Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.271
Filtrar
Más filtros

Publication year range
1.
Cell Mol Life Sci ; 81(1): 125, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38467757

RESUMEN

Adipose triglyceride lipase (ATGL) is involved in lipolysis and displays a detrimental pathophysiological role in cardio-metabolic diseases. However, the organo-protective effects of ATGL-induced lipolysis were also suggested. The aim of this work was to characterize the function of lipid droplets (LDs) and ATGL-induced lipolysis in the regulation of endothelial function. ATGL-dependent LDs hydrolysis and cytosolic phospholipase A2 (cPLA2)-derived eicosanoids production were studied in the aorta, endothelial and smooth muscle cells exposed to exogenous oleic acid (OA) or arachidonic acid (AA). Functional effects of ATGL-dependent lipolysis and subsequent activation of cPLA2/PGI2 pathway were also studied in vivo in relation to postprandial endothelial dysfunction.The formation of LDs was invariably associated with elevated production of endogenous AA-derived prostacyclin (PGI2). In the presence of the inhibitor of ATGL or the inhibitor of cytosolic phospholipase A2, the production of eicosanoids was reduced, with a concomitant increase in the number of LDs. OA administration impaired endothelial barrier integrity in vitro that was further impaired if OA was given together with ATGL inhibitor. Importantly, in vivo, olive oil induced postprandial endothelial dysfunction that was significantly deteriorated by ATGL inhibition, cPLA2 inhibition or by prostacyclin (IP) receptor blockade.In summary, vascular LDs formation induced by exogenous AA or OA was associated with ATGL- and cPLA2-dependent PGI2 production from endogenous AA. The inhibition of ATGL resulted in an impairment of endothelial barrier function in vitro. The inhibition of ATGL-cPLA2-PGI2 dependent pathway resulted in the deterioration of endothelial function upon exposure to olive oil in vivo. In conclusion, vascular ATGL-cPLA2-PGI2 dependent pathway activated by lipid overload and linked to LDs formation in endothelium and smooth muscle cells has a vasoprotective role by counterbalancing detrimental effects of lipid overload on endothelial function.


Asunto(s)
Eicosanoides , Lipólisis , Lipólisis/fisiología , Aceite de Oliva , Ácido Araquidónico/metabolismo , Eicosanoides/metabolismo , Prostaglandinas I/metabolismo , Fosfolipasas/metabolismo
2.
J Lipid Res ; 65(2): 100434, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37640283

RESUMEN

Adipose tissue is the site of long-term energy storage. During the fasting state, exercise, and cold exposure, the white adipose tissue mobilizes energy for peripheral tissues through lipolysis. The mobilization of lipids from white adipose tissue to the liver can lead to excess triglyceride accumulation and fatty liver disease. Although the white adipose tissue is known to release free fatty acids, a comprehensive analysis of lipids mobilized from white adipocytes in vivo has not been completed. In these studies, we provide a comprehensive quantitative analysis of the adipocyte-secreted lipidome and show that there is interorgan crosstalk with liver. Our analysis identifies multiple lipid classes released by adipocytes in response to activation of lipolysis. Time-dependent analysis of the serum lipidome showed that free fatty acids increase within 30 min of ß3-adrenergic receptor activation and subsequently decrease, followed by a rise in serum triglycerides, liver triglycerides, and several ceramide species. The triglyceride composition of liver is enriched for linoleic acid despite higher concentrations of palmitate in the blood. To further validate that these findings were a specific consequence of lipolysis, we generated mice with conditional deletion of adipose tissue triglyceride lipase exclusively in adipocytes. This loss of in vivo adipocyte lipolysis prevented the rise in serum free fatty acids and hepatic triglycerides. Furthermore, conditioned media from adipocytes promotes lipid remodeling in hepatocytes with concomitant changes in genes/pathways mediating lipid utilization. Together, these data highlight critical role of adipocyte lipolysis in interorgan crosstalk between adipocytes and liver.


Asunto(s)
Ácidos Grasos no Esterificados , Lipólisis , Ratones , Animales , Lipólisis/fisiología , Ácidos Grasos no Esterificados/metabolismo , Lipidómica , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Hígado/metabolismo , Triglicéridos/metabolismo
3.
J Lipid Res ; 65(1): 100491, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38135254

RESUMEN

Lipolysis is an essential metabolic process that releases unesterified fatty acids from neutral lipid stores to maintain energy homeostasis in living organisms. Adipose triglyceride lipase (ATGL) plays a key role in intracellular lipolysis and can be coactivated upon interaction with the protein comparative gene identification-58 (CGI-58). The underlying molecular mechanism of ATGL stimulation by CGI-58 is incompletely understood. Based on analysis of evolutionary conservation, we used site directed mutagenesis to study a C-terminally truncated variant and full-length mouse ATGL providing insights in the protein coactivation on a per-residue level. We identified the region from residues N209-N215 in ATGL as essential for coactivation by CGI-58. ATGL variants with amino acids exchanges in this region were still able to hydrolyze triacylglycerol at the basal level and to interact with CGI-58, yet could not be activated by CGI-58. Our studies also demonstrate that full-length mouse ATGL showed higher tolerance to specific single amino acid exchanges in the N209-N215 region upon CGI-58 coactivation compared to C-terminally truncated ATGL variants. The region is either directly involved in protein-protein interaction or essential for conformational changes required in the coactivation process. Three-dimensional models of the ATGL/CGI-58 complex with the artificial intelligence software AlphaFold demonstrated that a large surface area is involved in the protein-protein interaction. Mapping important amino acids for coactivation of both proteins, ATGL and CGI-58, onto the 3D model of the complex locates these essential amino acids at the predicted ATGL/CGI-58 interface thus strongly corroborating the significance of these residues in CGI-58-mediated coactivation of ATGL.


Asunto(s)
Inteligencia Artificial , Lipasa , Animales , Ratones , Lipasa/metabolismo , Lipólisis/fisiología , Triglicéridos/metabolismo , Aminoácidos/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo
4.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34042969

RESUMEN

Cellular metabolism has recently emerged as a key regulator of stem cell behavior. Various studies have suggested that metabolic regulatory mechanisms are conserved in different stem cell niches, suggesting a common level of stem cell regulation across tissues. Although the balance between glycolysis and oxidative phosphorylation has been shown to be distinct in stem cells and their differentiated progeny, much less is known about lipid metabolism in stem cell regulation. In this Review, we focus on how stem cells are affected by two major lipid metabolic pathways: the build-up of lipids, called de novo lipogenesis, and the breakdown of lipids, called fatty acid beta-oxidation. We cover the recent literature on hematopoietic stem cells, intestinal stem cells, neural stem/progenitor cells and cancer stem cells, where these two lipid pathways have been studied in more depth.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Metabolismo de los Lípidos/fisiología , Lipogénesis/fisiología , Lipólisis/fisiología , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/metabolismo , Animales , Metabolismo Energético/fisiología , Ácidos Grasos/metabolismo , Glucólisis/fisiología , Hematopoyesis/fisiología , Humanos , Neurogénesis/fisiología , Fosforilación Oxidativa
5.
Int J Obes (Lond) ; 48(7): 934-940, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38491191

RESUMEN

BACKGROUND/OBJECTIVE: Insulin resistance is more prominent in men than women. If this involves adipose tissue is unknown and was presently examined. SUBJECTS/METHODS: AdipoIR (in vivo adipose insulin resistance index) was measured in 2344 women and 787 men. In 259 of the women and 54 of the men, insulin induced inhibition of lipolysis (acylglycerol breakdown) and stimulation of lipogenesis (glucose conversion to acylglycerols) were determined in subcutaneous adipocytes; in addition, basal (spontaneous) lipolysis was also determined in the fat cells. In 234 women and 115 men, RNAseq expression of canonical insulin signal genes were measured in subcutaneous adipose tissue. Messenger RNA transcripts of the most discriminant genes were quantified in 175 women and 109 men. RESULTS: Men had higher AdipoIR values than women but only when obesity (body mass index 30 kg/m2 or more) was present (p < 0.0001). The latter sex dimorphism was found among physically active and sedentary people, in those with and without cardiometabolic disease and in people using nicotine or not (p = 0.0003 or less). In obesity, adipocyte insulin sensitivity (half maximum effective hormone concentration) and maximal antilipolytic effect were tenfold and 10% lower, respectively, in men than women (p = 0.005 or less). Basal rate of lipolysis was two times higher in men than women (p > 0.0001). Sensitivity and maximum effect of insulin on lipogenesis were similar in both sexes (p = 0.26 and p = 0.18, respectively). When corrected for multiple comparison only RNAseq expression of insulin receptor substrate 1 (IRS1) was lower in men than women (p < 0.0001). The mRNA transcript for IRS1 was 60% higher in women than men (p < 0.0001). CONCLUSIONS: In obesity, adipose tissue insulin resistance is more pronounced in men than in women. The mechanism involves less efficient insulin-mediated inhibition of adipocyte lipolysis, increased basal rate of lipolysis and decreased adipose expression of a key element of insulin signaling, IRS1.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina , Lipólisis , Obesidad , Humanos , Femenino , Masculino , Lipólisis/fisiología , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Adulto , Persona de Mediana Edad , Tejido Adiposo/metabolismo , Caracteres Sexuales , Adipocitos/metabolismo , Factores Sexuales
6.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33372146

RESUMEN

Branched esters of palmitic acid and hydroxy stearic acid are antiinflammatory and antidiabetic lipokines that belong to a family of fatty acid (FA) esters of hydroxy fatty acids (HFAs) called FAHFAs. FAHFAs themselves belong to oligomeric FA esters, known as estolides. Glycerol-bound FAHFAs in triacylglycerols (TAGs), named TAG estolides, serve as metabolite reservoir of FAHFAs mobilized by lipases upon demand. Here, we characterized the involvement of two major metabolic lipases, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in TAG estolide and FAHFA degradation. We synthesized a library of 20 TAG estolide isomers with FAHFAs varying in branching position, chain length, saturation grade, and position on the glycerol backbone and developed an in silico mass spectra library of all predicted catabolic intermediates. We found that ATGL alone or coactivated by comparative gene identification-58 efficiently liberated FAHFAs from TAG estolides with a preference for more compact substrates where the estolide branching point is located near the glycerol ester bond. ATGL was further involved in transesterification and remodeling reactions leading to the formation of TAG estolides with alternative acyl compositions. HSL represented a much more potent estolide bond hydrolase for both TAG estolides and free FAHFAs. FAHFA and TAG estolide accumulation in white adipose tissue of mice lacking HSL argued for a functional role of HSL in estolide catabolism in vivo. Our data show that ATGL and HSL participate in the metabolism of estolides and TAG estolides in distinct manners and are likely to affect the lipokine function of FAHFAs.


Asunto(s)
Lipasa/metabolismo , Esterol Esterasa/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Ésteres/química , Ácidos Grasos/metabolismo , Femenino , Células HEK293 , Humanos , Lipólisis/fisiología , Metabolismo/fisiología , Ratones , Ratones Noqueados , Ácido Palmítico/metabolismo , Ácidos Esteáricos/metabolismo , Triglicéridos/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34607947

RESUMEN

Plasticity in multicellular organisms involves signaling pathways converting contexts-either natural environmental challenges or laboratory perturbations-into context-specific changes in gene expression. Congruently, the interactions between the signaling molecules and transcription factors (TF) regulating these responses are also context specific. However, when a target gene responds across contexts, the upstream TF identified in one context is often inferred to regulate it across contexts. Reconciling these stable TF-target gene pair inferences with the context-specific nature of homeostatic responses is therefore needed. The induction of the Caenorhabditis elegans genes lipl-3 and lipl-4 is observed in many genetic contexts and is essential to survival during fasting. We find DAF-16/FOXO mediating lipl-4 induction in all contexts tested; hence, lipl-4 regulation seems context independent and compatible with across-context inferences. In contrast, DAF-16-mediated regulation of lipl-3 is context specific. DAF-16 reduces the induction of lipl-3 during fasting, yet it promotes it during oxidative stress. Through discrete dynamic modeling and genetic epistasis, we define that DAF-16 represses HLH-30/TFEB-the main TF activating lipl-3 during fasting. Contrastingly, DAF-16 activates the stress-responsive TF HSF-1 during oxidative stress, which promotes C. elegans survival through induction of lipl-3 Furthermore, the TF MXL-3 contributes to the dominance of HSF-1 at the expense of HLH-30 during oxidative stress but not during fasting. This study shows how context-specific diverting of functional interactions within a molecular network allows cells to specifically respond to a large number of contexts with a limited number of molecular players, a mode of transcriptional regulation we name "contextualized transcription."


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Ayuno/fisiología , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/genética , Lipasa/metabolismo , Estrés Oxidativo/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Lipasa/genética , Lipólisis/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Activación Transcripcional/fisiología
8.
Int J Sport Nutr Exerc Metab ; 34(3): 145-153, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38330938

RESUMEN

This study sought to investigate the effect of cold ambient temperature on subcutaneous abdominal adipose tissue (SCAAT) lipolysis and blood flow during steady-state endurance exercise in endurance-trained cyclists. Ten males (age: 23 ± 3 years; peak oxygen consumption: 60.60 ± 4.84 ml·kg-1·min-1; body fat: 18.4% ± 3.5%) participated in baseline lactate threshold (LT) and peak oxygen consumption testing, two familiarization trials, and two experimental trials. Experimental trials consisted of cycling in COLD (3 °C; 42% relative humidity) and neutral (NEU; 19 °C; 39% relative humidity) temperatures. Exercise consisted of 25 min cycling at 70% LT and 25 min at 90% LT. In situ SCAAT lipolysis and blood flow were measured via microdialysis. Heart rate, core temperature, carbohydrate and fat oxidation, blood glucose, and blood lactate were also measured. Heart rate, core temperature, oxygen consumption, and blood lactate increased with exercise but were not different between COLD and NEU. SCAAT blood flow did not change from rest to exercise or between COLD and NEU. Interstitial glycerol increased during exercise (p < .001) with no difference between COLD and NEU. Fat oxidation increased (p < .001) at the onset of exercise and remained elevated thereafter with no difference between COLD and NEU. Carbohydrate oxidation increased with increasing exercise intensity and was greater at 70% LT in COLD compared to NEU (p = .030). No differences were observed between conditions for any other variable. Cycling exercise increased SCAAT lipolysis but not blood flow. Ambient temperature did not alter SCAAT metabolism, SCAAT blood flow, or fat oxidation in well-trained cyclists, though cold exposure increased whole-body carbohydrate oxidation at lower exercise intensities.


Asunto(s)
Tejido Adiposo , Lipólisis , Masculino , Humanos , Adulto Joven , Adulto , Lipólisis/fisiología , Temperatura , Tejido Adiposo/metabolismo , Glucemia/metabolismo , Grasa Abdominal/metabolismo , Lactatos/metabolismo , Consumo de Oxígeno/fisiología , Glicerol , Frío
9.
J Lipid Res ; 64(12): 100462, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37871852

RESUMEN

Genetic and biochemical evidence has established DDHD-domain containing 2 (DDHD2) as the principal triacylglycerol (TAG) hydrolase in neuronal lipolysis of cytosolic lipid droplets. In this issue of Journal of Lipid Research, Hofer et al. report that DDHD2 cooperates with adipose triglyceride lipase, the principal TAG hydrolase in adipose lipolysis, contributing to cytosolic hydrolysis of both TAG and diacylglycerols in murine neuroblastoma cells and primary cortical neurons via different configurations of the lipases. This finding highlights the complexity of cytosolic acylglycerol hydrolysis and raises many new questions in the field of lipid metabolism.


Asunto(s)
Glicéridos , Lipólisis , Animales , Ratones , Lipólisis/fisiología , Triglicéridos/metabolismo , Lipasa/metabolismo , Neuronas/metabolismo
10.
J Lipid Res ; 64(6): 100386, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37172691

RESUMEN

Levels of circulating fatty acid binding protein 4 (FABP4) protein are strongly associated with obesity and metabolic disease in both mice and humans, and secretion is stimulated by ß-adrenergic stimulation both in vivo and in vitro. Previously, lipolysis-induced FABP4 secretion was found to be significantly reduced upon pharmacological inhibition of adipose triglyceride lipase (ATGL) and was absent from adipose tissue explants from mice specifically lacking ATGL in their adipocytes (ATGLAdpKO). Here, we find that upon activation of ß-adrenergic receptors in vivo, ATGLAdpKO mice unexpectedly exhibited significantly higher levels of circulating FABP4 as compared with ATGLfl/fl controls, despite no corresponding induction of lipolysis. We generated an additional model with adipocyte-specific deletion of both FABP4 and ATGL (ATGL/FABP4AdpKO) to evaluate the cellular source of this circulating FABP4. In these animals, there was no evidence of lipolysis-induced FABP4 secretion, indicating that the source of elevated FABP4 levels in ATGLAdpKO mice was indeed from the adipocytes. ATGLAdpKO mice exhibited significantly elevated corticosterone levels, which positively correlated with plasma FABP4 levels. Pharmacological inhibition of sympathetic signaling during lipolysis using hexamethonium or housing mice at thermoneutrality to chronically reduce sympathetic tone significantly reduced FABP4 secretion in ATGLAdpKO mice compared with controls. Therefore, activity of a key enzymatic step of lipolysis mediated by ATGL, per se, is not required for in vivo stimulation of FABP4 secretion from adipocytes, which can be induced through sympathetic signaling.


Asunto(s)
Lipasa , Lipólisis , Animales , Ratones , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Lipasa/genética , Lipasa/metabolismo , Lipólisis/fisiología
11.
J Lipid Res ; 64(1): 100305, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273647

RESUMEN

Hormone-sensitive lipase (HSL) plays a crucial role in intracellular lipolysis, and loss of HSL leads to diacylglycerol (DAG) accumulation, reduced FA mobilization, and impaired PPARγ signaling. Hsl knockout mice exhibit adipose tissue inflammation, but the underlying mechanisms are still not clear. Here, we investigated if and to what extent HSL loss contributes to endoplasmic reticulum (ER) stress and adipose tissue inflammation in Hsl knockout mice. Furthermore, we were interested in how impaired PPARγ signaling affects the development of inflammation in epididymal white adipose tissue (eWAT) and inguinal white adipose tissue (iWAT) of Hsl knockout mice and if DAG and ceramide accumulation contribute to adipose tissue inflammation and ER stress. Ultrastructural analysis showed a markedly dilated ER in both eWAT and iWAT upon loss of HSL. In addition, Hsl knockout mice exhibited macrophage infiltration and increased F4/80 mRNA expression, a marker of macrophage activation, in eWAT, but not in iWAT. We show that treatment with rosiglitazone, a PPARγ agonist, attenuated macrophage infiltration and ameliorated inflammation of eWAT, but expression of ER stress markers remained unchanged, as did DAG and ceramide levels in eWAT. Taken together, we show that HSL loss promoted ER stress in both eWAT and iWAT of Hsl knockout mice, but inflammation and macrophage infiltration occurred mainly in eWAT. Also, PPARγ activation reversed inflammation but not ER stress and DAG accumulation. These data indicate that neither reduction of DAG levels nor ER stress contribute to the reversal of eWAT inflammation in Hsl knockout mice.


Asunto(s)
PPAR gamma , Esterol Esterasa , Ratones , Animales , Rosiglitazona/farmacología , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Lipólisis/fisiología , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo
12.
Biochem Biophys Res Commun ; 687: 149161, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37931418

RESUMEN

Evidence from mice with global deletion of fatty-acid transport protein4 (FATP4) indicates its role on ß-oxidation and triglycerides (TG) metabolism. We reported that plasma glycerol and free fatty acids (FA) were increased in liver-specific Fatp4 deficient (L-FATP4-/-) mice under dietary stress. We hypothesized that FATP4 may mediate hepatocellular TG lipolysis. Here, we demonstrated that L-FATP4-/- mice showed an increase in these blood lipids, liver TG, and subcutaneous fat weights. We therefore studied TG metabolism in response to oleate treatment in two experimental models using FATP4-knockout HepG2 (HepKO) cells and L-FATP4-/- hepatocytes. Both FATP4-deificient liver cells showed a significant decrease in ß-oxidation products by ∼30-35% concomitant with marked upregulation of CD36, FATP2, and FATP5 as well as lipoprotein microsomal-triglyceride-transfer protein genes. By using 13C3D5-glycerol, HepKO cells displayed an increase in metabolically labelled TG species which were further increased with oleate treatment. This increase was concomitant with a step-wise elevation of TG in cells and supernatants as well as the secretion of cholesterol very low-density and high-density lipoproteins. Upon analyzing TG lipolytic enzymes, both mutant liver cells showed marked upregulated expression of hepatic lipase, while that of hormone-sensitive lipase and adipose-triglyceride lipase was downregulated. Lipolysis measured by extracellular glycerol and free FA was indeed increased in mutant cells, and this event was exacerbated by oleate treatment. Taken together, FATP4 deficiency in liver cells led to a metabolic shift from ß-oxidation towards lipolysis-directed TG and lipoprotein secretion, which is in line with an association of FATP4 polymorphisms with blood lipids.


Asunto(s)
Lipólisis , Ácido Oléico , Ratones , Animales , Lipólisis/fisiología , Triglicéridos/metabolismo , Ácido Oléico/metabolismo , Glicerol/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Lipoproteínas/metabolismo
13.
Bull Math Biol ; 85(9): 82, 2023 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-37544001

RESUMEN

Fatty acids (FAs) are crucial energy metabolites, signalling molecules, and membrane building blocks for a wide range of organisms. Adipose triglyceride lipase (ATGL) is the first and presumingly most crucial regulator of FA release from triacylglycerols (TGs) stored within cytosolic lipid droplets. However, besides the function of releasing FAs by hydrolysing TGs into diacylglycerols (DGs), ATGL also promotes the transacylation reaction of two DG molecules into one TG and one monoacylglycerol molecule. To date, it is unknown whether DG transacylation is a coincidental byproduct of ATGL-mediated lipolysis or whether it is physiologically relevant. Experimental evidence is scarce since both, hydrolysis and transacylation, rely on the same active site of ATGL and always occur in parallel in an ensemble of molecules. This paper illustrates the potential roles of transacylation. It shows that, depending on the kinetic parameters but also on the state of the hydrolytic machinery, transacylation can increase or decrease downstream products up to 80% respectively 30%. We provide an extensive asymptotic analysis including quasi-steady-state approximations (QSSA) with higher order correction terms and provide numerical simulation. We also argue that when assessing the validity of QSSAs one should include parameter sensitivity derivatives. Our results suggest that the transacylation function of ATGL is of biological relevance by providing feedback options and altogether stability to the lipolytic machinery in adipocytes.


Asunto(s)
Lipasa , Lipólisis , Lipólisis/fisiología , Lipasa/metabolismo , Conceptos Matemáticos , Modelos Biológicos , Adipocitos , Ácidos Grasos/metabolismo , Triglicéridos/metabolismo
14.
Lasers Surg Med ; 55(2): 200-207, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36490319

RESUMEN

OBJECTIVES: There is a considerable demand for noninvasive low-cost fat reduction methods with fewer side effects and shorter recovery times. This study aims to develop a fat-reduction method through electrochemical lipolysis of subcutaneous adipocytes using needle-based electrodes, body tissue fluids, and electrical current application. METHODS: Electrochemical lipolysis was performed by inserting a 4-pin needle electrode connected to a DC power supply into the pig's abdomen. Applied electrical current (0.5 and 1 mA) and treatment time (5 or 10 minutes) were varied systematically. Ultrasound imaging was performed before and after treatment to determine changes in fat thickness. Tissue samples were collected at 0, 2, and 4 weeks posttreatment for histological evaluation to determine the mechanism of action and the procedure's efficacy. RESULTS: Electrochemical subcutaneous adipose tissue lipolysis in a porcine model was achieved through hydrolysis of physiologic fluid within the vicinity of the inserted electrode where an electric current is applied, leading to localized disruption of fat cell membranes and necrosis. Electric current configuration 1.0 mA showed more pronounced lipolysis effects applied for 10 minutes, significantly decreasing adipocyte content per treatment area. The electrochemical treatment method also stimulates collagen synthesis, which helps reduce fat. CONCLUSIONS: Electrochemical lipolysis is a potential new noninvasive localized technique to reduce fat. The treatment method induces fat cell necrosis via in situ reduction-oxidation reaction by the electrochemical activation of physiologic fluid in the surrounding tissue. Electrochemical lipolysis is a simple, low-cost, fat-reducing treatment method without harmful side effects.


Asunto(s)
Lipólisis , Grasa Subcutánea , Porcinos , Animales , Lipólisis/fisiología , Grasa Subcutánea/patología , Adipocitos/metabolismo , Adipocitos/patología , Modelos Animales , Necrosis/metabolismo , Necrosis/patología , Tejido Adiposo
15.
Anim Biotechnol ; 34(7): 3126-3134, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36306180

RESUMEN

Adipose triglyceride lipase (ATGL) is the key enzyme for the degradation of triacylglycerols (TAGs). It functions in concert with other enzymes to mobilize TAG and supply fatty acids (FAs) for energy production. Dysregulated lipolysis leads to excess concentrations of circulating FAs, which may lead to destructive and lipotoxic effects to the organism. To understand the role of ATGL in mammary lipid metabolism, ATGL was overexpressed in goat mammary epithelial cells (GMECs) by using a recombinant adenovirus system. ATGL overexpression decreased lipid droplet (LD) accumulation and cellular TG content (p < 0.05) along with a decrease in the expression of the key enzyme that catalyzes the final step of TG synthesis (DGAT). Significant increases were observed in the expression of genes related to lipolysis (hormone-sensitive lipase [HSL]) and FA desaturation (SCD) by ATGL overexpression. Genes responsible for FA oxidation (PPARα), LD formation and secretion (ADRP and BTN1A1), and long-chain FA uptake (CD36) were all decreased by ATGL overexpression (p < 0.05). The primary products of TAG lipolysis, free FAs (FFAs), were notably increased in the ATGL-overexpressing cells. Taken together, our results demonstrated that ATGL activation impairs lipid formation partially through accelerating lipolysis in GMECs.


Asunto(s)
Lipasa , Lipólisis , Animales , Lipólisis/fisiología , Lipasa/genética , Lipasa/metabolismo , Gotas Lipídicas/metabolismo , Cabras/metabolismo , Ácidos Grasos , Células Epiteliales/metabolismo
16.
J Dairy Sci ; 106(5): 3650-3661, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36907764

RESUMEN

Amplified adipose tissue (AT) lipolysis and suppressed lipogenesis characterize the periparturient period of dairy cows. The intensity of lipolysis recedes with the progression of lactation; however, when lipolysis is excessive and prolonged, disease risk is exacerbated and productivity compromised. Interventions that minimize lipolysis while maintaining adequate supply of energy and enhancing lipogenesis may improve periparturient cows' health and lactation performance. Cannabinoid-1 receptor (CB1R) activation in rodent AT enhances the lipogenic and adipogenic capacity of adipocytes, yet the effects in dairy cow AT remain unknown. Using a synthetic CB1R agonist and an antagonist, we determined the effects of CB1R stimulation on lipolysis, lipogenesis, and adipogenesis in the AT of dairy cows. Adipose tissue explants were collected from healthy, nonlactating and nongestating (NLNG; n = 6) or periparturient (n = 12) cows at 1 wk before parturition and at 2 and 3 wk postpartum (PP1 and PP2, respectively). Explants were treated with the ß-adrenergic agonist isoproterenol (1 µM) in the presence of the CB1R agonist arachidonyl-2'-chloroethylamide (ACEA) ± the CB1R antagonist rimonabant (RIM). Lipolysis was quantified based on glycerol release. We found that ACEA reduced lipolysis in NLNG cows; however, it did not exhibit a direct effect on AT lipolysis in periparturient cows. Inhibition of CB1R with RIM in postpartum cow AT did not alter lipolysis. To evaluate adipogenesis and lipogenesis, preadipocytes isolated from NLNG cows' AT were induced to differentiate in the presence or absence of ACEA ± RIM for 4 and 12 d. Live cell imaging, lipid accumulation, and expressions of key adipogenic and lipogenic markers were assessed. Preadipocytes treated with ACEA had higher adipogenesis, whereas ACEA+RIM reduced it. Adipocytes treated with ACEA and RIM for 12 d exhibited enhanced lipogenesis compared with untreated cells (control). Lipid content was reduced in ACEA+RIM but not with RIM alone. Collectively, our results support that lipolysis may be reduced by CB1R stimulation in NLNG cows but not in periparturient cows. In addition, our findings demonstrate that adipogenesis and lipogenesis are enhanced by activation of CB1R in the AT of NLNG dairy cows. In summary, we provide initial evidence which supports that the sensitivity of the AT endocannabinoid system to endocannabinoids, and its ability to modulate AT lipolysis, adipogenesis, and lipogenesis, vary based on dairy cows' lactation stage.


Asunto(s)
Cannabinoides , Movilización Lipídica , Femenino , Bovinos , Animales , Adipogénesis , Cannabinoides/farmacología , Cannabinoides/metabolismo , Receptores de Cannabinoides/metabolismo , Tejido Adiposo/metabolismo , Lipólisis/fisiología , Lactancia/fisiología , Lípidos
17.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003229

RESUMEN

Lipid droplets (LDs) are important organelles conserved across eukaryotes with a fascinating biogenesis and consumption cycle. Recent intensive research has focused on uncovering the cellular biology of LDs, with emphasis on their degradation. Briefly, two major pathways for LD degradation have been recognized: (1) lipolysis, in which lipid degradation is catalyzed by lipases on the LD surface, and (2) lipophagy, in which LDs are degraded by autophagy. Both of these pathways require the collective actions of several lipolytic and proteolytic enzymes, some of which have been purified and analyzed for their in vitro activities. Furthermore, several genes encoding these proteins have been cloned and characterized. In seed plants, seed germination is initiated by the hydrolysis of stored lipids in LDs to provide energy and carbon equivalents for the germinating seedling. However, little is known about the mechanism regulating the LD mobilization. In this review, we focus on recent progress toward understanding how lipids are degraded and the specific pathways that coordinate LD mobilization in plants, aiming to provide an accurate and detailed outline of the process. This will set the stage for future studies of LD dynamics and help to utilize LDs to their full potential.


Asunto(s)
Gotas Lipídicas , Lipólisis , Lipólisis/fisiología , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología , Lipasa/metabolismo , Lípidos , Autofagia/fisiología
18.
J Biol Chem ; 296: 100104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33219129

RESUMEN

ABHD5 is an essential coactivator of ATGL, the rate-limiting triglyceride (TG) lipase in many cell types. Importantly, ABHD5 also functions as a tumor suppressor, and ABHD5 mRNA expression levels correlate with patient survival for several cancers. Nevertheless, the mechanisms involved in ABHD5-dependent tumor suppression are not known. We found that overexpression of ABHD5 induces cell cycle arrest at the G1 phase and causes growth retardation in a panel of prostate cancer cells. Transcriptomic profiling and biochemical analysis revealed that genetic or pharmacological activation of lipolysis by ABHD5 potently inhibits mTORC1 signaling, leading to a significant downregulation of protein synthesis. Mechanistically, we found that ABHD5 elevates intracellular AMP content, which activates AMPK, leading to inhibition of mTORC1. Interestingly, ABHD5-dependent suppression of mTORC1 was abrogated by pharmacological inhibition of DGAT1 or DGAT2, isoenzymes that re-esterify fatty acids in a process that consumes ATP. Collectively, this study maps out a novel molecular pathway crucial for limiting cancer cell proliferation, in which ABHD5-mediated lipolysis creates an energy-consuming futile cycle between TG hydrolysis and resynthesis, leading to inhibition of mTORC1 and cancer cell growth arrest.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Humanos , Lipólisis/fisiología , Metabolismo/fisiología , RNA-Seq
19.
J Biol Chem ; 296: 100440, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33610548

RESUMEN

Obesity associates with inflammation, insulin resistance, and higher blood lipids. It is unclear if immune responses facilitate lipid breakdown and release from adipocytes via lipolysis in a separate way from hormones or adrenergic signals. We found that an ancient component of ER stress, inositol-requiring protein 1 (IRE1), discriminates inflammation-induced adipocyte lipolysis versus lipolysis from adrenergic or hormonal stimuli. Our data show that inhibiting IRE1 kinase activity was sufficient to block adipocyte-autonomous lipolysis from multiple inflammatory ligands, including bacterial components, certain cytokines, and thapsigargin-induced ER stress. IRE1-mediated lipolysis was specific for inflammatory triggers since IRE1 kinase activity was dispensable for isoproterenol and cAMP-induced lipolysis in adipocytes and mouse adipose tissue. IRE1 RNase activity was not associated with inflammation-induced adipocyte lipolysis. Inhibiting IRE1 kinase activity blocked NF-κB activation, interleukin-6 secretion, and adipocyte-autonomous lipolysis from inflammatory ligands. Inflammation-induced lipolysis mediated by IRE1 occurred independently from changes in insulin signaling in adipocytes, suggesting that inflammation can promote IRE1-mediated lipolysis independent of adipocyte insulin resistance. We found no role for canonical unfolded protein responses or ABL kinases in linking ER stress to IRE1-mediated lipolysis. Adiponectin-Cre-mediated IRE1 knockout in mice showed that adipocyte IRE1 was required for inflammatory ligand-induced lipolysis in adipose tissue explants and that adipocyte IRE1 was required for approximately half of the increase in blood triglycerides after a bacterial endotoxin-mediated inflammatory stimulus in vivo. Together, our results show that IRE1 propagates an inflammation-specific lipolytic program independent from hormonal or adrenergic regulation. Targeting IRE1 kinase activity may benefit metabolic syndrome and inflammatory lipid disorders.


Asunto(s)
Adipocitos/metabolismo , Lipólisis/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células 3T3-L1 , Adipocitos/fisiología , Tejido Adiposo/metabolismo , Animales , Citocinas/metabolismo , Inflamación/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , FN-kappa B/metabolismo , Obesidad/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal
20.
J Am Chem Soc ; 144(14): 6237-6250, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35362954

RESUMEN

Chronically elevated circulating fatty acid levels promote lipid accumulation in nonadipose tissues and cause lipotoxicity. Adipose triglyceride lipase (ATGL) critically determines the release of fatty acids from white adipose tissue, and accumulating evidence suggests that inactivation of ATGL has beneficial effects on lipotoxicity-driven disorders including insulin resistance, steatohepatitis, and heart disease, classifying ATGL as a promising drug target. Here, we report on the development and biological characterization of the first small-molecule inhibitor of human ATGL. This inhibitor, designated NG-497, selectively inactivates human and nonhuman primate ATGL but not structurally and functionally related lipid hydrolases. We demonstrate that NG-497 abolishes lipolysis in human adipocytes in a dose-dependent and reversible manner. The combined analysis of mouse- and human-selective inhibitors, chimeric ATGL proteins, and homology models revealed detailed insights into enzyme-inhibitor interactions. NG-497 binds ATGL within a hydrophobic cavity near the active site. Therein, three amino acid residues determine inhibitor efficacy and species selectivity and thus provide the molecular scaffold for selective inhibition.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Adipocitos , Ácidos Grasos/metabolismo , Lipólisis , Aciltransferasas/metabolismo , Adipocitos/metabolismo , Animales , Humanos , Lipólisis/fisiología , Ratones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda