , Fosforilación/genética , Especificidad de la Especie , alfa-Glucosidasas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda