Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Microbiology (Reading) ; 166(7): 659-668, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32478657

RESUMEN

Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a second messenger known to control a variety of bacterial processes. The model cyanobacterium, Synechocystis sp. PCC 6803, has a score of genes encoding putative enzymes for c-di-GMP synthesis and degradation. However, most of them have not been functionally characterized. Here, we chose four genes in Synechocystis (dgcA-dgcD), which encode proteins with a GGDEF, diguanylate cyclase (DGC) catalytic domain and multiple Per-ARNT-Sim (PAS) conserved regulatory motifs, for detailed analysis. Purified DgcA, DgcB and DgcC were able to catalyze synthesis of c-di-GMP from two GTPs in vitro. DgcA had the highest activity, compared with DgcB and DgcC. DgcD did not show detectable activity. DgcA activity was specific for GTP and stimulated by the divalent cations, magnesium or manganese. Full activity of DgcA required the presence of the multiple PAS domains, probably because of their role in protein dimerization or stability. Synechocystis mutants carrying single deletions of dgcA-dgcD were not affected in their growth rate or biofilm production during salt stress, suggesting that there was functional redundancy in vivo. In contrast, overexpression of dgcA resulted in increased biofilm formation in the absence of salt stress. In this study, we characterize the enzymatic and physiological function of DgcA-DgcD, and propose that the PAS domains in DgcA function in maintaining the enzyme in its active form.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Escherichia coli/genética , Liasas de Fósforo-Oxígeno/genética , Synechocystis/enzimología , Synechocystis/genética , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Mutación con Pérdida de Función , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Liasas de Fósforo-Oxígeno/metabolismo , Dominios Proteicos/genética , Estrés Salino
2.
Protein Expr Purif ; 163: 105441, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31195084

RESUMEN

Diguanylate cyclases (DGCs) were responsible for the synthesis of second messenger cyclic di-guanosine monophosphate (c-di-GMP), which were involved in various physiological activities of bacterial species. Here, a full-length DGC from Rhodococcus ruber SD3 fused with glutathione-S-transferase (GST) was expressed in E. coli and purified by glutathione agarose resin. The apparent molecular mass of one subunit of the purified diguanylate cyclase with GST tag (GST-DGC) was estimated to be 71.9 kDa by SDS-PAGE, which was approximately in accordance with the theoretical value of 73.0 kDa. The sequence of GST-DGC was confirmed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The blue native PAGE indicated that GST-DGC formed octamer. The optimum pH and temperature for GST-DGC activity were 8.0 and 47 °C, respectively. The fusion protein exhibited high thermostability, and 94% of activity was retained when the protein was incubated at 87 °C for 1 h. Moreover, the fusion protein showed pH stability. The Km, Vmax and Kcat values for GST-DGC enzyme were 9.8 µM, 0.7 µM/min and 1.3 S-1. Some ions such as Zn2+, Mn2+, Fe2+, Ni2+ and Co2+ had inhibitory effects on the activity of the protein, while other ions such as Mg2+, K+ and Na+ slightly activated the protein. The fusion protein also showed rather high stability in the presence of toluene, cyclohexane and n-hexane.


Asunto(s)
Proteínas de Escherichia coli/aislamiento & purificación , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Rhodococcus/enzimología , China , Cromatografía Liquida , Clonación Molecular , ADN Bacteriano , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Rhodococcus/genética , Análisis de Secuencia de ADN , Microbiología del Suelo
3.
PLoS Biol ; 6(3): e67, 2008 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-18366254

RESUMEN

Environmental signals that trigger bacterial pathogenesis and biofilm formation are mediated by changes in the level of cyclic dimeric guanosine monophosphate (c-di-GMP), a unique eubacterial second messenger. Tight regulation of cellular c-di-GMP concentration is governed by diguanylate cyclases and phosphodiesterases, which are responsible for its production and degradation, respectively. Here, we present the crystal structure of the diguanylate cyclase WspR, a conserved GGDEF domain-containing response regulator in Gram-negative bacteria, bound to c-di-GMP at an inhibitory site. Biochemical analyses revealed that feedback regulation involves the formation of at least three distinct oligomeric states. By switching from an active to a product-inhibited dimer via a tetrameric assembly, WspR utilizes a novel mechanism for modulation of its activity through oligomerization. Moreover, our data suggest that these enzymes can be activated by phosphodiesterases. Thus, in addition to the canonical pathways via phosphorylation of the regulatory domains, both product and enzyme concentration contribute to the coordination of c-di-GMP signaling. A structural comparison reveals resemblance of the oligomeric states to assemblies of GAF domains, widely used regulatory domains in signaling molecules conserved from archaea to mammals, suggesting a similar mechanism of regulation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas aeruginosa/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Sitios de Unión , Catálisis , Cromatografía en Gel , Cristalografía por Rayos X , GMP Cíclico/metabolismo , Dimerización , Activación Enzimática , Estabilidad de Enzimas , Proteínas de Escherichia coli , Retroalimentación Fisiológica , Luz , Modelos Biológicos , Peso Molecular , Liasas de Fósforo-Oxígeno/antagonistas & inhibidores , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Fosforilación , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Dispersión de Radiación
4.
Proc Natl Acad Sci U S A ; 105(33): 11709-14, 2008 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-18695225

RESUMEN

Base excision repair (BER) is essential for maintaining genome stability both to counter the accumulation of unusual bases and to protect from base loss in the DNA. Herpes simplex virus 1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery, including enzymes involved in nucleotide metabolism. We report on a replicative family B and a herpesvirus-encoded DNA Pol that possesses DNA lyase activity. We have discovered that the catalytic subunit of the HSV-1 DNA polymerase (Pol) (UL30) exhibits apurinic/apyrimidinic (AP) and 5'-deoxyribose phosphate (dRP) lyase activities. These activities are integral to BER and lead to DNA cleavage on the 3' side of abasic sites and 5'-dRP residues that remain after cleavage by 5'-AP endonuclease. The UL30-catalyzed reaction occurs independently of divalent cation and proceeds via a Schiff base intermediate, indicating that it occurs via a lyase mechanism. Partial proteolysis of the Schiff base shows that the DNA lyase activity resides in the Pol domain of UL30. These observations together with the presence of a virus-encoded uracil DNA glycosylase indicates that HSV-1 has the capacity to perform critical steps in BER. These findings have implications on the role of BER in viral genome maintenance during lytic replication and reactivation from latency.


Asunto(s)
Replicación del ADN/genética , ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Herpesvirus Humano 1/enzimología , Herpesvirus Humano 1/genética , Liasas de Fósforo-Oxígeno/metabolismo , Polinucleótidos/metabolismo , Proteínas Virales/metabolismo , Animales , Línea Celular , ADN Viral/genética , Cinética , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Ribosamonofosfatos/metabolismo , Spodoptera
5.
Biochemistry ; 48(41): 9764-74, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19764732

RESUMEN

A commonly observed coupling of sensory domains to GGDEF-class diguanylate cyclases and EAL-class phosphodiesterases has long suggested that c-di-GMP synthesizing and degrading enzymes sense environmental signals. Nevertheless, relatively few signal ligands have been identified for these sensors, and even fewer instances of in vitro switching by ligand have been demonstrated. Here we describe an Escherichia coli two-gene operon, dosCP, for control of c-di-GMP by oxygen. In this operon, the gene encoding the oxygen-sensing c-di-GMP phosphodiesterase Ec Dos (here renamed Ec DosP) follows and is translationally coupled to a gene encoding a diguanylate cyclase, here designated DosC. We present the first characterizations of DosC and a detailed study of the ligand-dose response of DosP. Our results show that DosC is a globin-coupled sensor with an apolar but accessible heme pocket that binds oxygen with a K(d) of 20 microM. The response of DosP activation to increasing oxygen concentration is a complex function of its ligand saturation such that over 80% of the activation occurs in solutions that exceed 30% of air saturation (oxygen >75 microM). Finally, we find that DosP and DosC associate into a functional complex. We conclude that the dosCP operon encodes two oxygen sensors that cooperate in the controlled production and removal of c-di-GMP.


Asunto(s)
GMP Cíclico/análogos & derivados , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/fisiopatología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bordetella pertussis/enzimología , Bordetella pertussis/metabolismo , GMP Cíclico/química , GMP Cíclico/aislamiento & purificación , GMP Cíclico/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Regulación Enzimológica de la Expresión Génica , Homeostasis , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Operón/genética , Oxígeno/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/aislamiento & purificación , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Unión Proteica
6.
FEBS J ; 275(7): 1464-1473, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18279385

RESUMEN

Chorismate synthase is the last enzyme of the common shikimate pathway, which catalyzes the anti-1,4-elimination of the 3-phosphate group and the C-(6proR) hydrogen from 5-enolpyruvylshikimate 3-phosphate (EPSP) to generate chorismate, a precursor for the biosynthesis of aromatic compounds. Enzyme activity relies on reduced FMN, which is thought to donate an electron transiently to the substrate, facilitating C(3)-O bond breakage. The crystal structure of the enzyme with bound EPSP and the flavin cofactor highlighted two invariant serine residues interacting with a bound water molecule that is close to the C(3)-O of EPSP. In this article we present the results of a mutagenesis study where we replaced the two invariant serine residues at positions 16 and 127 of the Neurospora crassa chorismate synthase with alanine, producing two single-mutant proteins (Ser16Ala and Ser127Ala) and a double-mutant protein (Ser16AlaSer127Ala). The residual activity of the Ser127Ala and Ser16Ala single-mutant proteins was found to be six-fold and 70-fold lower, respectively, than that of the wild-type protein. No residual activity was detected for the Ser16AlaSer127Ala double-mutant protein, and formation of the typical transient intermediate, characteristic for the chorismate synthase-catalysed reaction, was not observed, in contrast to the single-mutant proteins. On the basis of the structure of the enzyme, we propose that Ser16 and Ser127 form part of a proton relay system among the isoalloxazine ring of FMN, histidine 106 and the phosphate group of EPSP that is essential for the formation of the transient intermediate and for substrate turnover.


Asunto(s)
Sustitución de Aminoácidos/genética , Neurospora crassa/enzimología , Liasas de Fósforo-Oxígeno/genética , Protones , Serina/química , Serina/genética , Alanina/genética , Catálisis , Mononucleótido de Flavina/química , Mononucleótido de Flavina/metabolismo , Flavinas/química , Flavinas/genética , Flavinas/metabolismo , Histidina/metabolismo , Enlace de Hidrógeno , Mutagénesis Sitio-Dirigida , Neurospora crassa/genética , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Liasas de Fósforo-Oxígeno/fisiología , Unión Proteica/genética , Serina/metabolismo , Ácido Shikímico/análogos & derivados , Ácido Shikímico/química , Ácido Shikímico/metabolismo , Especificidad por Sustrato/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-17183164

RESUMEN

6-Pyruvoyl tetrahydrobiopterin synthase (PTPS) catalyses the conversion of dihydroneopterin triphosphate to 6-pyruvoyl tetrahydropterin, the second of the three enzymatic steps in the synthesis of tetrahydrobiopterin from GTP. PH0634, a 13.51 kDa archaeal PTPS homologue from Pyrococcus horikoshii OT3, was overexpressed as native and selenomethionine-substituted protein and the purified protein was crystallized by the oil-microbatch method at 295 K. X-ray diffraction data were collected to 2.1 A resolution from the native crystal using synchrotron radiation at 100 K. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 35.83, b = 95.71, c = 105.65 A. Threefold noncrystallographic symmetry was identified from self-rotation calculations. Assuming the presence of a trimer in the asymmetric unit, the solvent content is 45% (V(M) = 2.24 A3 Da(-1)). The selenomethionine-substituted crystal is isomorphous to the native crystal and diffracts X-rays to 2.9 A.


Asunto(s)
Cristalografía por Rayos X/métodos , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Pyrococcus horikoshii/aislamiento & purificación , Homología Estructural de Proteína , Proteínas Arqueales/química , Proteínas Arqueales/aislamiento & purificación , Cristalización , Pyrococcus horikoshii/química
8.
Methods Mol Biol ; 1657: 23-29, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28889283

RESUMEN

Diguanylate cyclases that synthesize and phosphodiesterases that hydrolyze the second messenger cyclic-di-GMP (c-di-GMP) are at the center of bacterial signaling pathways that control behaviors relevant to all aspects of microbial physiology and pathogenesis (Romling et al., Microbiol Mol Biol Rev 77(1):1-52, 2013). Bioinformatics tools can easily predict the presence of the diguanylate cyclase GGDEF domain, or the EAL and HD-GYP domains associated with phosphodiesterase activity. However, experimental confirmation of enzymatic activity is still necessary, as many proteins contain degenerate domains that lack catalytic activity but nonetheless function as c-di-GMP receptors.


Asunto(s)
3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Radioisótopos de Fósforo , Liasas de Fósforo-Oxígeno/metabolismo , 3',5'-GMP Cíclico Fosfodiesterasas/genética , 3',5'-GMP Cíclico Fosfodiesterasas/aislamiento & purificación , Bacterias/genética , Bacterias/metabolismo , GMP Cíclico/síntesis química , Activación Enzimática , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Expresión Génica , Radioisótopos de Fósforo/química , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
9.
Res Microbiol ; 167(3): 190-201, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26708984

RESUMEN

In bacteria, proteins containing GGDEF domains are involved in production of the second messenger c-di-GMP. Here we report that the cdgA gene encoding diguanylate cyclase A (CdgA) is involved in biofilm formation and exopolysaccharide (EPS) production in Azospirillum brasilense Sp7. Biofilm quantification using crystal violet staining revealed that inactivation of cdgA decreased biofilm formation. In addition, confocal laser scanning microscopy analysis of green-fluorescent protein-labeled bacteria showed that, during static growth, the biofilms had differential levels of development: bacteria harboring a cdgA mutation exhibited biofilms with considerably reduced thickness compared with those of the wild-type Sp7 strain. Moreover, DNA-specific staining and treatment with DNase I, and epifluorescence studies demonstrated that extracellular DNA and EPS are components of the biofilm matrix in Azospirillum. After expression and purification of the CdgA protein, diguanylate cyclase activity was detected. The enzymatic activity of CdgA-producing cyclic c-di-GMP was determined using GTP as a substrate and flavin adenine dinucleotide (FAD(+)) and Mg(2)(+) as cofactors. Together, our results revealed that A. brasilense possesses a functional c-di-GMP biosynthesis pathway.


Asunto(s)
Azospirillum brasilense/enzimología , Azospirillum brasilense/fisiología , Biopelículas/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Polisacáridos Bacterianos/biosíntesis , Azospirillum brasilense/genética , Técnicas Bacteriológicas , Coenzimas/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/aislamiento & purificación , Flavina-Adenina Dinucleótido/metabolismo , Guanosina Trifosfato/metabolismo , Magnesio/metabolismo , Microscopía Confocal , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Coloración y Etiquetado
10.
PLoS One ; 7(4): e35206, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22529992

RESUMEN

Cyclic diguanosine monophosphate (c-di-GMP) and cyclic diadenosine monophosphate (c-di-AMP) are recently identified signaling molecules. c-di-GMP has been shown to play important roles in bacterial pathogenesis, whereas information about c-di-AMP remains very limited. Mycobacterium tuberculosis Rv3586 (DacA), which is an ortholog of Bacillus subtilis DisA, is a putative diadenylate cyclase. In this study, we determined the enzymatic activity of DacA in vitro using high-performance liquid chromatography (HPLC), mass spectrometry (MS) and thin layer chromatography (TLC). Our results showed that DacA was mainly a diadenylate cyclase, which resembles DisA. In addition, DacA also exhibited residual ATPase and ADPase in vitro. Among the potential substrates tested, DacA was able to utilize both ATP and ADP, but not AMP, pApA, c-di-AMP or GTP. By using gel filtration and analytical ultracentrifugation, we further demonstrated that DacA existed as an octamer, with the N-terminal domain contributing to tetramerization and the C-terminal domain providing additional dimerization. Both the N-terminal and the C-terminal domains were essential for the DacA's enzymatically active conformation. The diadenylate cyclase activity of DacA was dependent on divalent metal ions such as Mg(2+), Mn(2+) or Co(2+). DacA was more active at a basic pH rather than at an acidic pH. The conserved RHR motif in DacA was essential for interacting with ATP, and mutation of this motif to AAA completely abolished DacA's diadenylate cyclase activity. These results provide the molecular basis for designating DacA as a diadenylate cyclase. Our future studies will explore the biological function of this enzyme in M. tuberculosis.


Asunto(s)
Mycobacterium tuberculosis/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Fosfatos de Dinucleósidos/metabolismo , Activación Enzimática , Concentración de Iones de Hidrógeno , Iones/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
11.
Appl Biochem Biotechnol ; 163(1): 71-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20582742

RESUMEN

Cyclic di-GMP (c-di-GMP) is an almost universal bacterial second messenger involved in the regulation of cell surface-associated traits and the persistence of infections. GGDEF and EAL domain-containing proteins catalyse c-di-GMP synthesis and degradation, respectively. We report the enzymatic large-scale synthesis of c-di-GMP, making use of the GGDEF domain-containing protein YdeH from Escherichia coli. Overexpression and purification of YdeH have been established, and the conditions for c-di-GMP synthesis were optimised. In contrast to the chemical synthesis of c-di-GMP, enzymatic c-di-GMP production is a one-step reaction that can easily be performed with the equipment of a standard biochemical lab. The protocol allows the production of milligram amounts of c-di-GMP within 1 day and paves the way for extensive biochemical and biophysical studies on c-di-GMP-mediated processes.


Asunto(s)
GMP Cíclico/biosíntesis , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Liasas de Fósforo-Oxígeno/metabolismo , Sistemas de Mensajero Secundario , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Regulación Bacteriana de la Expresión Génica , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Estructura Terciaria de Proteína
12.
Phytochemistry ; 71(13): 1466-73, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20594566

RESUMEN

A large number of diterpenes have been isolated from Euphorbiaceae plants, many of which are of interest due to toxicity or potential therapeutic activity. Specific Euphorbiaceae diterpenes of medical interest include the latent HIV-1 activator prostratin (and related 12-deoxyphorbol esters), the analgesic resiniferatoxin, and the anticancer drug candidate ingenol 3-angelate. In spite of the large number of diterpenes isolated from these plants and the similarity of their core structures, there is little known about their biosynthetic pathways. Other than the enzymes involved in gibberellin biosynthesis, the only diterpene synthase isolated to date from the Euphorbiaceae has been casbene synthase, responsible for biosynthesis of a macrocyclic diterpene in the castor bean (Ricinus communis). Here, we have selected five Euphorbiaceae species in which to investigate terpene biosynthesis and report on the distribution of diterpene synthases within this family. We have discovered genes encoding putative casbene synthases in all of our selected Euphorbiaceae species and have demonstrated high-level casbene production through expression of four of these genes in a metabolically engineered strain of Saccharomyces cerevisiae. The only other diterpene synthase found among the five plants was a neocembrene synthase from R. communis (this being the first report of a neocembrene synthase gene). Based on the prevalence of casbene synthases, the lack of other candidates, and the structure of the casbene skeleton, we consider it likely that casbene is the precursor to a large number of Euphorbiaceae diterpenes. Casbene production levels of 31 mg/L were achieved in S. cerevisiae and we discuss strategies to further increase production by maximizing flux through the mevalonate pathway.


Asunto(s)
Euphorbiaceae/enzimología , Euphorbiaceae/genética , Liasas de Fósforo-Oxígeno/genética , Saccharomyces cerevisiae/genética , Clonación Molecular , Diterpenos/metabolismo , Euphorbiaceae/metabolismo , Expresión Génica , Datos de Secuencia Molecular , Liasas de Fósforo-Oxígeno/biosíntesis , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Ingeniería de Proteínas
13.
J Bacteriol ; 189(17): 6246-52, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17586643

RESUMEN

The recent recrudescence of Mycobacterium tuberculosis infection and the emergence of multidrug-resistant strains have created an urgent need for new therapeutics against tuberculosis. The enzymes of the shikimate pathway are attractive drug targets because this route is absent in mammals and, in M. tuberculosis, it is essential for pathogen viability. This pathway leads to the biosynthesis of aromatic compounds, including aromatic amino acids, and it is found in plants, fungi, bacteria, and apicomplexan parasites. The aroB-encoded enzyme dehydroquinate synthase is the second enzyme of this pathway, and it catalyzes the cyclization of 3-deoxy-D-arabino-heptulosonate-7-phosphate in 3-dehydroquinate. Here we describe the PCR amplification and cloning of the aroB gene and the overexpression and purification of its product, dehydroquinate synthase, to homogeneity. In order to probe where the recombinant dehydroquinate synthase was active, genetic complementation studies were performed. The Escherichia coli AB2847 mutant was used to demonstrate that the plasmid construction was able to repair the mutants, allowing them to grow in minimal medium devoid of aromatic compound supplementation. In addition, homogeneous recombinant M. tuberculosis dehydroquinate synthase was active in the absence of other enzymes, showing that it is homomeric. These results will support the structural studies with M. tuberculosis dehydroquinate synthase that are essential for the rational design of antimycobacterial agents.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Liasas de Fósforo-Oxígeno/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Clonación Molecular , ADN Bacteriano/genética , Escherichia coli/genética , Eliminación de Gen , Expresión Génica , Prueba de Complementación Genética , Humanos , Datos de Secuencia Molecular , Mycobacterium tuberculosis/genética , Liasas de Fósforo-Oxígeno/genética , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
14.
Acta Crystallogr D Biol Crystallogr ; 59(Pt 3): 569-71, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12595729

RESUMEN

Chorismate synthase (EC 4.6.1.4) catalyzes the transformation of 5-enolpyruvylshikimate 3-phosphate to chorismate in the last step of the shikimate pathway. Chorismate synthase from Helicobacter pylori fused with an eight-residue C-terminal tag was overexpressed in soluble form in Escherichia coli. It was crystallized at 296 K using polyethylene glycol 400 as a precipitant. A set of X-ray diffraction data was collected to 2.5 A resolution using synchrotron radiation. The crystals belong to the tetragonal space group I4, with unit-cell parameters a = b = 145.79, c = 130.98 A. The asymmetric unit contains a tetramer, giving a crystal Volume per protein mass (V(M)) of 2.13 A(3) Da(-1) and a solvent content of 42.3%.


Asunto(s)
Helicobacter pylori/enzimología , Liasas de Fósforo-Oxígeno/química , Cristalización , Cristalografía por Rayos X , ADN Complementario/biosíntesis , ADN Complementario/genética , Escherichia coli/metabolismo , Luz , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Dispersión de Radiación
15.
J Bacteriol ; 180(22): 5997-6004, 1998 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9811660

RESUMEN

Cyclic 2,3-diphosphoglycerate synthetase (cDPGS) catalyzes the synthesis of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond in 2,3-diphosphoglycerate. cDPG is known to be accumulated to high intracellular concentrations (>300 mM) as a putative thermoadapter in some hyperthermophilic methanogens. For the first time, we have purified active cDPGS from a methanogen, the hyperthermophilic archaeon Methanothermus fervidus, sequenced the coding gene, and expressed it in Escherichia coli. cDPGS purification resulted in enzyme preparations containing two isoforms differing in their electrophoretic mobility under denaturing conditions. Since both polypeptides showed the same N-terminal amino acid sequence and Southern analyses indicate the presence of only one gene coding for cDPGS in M. fervidus, the two polypeptides originate from the same gene but differ by a not yet identified modification. The native cDPGS represents a dimer with an apparent molecular mass of 112 kDa and catalyzes the reversible formation of the intramolecular phosphoanhydride bond at the expense of ATP. The enzyme shows a clear preference for the synthetic reaction: the substrate affinity and the Vmax of the synthetic reaction are a factor of 8 to 10 higher than the corresponding values for the reverse reaction. Comparison with the kinetic properties of the electrophoretically homogeneous, apparently unmodified recombinant enzyme from E. coli revealed a twofold-higher Vmax of the enzyme from M. fervidus in the synthesizing direction.


Asunto(s)
2,3-Difosfoglicerato/metabolismo , Proteínas Arqueales , Genes Arqueales , Methanobacteriales/enzimología , Liasas de Fósforo-Oxígeno/genética , Secuencia de Aminoácidos , Secuencia de Bases , Catálisis , Clonación Molecular , ADN de Archaea , Escherichia coli , Expresión Génica , Methanobacteriales/genética , Datos de Secuencia Molecular , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Conformación Proteica
16.
Acta Crystallogr D Biol Crystallogr ; 57(Pt 2): 306-9, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11173489

RESUMEN

Extensive crystallization trials of Aspergillus nidulans dehydroquinate synthase, a potential novel target for antimicrobial drugs, in complexes with different ligands have resulted in the identification of nine crystal forms. Crystals of unliganded DHQS, binary complexes with either the substrate analogue, carbaphosphonate or the cofactor NADH, as well as the ternary DHQS-carbaphosphonate-cofactor complex, were obtained. The ternary complex crystallizes from ammonium sulfate and CoCl(2) in space group P2(1)2(1)2, with unit-cell parameters a = 133.8, b = 86.6, c = 74.9 A. The binary carbaphosphonate complex crystallizes from PEG 6000 in space group P2(1)2(1)2(1), with a = 70.0, b = 64.0, c = 197.6 A, and the binary cofactor complex crystallizes from PEG 3350 and sodium potassium tartrate in space group P2(1), with a = 83.7, b = 70.4, c = 144.3 A, beta = 89.2 degrees. DHQS in the absence of ligands crystallizes in space group P2(1), with a = 41.0, b = 68.9, c = 137.7 A, beta = 94.8 degrees. Each of these crystal forms are suitable for high-resolution structure determination. Structures of a range of DHQS-ligand complexes will be of value in the structure-based design of novel antimicrobial drugs.


Asunto(s)
Aspergillus nidulans/enzimología , Liasas de Fósforo-Oxígeno/química , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Indicadores y Reactivos , Ligandos , NAD/metabolismo , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Liasas de Fósforo-Oxígeno/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
17.
Arch Biochem Biophys ; 352(1): 144-52, 1998 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-9521827

RESUMEN

Casbene synthase is a diterpene cyclase isolated from castor bean (Ricinus communis L), which catalyzes the cyclization of geranylgeranyl diphosphate to form the phytoalexin casbene. We here report the overexpression of casbene synthase in Escherichia coli in soluble form using a thioredoxin fusion system. The amplified DNA by PCR carried on pCS7 was inserted into the expression vector pET32b(+) to form pCAS.2. The resulting transformants of pCAS. 2/BL21(DE3) produced a thioredoxin casbene synthase fusion protein (20-30% of total soluble protein) when induced with isopropyl beta-d-thiogalactopyranoside at 20 degrees C. Recombinant casbene synthase was purified to homogeneity in a single step with a His-binding metal-affinity column. Casbene synthase has a conserved aspartate-rich region [amino acids 355-359 (DDTID)], one cysteine, and three histidines with several prenyl transferases and terpene cyclases. Seven mutants were constructed by site-directed mutagenesis. The importance of Asp 355 and Asp 356 for catalysis was established by an increase in Km as well as a reduction in kcat in the corresponding glutamate mutants. These results indicate that the first and the second aspartate are involved in catalysis, while the third aspartate and the conserved cysteine and histidine residues selected for mutagenesis appear not to be involved in catalysis.


Asunto(s)
Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Secuencia de Aminoácidos , Secuencia de Bases , Ricinus communis/enzimología , Ricinus communis/genética , Cartilla de ADN/genética , Escherichia coli/genética , Expresión Génica , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Liasas de Fósforo-Oxígeno/metabolismo , Plantas Tóxicas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido
18.
Acta Crystallogr D Biol Crystallogr ; 59(Pt 1): 23-31, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12499535

RESUMEN

Precursors for isoprenoid synthesis are essential in all organisms. These compounds are synthesized by one of two known routes: the well characterized mevalonate pathway or a recently discovered non-mevalonate route which is used in many bacteria and human pathogens. Since the second pathway is both vital and unlike any found in humans, enzymes catalysing reactions along this synthetic route are possible drug targets. The structure of one such enzyme from the thermophilic bacterium Thermus thermophilus has been solved to high resolution in the presence of substrate and with a substrate analogue. Enzyme co-crystallized with substrate shows only one product, cytosine monophosphate (CMP), in the active site. At the high resolution of the refinement (1.6 A) the positions and coordination of the magnesium ions in the active site are clearly seen.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/metabolismo , Fosfatos de Poliisoprenilo/biosíntesis , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Citidina Monofosfato/metabolismo , Lisina/metabolismo , Magnesio/química , Magnesio/metabolismo , Ácido Mevalónico/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Thermus thermophilus/enzimología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda