Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Plant Physiol ; 196(2): 1254-1267, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848314

RESUMEN

Resistance to preemergence herbicides, e.g. inhibitors of the biosynthesis of very-long-chain fatty acids (VLCFAs), is evolving in response to increased use of these compounds. Grass weeds such as ryegrasses (Lolium spp.) have accumulated resistance to various herbicide modes of action. Here, an RNA-seq analysis was conducted using 3 ryegrass populations resistant to the VLCFA biosynthesis inhibitor flufenacet to investigate this phenomenon. Besides various transcripts, including putative long noncoding RNAs (lncRNAs), a single putatively functional tau class glutathione transferase (GST) was constitutively differentially expressed. It was further induced by herbicide application. This GST was expressed as a recombinant protein in Escherichia coli along with other GSTs and detoxified flufenacet rapidly in vitro. Detoxification rates of other herbicides tested in vitro were in accordance with cross-resistance patterns previously determined in vivo. A genome-wide GST analysis revealed that the candidate GST was located in a cluster of 3 intronless GSTs. Their intronless nature possibly results from the retroposition of cellular mRNAs followed by tandem duplication and may affect gene expression. The large number of GSTs (≥195) in the genome of rigid ryegrass (Lolium rigidum) compared with other plant organisms is likely a key factor in the ability of this weed to evolve resistance to different herbicide chemistries. However, in the case of flufenacet resistance, a single upregulated GST with high affinity for the substrate flufenacet possibly contributes overproportionally to rapid herbicide detoxification in planta. The regulation of this gene and the role of differentially expressed transcripts, including various putative lncRNAs, require further investigation.


Asunto(s)
Glutatión Transferasa , Resistencia a los Herbicidas , Herbicidas , Lolium , Lolium/genética , Lolium/efectos de los fármacos , Lolium/enzimología , Herbicidas/farmacología , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Resistencia a los Herbicidas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Acetamidas/farmacología , Acetamidas/metabolismo , Tiadiazoles
2.
Physiol Plant ; 176(4): e14427, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005156

RESUMEN

The perennity of grassland species such as Lolium perenne greatly depends on their ability to regrow after cutting or grazing. Refoliation largely relies on the mobilization of fructans in the remaining tissues and on the associated sucrose synthesis and transport towards the basal leaf meristems. However, nothing is known yet about the sucrose synthesis pathway. Sucrose Phosphate Synthase (SPS) and Sucrose Synthase (SuS) activities, together with their transcripts, were monitored during the first hours after defoliation along the leaf axis of mature leaf sheaths and elongating leaf bases (ELB) where the leaf meristems are located. In leaf sheaths, which undergo a sink-source transition, fructan and sucrose contents declined while SPS and SuS activities increased, along with the expression of LpSPSA, LpSPSD.2, LpSuS1, LpSuS2, and LpSuS4. In ELB, which continue to act as a strong carbon sink, SPS and SuS activities increased to varying degrees while the expression of all the LpSPS and LpSuS genes decreased after defoliation. SPS and SuS both contribute to refoliation but are regulated differently depending on the source or sink status of the tissues. Together with fructan metabolism, they represent key determinants of ryegrass perennity and, more generally, of grassland sustainability.


Asunto(s)
Fructanos , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas , Pradera , Lolium , Hojas de la Planta , Proteínas de Plantas , Sacarosa , Lolium/enzimología , Lolium/genética , Lolium/metabolismo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Fructanos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sacarosa/metabolismo
3.
Plant J ; 105(1): 79-92, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098711

RESUMEN

Rapid and widespread evolution of multiple herbicide resistance in global weed species endowed by increased capacity to metabolize (degrade) herbicides (metabolic resistance) is a great threat to herbicide sustainability and global food production. Metabolic resistance in the economically damaging crop weed species Lolium rigidum is well known but a molecular understanding has been lacking. We purified a metabolic resistant (R) subset from a field evolved R L. rigidum population. The R, the herbicide susceptible (S) and derived F2 populations were used for candidate herbicide resistance gene discovery by RNA sequencing. A P450 gene CYP81A10v7 was identified with higher expression in R vs. S plants. Transgenic rice overexpressing this Lolium CYP81A10v7 gene became highly resistant to acetyl-coenzyme A carboxylase- and acetolactate synthase-inhibiting herbicides (diclofop-methyl, tralkoxydim, chlorsulfuron) and moderately resistant to hydroxyphenylpyruvate dioxygenase-inhibiting herbicide (mesotrione), photosystem II-inhibiting herbicides (atrazine and chlorotoluron) and the tubulin-inhibiting herbicide trifluralin. This wide cross-resistance profile to many dissimilar herbicides in CYP81A10v7 transgenic rice generally reflects what is evident in the R L. rigidum. This report clearly showed that a single P450 gene in a cross-pollinated weed species L. rigidum confers resistance to herbicides of at least five modes of action across seven herbicide chemistries.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Resistencia a los Herbicidas , Lolium/efectos de los fármacos , Proteínas de Plantas/metabolismo , Ciclohexanonas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Éteres Difenilos Halogenados/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/metabolismo , Lolium/enzimología , Lolium/genética , Lolium/metabolismo , Oryza , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente
4.
Plant J ; 106(5): 1219-1232, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33595908

RESUMEN

Loss of chlorophyll (Chl) is a hallmark of leaf senescence, which may be regulated by Chl catabolic genes, including NON-YELLOW COLORING 1 (NYC1)-like (NOL). The objective of this study was to determine molecular factors and metabolic pathways underlying NOL regulation of leaf senescence in perennial grass species. LpNOL was cloned from perennial ryegrass (Lolium perenne L.) and found to be highly expressed in senescent leaves. Transient overexpression of LpNOL accelerated leaf senescence and Chl b degradation in Nicotiana benthamiana. LpNOL RNA interference (NOLi) in perennial ryegrass not only significantly blocked Chl degradation in senescent leaves, but also delayed initiation and progression of leaf senescence. This study found that NOL, in addition to functioning as a Chl b reductase, could enact the functional stay-green phenotype in perennial grass species, as manifested by increased photosynthetic activities in NOLi plants. Comparative transcriptomic analysis revealed that NOL-mediated functional stay-green in perennial ryegrass was mainly achieved through the modulation of Chl catabolism, light harvesting for photosynthesis, photorespiration, cytochrome respiration, carbohydrate catabolism, oxidative detoxification, and abscisic acid biosynthesis and signaling pathways.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Clorofila/metabolismo , Lolium/genética , Redes y Vías Metabólicas/genética , Fotosíntesis/genética , Transcriptoma , Ácido Abscísico/metabolismo , Oxidorreductasas de Alcohol/genética , Expresión Génica , Perfilación de la Expresión Génica , Lolium/enzimología , Lolium/fisiología , Oxidación-Reducción , Oxígeno/metabolismo , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Factores de Tiempo , Nicotiana/genética , Nicotiana/fisiología
5.
J Exp Bot ; 72(9): 3410-3426, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33630999

RESUMEN

Plants secrete various defence-related proteins into the apoplast, including proteases. Papain-like cysteine proteases (PLCPs) are central components of the plant immune system. To overcome plant immunity and successfully colonize their hosts, several plant pathogens secrete effector proteins inhibiting plant PLCPs. We hypothesized that not only pathogens, but also mutualistic microorganisms interfere with PLCP-meditated plant defences to maintain endophytic colonization with their hosts. Epichloë festucae forms mutualistic associations with cool season grasses and produces a range of secondary metabolites that protect the host against herbivores. In this study, we performed a genome-wide identification of Lolium perenne PLCPs, analysed their evolutionary relationship, and classified them into nine PLCP subfamilies. Using activity-based protein profiling, we identified four active PLCPs in the apoplast of L. perenne leaves that are inhibited during endophyte interactions. We characterized the L. perenne cystatin LpCys1 for its inhibitory capacity against ryegrass PLCPs. LpCys1 abundance is not altered during the mutualistic interaction and it mainly inhibits LpCP2. However, since the activity of other L. perenne PLCPs is not sensitive to LpCys1, we propose that additional inhibitors, likely of fungal origin, are involved in the suppression of apoplastic PLCPs during E. festucae infection.


Asunto(s)
Proteasas de Cisteína , Epichloe , Lolium , Proteínas de Plantas , Lolium/enzimología , Simbiosis
6.
BMC Plant Biol ; 18(1): 56, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29625552

RESUMEN

BACKGROUND: Pyrrolizidine alkaloids (PAs) are a class of secondary metabolites that function as feeding deterrents in a range of different plant species. In perennial ryegrass (Lolium perenne L.) the only PAs that have been identified are the thesinine-rhamnoside group, which displays significant genetic variation. Homospermidine synthase (HSS) has evolved from deoxyhypusine synthase (DHS) and catalyses the first step in the PA pathway, making it a key candidate for the investigation of genes influencing observed PA trait variation. RESULTS: During PCR amplification and sequence analysis of DHS we identified two putative HSS genes in perennial ryegrass. One of the genes (LpHSS1) was absent in some perennial ryegrass plants. Thesinine-rhamnoside levels were measured using liquid chromatography coupled with mass spectrometry in a diverse association mapping population, consisting of 693 plants free of fungal endophytic symbionts. Association tests that accounted for population structure identified a significant association of absence of the LpHSS1 gene with lower levels of thesinine-rhamnoside PAs. HSS-like gene sequences were identified for other grass species of the Poaceae, including tall fescue, wheat, maize and sorghum. CONCLUSION: HSS is situated at the crucial first step in the PA pathway making it an important candidate gene for investigation of involvement in PA phenotypic variation. In this study, PA level in perennial ryegrass was strongly associated with the presence or absence of the LpHSS1 gene. A genetic marker, developed for the presence/absence of LpHSS1, may be used for marker-assisted breeding to either lower or increase PAs in breeding populations of perennial or Italian ryegrass to investigate a potential role in the deterrence of herbivore pests. The presence of HSS-like genes in several other Poaceae species suggests that PA biosynthesis may occur in plant family members beyond perennial ryegrass and tall fescue and identifies a potential route for manipulating PA levels.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Lolium/enzimología , Lolium/metabolismo , Alcaloides de Pirrolicidina/metabolismo , Transferasas Alquil y Aril/genética , Lolium/genética , Fitomejoramiento
7.
Ecotoxicol Environ Saf ; 153: 229-237, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29453100

RESUMEN

Lead (Pb) is a highly toxic environmental pollutant, and could result in toxic effects on living organisms. The effects of 0, 100, 200, 500, 1000 and 2000 mg/kg of nZVI on plant growth, Pb accumulation and antioxidative responses of Lolium perenne were investigated. Results showed that the total Pb contents in L. perenne with the treatment of low concentrations of nZVI (100, 200 and 500 mg/kg) were higher than those in the non-nZVI treatments, and the highest Pb accumulation capacity of 1175.40 µg per pot was observed in L. perenne with the treatment of 100 mg/kg nZVI. However, the total Pb contents in L. perenne decreased at high concentrations of nZVI (1000 and 2000 mg/kg). This might be resulted from the decrease of photosynthetic chlorophyll content and the aggravated oxidative stress induced by the high concentration of nZVI, which caused the decrease of plant biomass and metal accumulation capacity in plant. Moreover, the sequential extraction experiments results showed that the lowest acid soluble fraction of Pb in the sediments was found in the treatment with 100 mg/kg of nZVI, indicating that 100 mg/kg was the optimum concentration for nZVI to assist the phytoremediation of Pb-polluted sediment. To conclude, these findings provide a promising method to remediate Pb-polluted sediment by nZVI assisted phytoremediation.


Asunto(s)
Sedimentos Geológicos/química , Hierro/química , Plomo/análisis , Lolium/efectos de los fármacos , Nanoestructuras/química , Contaminantes del Suelo/análisis , Antioxidantes/análisis , Biodegradación Ambiental , Biomasa , Relación Dosis-Respuesta a Droga , Lolium/química , Lolium/enzimología , Suelo/química
8.
J Exp Bot ; 67(3): 935-45, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26643195

RESUMEN

Chlorophyll (Chl) degradation occurs naturally during leaf maturation and senescence, and can be induced by stresses, both processes involving the regulation of plant hormones. The objective of this study was to determine the functional roles and hormonal regulation of a gene encoding pheophytin pheophorbide hydrolyase (PPH) that catabolizes Chl degradation during leaf senescence in perennial grass species. A PPH gene, LpPPH, was cloned from perennial ryegrass (Lolium perenne L.). LpPPH was localized in the chloroplast. Overexpressing LpPPH accelerated Chl degradation in wild tobacco, and rescued the stay-green phenotype of the Arabidopsis pph null mutant. The expression level of LpPPH was positively related to the extent of leaf senescence. Exogenous application of abscisic acid (ABA) and ethephon (an ethylene-releasing agent) accelerated the decline in Chl content in leaves of perennial ryegrass, whereas cytokinin (CK) and aminoethoxyvinylglycine (AVG; an ethylene biosynthesis inhibitor) treatments suppressed leaf senescence, corresponding to the up- or down-regulation of LpPPH expression. The promoters of five orthologous PPH genes were predicted to share conserved cis-elements potentially recognized by transcription factors in the ABA and CK pathways. Taken together, the results suggested that LpPPH-mediated Chl breakdown could be regulated positively by ABA and ethylene, and negatively by CK, and LpPPH could be a direct downstream target gene of transcription factors in the ABA and CK signaling pathways.


Asunto(s)
Genes de Plantas , Lolium/enzimología , Lolium/genética , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/enzimología , Hojas de la Planta/crecimiento & desarrollo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Cloroplastos/efectos de los fármacos , Cloroplastos/enzimología , Clonación Molecular , Secuencia Conservada , Citocininas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Prueba de Complementación Genética , Glicina/análogos & derivados , Glicina/farmacología , Lolium/efectos de los fármacos , Datos de Secuencia Molecular , Mutación/genética , Compuestos Organofosforados/farmacología , Fenotipo , Filogenia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Transcripción Genética/efectos de los fármacos
9.
Plant Mol Biol ; 87(4-5): 473-87, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25636204

RESUMEN

Non-target-site resistance (NTSR) to herbicides that disrupts agricultural weed control is a worldwide concern for food security. NTSR is considered a polygenic adaptive trait driven by differential gene regulation in resistant plants. Little is known about its genetic determinism, which precludes NTSR diagnosis and evolutionary studies. We used Illumina RNA-sequencing to investigate transcriptomic differences between plants from the global major weed rye-grass sensitive or resistant to the acetolactate-synthase (ALS) inhibiting herbicide pyroxsulam. Plants were collected before and along a time-course after herbicide application. De novo transcriptome assembly yielded a resource (LOLbase) including 92,381 contigs representing potentially active transcripts that were assigned putative annotations. Early effects of ALS inhibition consistent with the literature were observed in resistant and sensitive plants, proving LOLbase data were relevant to study herbicide response. Comparison of resistant and sensitive plants identified 30 candidate NTSR contigs. Further validation using 212 plants resistant or sensitive to pyroxsulam and/or to the ALS inhibitors iodosulfuron + mesosulfuron confirmed four contigs (two cytochromes P450, one glycosyl-transferase and one glutathione-S-transferase) were NTSR markers which combined expression levels could reliably identify resistant plants. This work confirmed that NTSR is driven by differential gene expression and involves different mechanisms. It provided tools and foundation for subsequent NTSR investigations.


Asunto(s)
Acetolactato Sintasa/antagonistas & inhibidores , Herbicidas/farmacología , Lolium/efectos de los fármacos , Lolium/genética , Transcriptoma/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Lolium/enzimología , Transcriptoma/genética
10.
J Exp Bot ; 66(15): 4711-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26019257

RESUMEN

The rate of herbicide resistance evolution in plants depends on fitness traits endowed by alleles in both the presence and absence (resistance cost) of herbicide selection. The effect of two Lolium rigidum spontaneous homozygous target-site resistance-endowing mutations (Ile-1781-Leu, Asp-2078-Gly) on both ACCase activity and various plant growth traits have been investigated here. Relative growth rate (RGR) and components (net assimilation rate, leaf area ratio), resource allocation to different organs, and growth responses in competition with a wheat crop were assessed. Unlike plants carrying the Ile-1781-Leu resistance mutation, plants homozygous for the Asp-2078-Gly mutation exhibited a significantly lower RGR (30%), which translated into lower allocation of biomass to roots, shoots, and leaves, and poor responses to plant competition. Both the negligible and significant growth reductions associated, respectively, with the Ile-1781-Leu and Asp-2078-Gly resistance mutations correlated with their impact on ACCase activity. Whereas the Ile-1781-Leu mutation showed no pleiotropic effects on ACCase kinetics, the Asp-2078-Gly mutation led to a significant reduction in ACCase activity. The impaired growth traits are discussed in the context of resistance costs and the effects of each resistance allele on ACCase activity. Similar effects of these two particular ACCase mutations on the ACCase activity of Alopecurus myosuroides were also confirmed.


Asunto(s)
Acetil-CoA Carboxilasa/genética , Resistencia a los Herbicidas , Herbicidas/farmacología , Lolium/efectos de los fármacos , Proteínas de Plantas/genética , Acetil-CoA Carboxilasa/metabolismo , Aptitud Genética , Cinética , Lolium/enzimología , Lolium/genética , Lolium/crecimiento & desarrollo , Mutación , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda