Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biol Chem ; 296: 100471, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33639160

RESUMEN

Actin-myosin mediated contractile forces are crucial for many cellular functions, including cell motility, cytokinesis, and muscle contraction. We determined the effects of ten actin-binding compounds on the interaction of cardiac myosin subfragment 1 (S1) with pyrene-labeled F-actin (PFA). These compounds, previously identified from a small-molecule high-throughput screen (HTS), perturb the structural dynamics of actin and the steady-state actin-activated myosin ATPase activity. However, the mechanisms underpinning these perturbations remain unclear. Here we further characterize them by measuring their effects on PFA fluorescence, which is decreased specifically by the strong binding of myosin to actin. We measured these effects under equilibrium and steady-state conditions, and under transient conditions, in stopped-flow experiments following addition of ATP to S1-bound PFA. We observed that these compounds affect early steps of the myosin ATPase cycle to different extents. They increased the association equilibrium constant K1 for the formation of the strongly bound collision complex, indicating increased ATP affinity for actin-bound myosin, and decreased the rate constant k+2 for subsequent isomerization to the weakly bound ternary complex, thus slowing the strong-to-weak transition that actin-myosin interaction undergoes early in the ATPase cycle. The compounds' effects on actin structure allosterically inhibit the kinetics of the actin-myosin interaction in ways that may be desirable for treatment of hypercontractile forms of cardiomyopathy. This work helps to elucidate the mechanisms of action for these compounds, several of which are currently used therapeutically, and sets the stage for future HTS campaigns that aim to discover new drugs for treatment of heart failure.


Asunto(s)
Actinas/química , Actinas/metabolismo , Miosinas Cardíacas/metabolismo , Actinas/efectos de los fármacos , Adenosina Trifosfatasas/efectos de los fármacos , Adenosina Trifosfatasas/metabolismo , Animales , Miosinas Cardíacas/efectos de los fármacos , Miosinas Cardíacas/fisiología , Bovinos , Fluorescencia , Ensayos Analíticos de Alto Rendimiento/métodos , Cinética , Contracción Muscular/fisiología , Subfragmentos de Miosina/efectos de los fármacos , Subfragmentos de Miosina/metabolismo , Miosinas/efectos de los fármacos , Miosinas/metabolismo , Física , Unión Proteica , Pirenos/química , Conejos , Bibliotecas de Moléculas Pequeñas/farmacología
2.
Arterioscler Thromb Vasc Biol ; 40(4): 901-913, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32102568

RESUMEN

OBJECTIVE: Cardiac myosin (CM) is structurally similar to skeletal muscle myosin, which has procoagulant activity. Here, we evaluated CM's ex vivo, in vivo, and in vitro activities related to hemostasis and thrombosis. Approach and Results: Perfusion of fresh human blood over CM-coated surfaces caused thrombus formation and fibrin deposition. Addition of CM to blood passing over collagen-coated surfaces enhanced fibrin formation. In a murine ischemia/reperfusion injury model, exogenous CM, when administered intravenously, augmented myocardial infarction and troponin I release. In hemophilia A mice, intravenously administered CM reduced tail-cut-initiated bleeding. These data provide proof of concept for CM's in vivo procoagulant properties. In vitro studies clarified some mechanisms for CM's procoagulant properties. Thrombin generation assays showed that CM, like skeletal muscle myosin, enhanced thrombin generation in human platelet-rich and platelet-poor plasmas and also in mixtures of purified factors Xa, Va, and prothrombin. Binding studies showed that CM, like skeletal muscle myosin, directly binds factor Xa, supporting the concept that the CM surface is a site for prothrombinase assembly. In tPA (tissue-type plasminogen activator)-induced plasma clot lysis assays, CM was antifibrinolytic due to robust CM-dependent thrombin generation that enhanced activation of TAFI (thrombin activatable fibrinolysis inhibitor). CONCLUSIONS: CM in vitro is procoagulant and prothrombotic. CM in vivo can augment myocardial damage and can be prohemostatic in the presence of bleeding. CM's procoagulant and antifibrinolytic activities likely involve, at least in part, its ability to bind factor Xa and enhance thrombin generation. Future work is needed to clarify CM's pathophysiology and its mechanistic influences on hemostasis or thrombosis.


Asunto(s)
Coagulación Sanguínea , Miosinas Cardíacas/metabolismo , Hemostasis , Trombina/biosíntesis , Trombosis/fisiopatología , Animales , Plaquetas/metabolismo , Miosinas Cardíacas/fisiología , Modelos Animales de Enfermedad , Factor Va/metabolismo , Factor Xa/metabolismo , Hemorragia/fisiopatología , Humanos , Masculino , Ratones Endogámicos C57BL , Protrombina/metabolismo
3.
FASEB J ; 33(3): 3152-3166, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30365366

RESUMEN

Myosin light chain 2 ( MYL2) gene encodes the myosin regulatory light chain (RLC) simultaneously in heart ventricles and in slow-twitch skeletal muscle. Using transgenic mice with cardiac-specific expression of the human R58Q-RLC mutant, we sought to determine whether the hypertrophic cardiomyopathy phenotype observed in papillary muscles (PMs) of R58Q mice is also manifested in slow-twitch soleus (SOL) muscles. Skinned SOL muscles and ventricular PMs of R58Q animals exhibited lower contractile force that was not observed in the fast-twitch extensor digitorum longus muscles of R58Q vs. wild-type-RLC mice, but mutant animals did not display gross muscle weakness in vivo. Consistent with SOL muscle abnormalities in R58Q vs. wild-type mice, myosin ATPase staining revealed a decreased proportion of fiber type I/type II only in SOL muscles but not in the extensor digitorum longus muscles. The similarities between SOL muscles and PMs of R58Q mice were further supported by quantitative proteomics. Differential regulation of proteins involved in energy metabolism, cell-cell interactions, and protein-protein signaling was concurrently observed in the hearts and SOL muscles of R58Q mice. In summary, even though R58Q expression was restricted to the heart of mice, functional similarities were clearly observed between the hearts and slow-twitch skeletal muscle, suggesting that MYL2 mutated models of hypertrophic cardiomyopathy may be useful research tools to study the molecular, structural, and energetic mechanisms of cardioskeletal myopathy associated with myosin RLC.-Kazmierczak, K., Liang, J., Yuan, C.-C., Yadav, S., Sitbon, Y. H., Walz, K., Ma, W., Irving, T. C., Cheah, J. X., Gomes, A. V., Szczesna-Cordary, D. Slow-twitch skeletal muscle defects accompany cardiac dysfunction in transgenic mice with a mutation in the myosin regulatory light chain.


Asunto(s)
Miosinas Cardíacas/genética , Miosinas Cardíacas/fisiología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Fibras Musculares de Contracción Lenta/fisiología , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/fisiología , Sustitución de Aminoácidos , Animales , Cardiomiopatía Hipertrófica/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Mutantes , Ratones Transgénicos , Contracción Muscular/genética , Contracción Muscular/fisiología , Fibras Musculares de Contracción Lenta/patología , Mutación Missense , Contracción Miocárdica/genética , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Miocardio/patología , Músculos Papilares/patología , Músculos Papilares/fisiopatología , Proteómica
4.
Biochem Biophys Res Commun ; 509(4): 978-982, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30654937

RESUMEN

Human cardiac myosin has two isoforms, alpha and beta, sharing significant sequence similarity, but different in kinetics: ADP release from actomyosin is an order of magnitude faster in the alpha myosin isoform. Apparently, small differences in the sequence are responsible for distinct local inter-residue interactions within alpha and beta isoforms, leading to such a dramatic difference in the rate of ADP release. Our analysis of structural kinetics of alpha and beta isoforms using molecular dynamics simulations revealed distinct dynamics of SH1:SH2 helix within the force-generation region of myosin head. The simulations showed that the residue R694 of the helix forms two permanent salt bridges in the beta isoform, which are not present in the alpha isoform. We hypothesized that the isoform-specific electrostatic interactions play a role in the difference of kinetic properties of myosin isoforms. We prepared R694N mutant in the beta isoform background to destabilize electrostatic interactions in the force-generating region of the myosin head. Our experimental data confirm faster ADP release from R694N actomyosin mutant, but is not as dramatic as the difference of kinetics of ADP release in the alpha and beta isoforms.


Asunto(s)
Actomiosina/metabolismo , Adenosina Difosfato/metabolismo , Miosinas Cardíacas/fisiología , Electricidad Estática , Actomiosina/genética , Humanos , Cinética , Simulación de Dinámica Molecular , Proteínas Mutantes/metabolismo , Mutación Missense , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(13): 3675-80, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26984499

RESUMEN

The power in the myocardium sarcomere is generated by two bipolar arrays of the motor protein cardiac myosin II extending from the thick filament and pulling the thin, actin-containing filaments from the opposite sides of the sarcomere. Despite the interest in the definition of myosin-based cardiomyopathies, no study has yet been able to determine the mechanokinetic properties of this motor protein in situ. Sarcomere-level mechanics recorded by a striation follower is used in electrically stimulated intact ventricular trabeculae from the rat heart to determine the isotonic velocity transient following a stepwise reduction in force from the isometric peak force TP to a value T(0.8-0.2 TP). The size and the speed of the early rapid shortening (the isotonic working stroke) increase by reducing T from ∼3 nm per half-sarcomere (hs) and 1,000 s(-1) at high load to ∼8 nm⋅hs(-1) and 6,000 s(-1) at low load. Increases in sarcomere length (1.9-2.2 µm) and external [Ca(2+)]o (1-2.5 mM), which produce an increase of TP, do not affect the dependence on T, normalized for TP, of the size and speed of the working stroke. Thus, length- and Ca(2+)-dependent increase of TP and power in the heart can solely be explained by modulation of the number of myosin motors, an emergent property of their array arrangement. The motor working stroke is similar to that of skeletal muscle myosin, whereas its speed is about three times slower. A new powerful tool for investigations and therapies of myosin-based cardiomyopathies is now within our reach.


Asunto(s)
Miosinas Cardíacas/fisiología , Contracción Miocárdica/fisiología , Animales , Fenómenos Biomecánicos , Calcio/metabolismo , Estimulación Eléctrica , Técnicas In Vitro , Masculino , Proteínas Motoras Moleculares/fisiología , Ratas , Ratas Wistar , Sarcómeros/fisiología , Miosinas Ventriculares/fisiología
6.
J Physiol ; 596(1): 31-46, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29052230

RESUMEN

KEY POINTS: Omecamtiv mecarbil and blebbistatin perturb the regulatory state of the thick filament in heart muscle. Omecamtiv mecarbil increases contractility at low levels of activation by stabilizing the ON state of the thick filament. Omecamtiv mecarbil decreases contractility at high levels of activation by disrupting the acto-myosin ATPase cycle. Blebbistatin reduces contractility by stabilizing the thick filament OFF state and inhibiting acto-myosin ATPase. Thick filament regulation is a promising target for novel therapeutics in heart disease. ABSTRACT: Contraction of heart muscle is triggered by a transient rise in intracellular free calcium concentration linked to a change in the structure of the actin-containing thin filaments that allows the head or motor domains of myosin from the thick filaments to bind to them and induce filament sliding. It is becoming increasingly clear that cardiac contractility is also regulated through structural changes in the thick filaments, although the molecular mechanisms underlying thick filament regulation are still relatively poorly understood. Here we investigated those mechanisms using small molecules - omecamtiv mecarbil (OM) and blebbistatin (BS) - that bind specifically to myosin and respectively activate or inhibit contractility in demembranated cardiac muscle cells. We measured isometric force and ATP utilization at different calcium and small-molecule concentrations in parallel with in situ structural changes determined using fluorescent probes on the myosin regulatory light chain in the thick filaments and on troponin C in the thin filaments. The results show that BS inhibits contractility and actin-myosin ATPase by stabilizing the OFF state of the thick filament in which myosin head domains are more parallel to the filament axis. In contrast, OM stabilizes the ON state of the thick filament, but inhibits contractility at high intracellular calcium concentration by disrupting the actin-myosin ATPase pathway. The effects of BS and OM on the calcium sensitivity of isometric force and filament structural changes suggest that the co-operativity of calcium activation in physiological conditions is due to positive coupling between the regulatory states of the thin and thick filaments.


Asunto(s)
Miosinas Cardíacas/fisiología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Contracción Miocárdica , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Urea/análogos & derivados , Citoesqueleto de Actina/metabolismo , Animales , Calcio/metabolismo , Masculino , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal , Urea/farmacología
7.
Basic Res Cardiol ; 110(4): 38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25982880

RESUMEN

Recent studies demonstrated that NADPH oxidase 2 (NOX2) expression in myocardium after ischemia-reperfusion (IR) is significantly upregulated. However, the underlying mechanisms remain unknown. This study aims to determine if nuclear cardiac myosin light chain 2 (MYL2), a well-known regulatory subunit of myosin, functions as a transcription factor to promote NOX2 expression following myocardial IR in a phosphorylation-dependent manner. We examined the phosphorylation status of nuclear MYL2 (p-MYL2) in a rat model of myocardial IR (left main coronary artery subjected to 1 h ligation and 3 h reperfusion) injury, which showed IR injury and upregulated NOX2 expression as expected, accompanied by elevated H2O2 and nuclear p-MYL2 levels; these effects were attenuated by inhibition of myosin light chain kinase (MLCK). Next, we explored the functional relationship of nuclear p-MYL2 with NOX2 expression in H9c2 cell model of hypoxia-reoxygenation (HR) injury. In agreement with our in vivo findings, HR treatment increased apoptosis, NOX2 expression, nuclear p-MYL2 and H2O2 levels, and the increases were ameliorated by inhibition of MLCK or knockdown of MYL2. Finally, molecular biology techniques including co-immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP), DNA pull-down and luciferase reporter gene assay were utilized to decipher the molecular mechanisms. We found that nuclear p-MYL2 binds to the consensus sequence AGCTCC in NOX2 gene promoter, interacts with RNA polymerase II and transcription factor IIB to form a transcription preinitiation complex, and thus activates NOX2 gene transcription. Our results demonstrate that nuclear MYL2 plays an important role in IR injury by transcriptionally upregulating NOX2 expression to enhance oxidative stress in a phosphorylation-dependent manner.


Asunto(s)
Miosinas Cardíacas/fisiología , Glicoproteínas de Membrana/genética , Miocardio/metabolismo , Cadenas Ligeras de Miosina/fisiología , NADPH Oxidasas/genética , Animales , Miosinas Cardíacas/análisis , Núcleo Celular/química , Células Cultivadas , Masculino , Daño por Reperfusión Miocárdica/prevención & control , Cadenas Ligeras de Miosina/análisis , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , NADPH Oxidasa 2 , Estrés Oxidativo , Fosforilación , Ratas , Ratas Sprague-Dawley
8.
J Neurosci ; 31(4): 1448-60, 2011 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-21273429

RESUMEN

Ongoing synaptic function and rapid, bidirectional plasticity are both controlled by regulatory mechanisms within dendritic spines. Spine actin dynamics maintain synapse structure and function, and cytoskeletal rearrangements in these structures trigger structural and functional plasticity. Therefore, proteins that interact with actin filaments are attractive candidates to regulate synaptic actin dynamics and, thus, synapse structure and function. Here, we have cloned the rat isoform of class II myosin heavy chain MyH7B in brain. Unexpectedly, this isoform resembles muscle-type myosin II rather than the ubiquitously expressed nonmuscle myosin II isoforms, suggesting that a rich functional diversity of myosin II motors may exist in neurons. Indeed, reducing the expression of MyH7B in mature neurons caused profound alterations to dendritic spine structure and excitatory synaptic strength. Structurally, dendritic spines had large, irregularly shaped heads that contained many filopodia-like protrusions. Neurons with reduced MyH7B expression also had impaired miniature EPSC amplitudes accompanied by a decrease in synaptic AMPA receptors, which was linked to alterations of the actin cytoskeleton. MyH7B-mediated control over spine morphology and synaptic strength was distinct from that of a nonmuscle myosin, myosin IIb. Interestingly, when myosin IIb expression and MyH7B expression were simultaneously knocked-down in neurons, a third, more pronounced phenotype emerged. Together, our data provide evidence that distinct myosin II isoforms work together to regulate synapse structure and function in cultured hippocampal neurons. Thus, myosin II motor activity is emerging as a broad regulatory mechanism for control over complex actin networks within dendritic spines.


Asunto(s)
Miosinas Cardíacas/fisiología , Cadenas Pesadas de Miosina/fisiología , Neuronas/metabolismo , Sinapsis/fisiología , Actinas/ultraestructura , Animales , Miosinas Cardíacas/biosíntesis , Miosinas Cardíacas/genética , Células Cultivadas , Clonación Molecular , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Potenciales Postsinápticos Excitadores , Femenino , Técnicas de Silenciamiento del Gen , Hipocampo/citología , Humanos , Masculino , Potenciales Postsinápticos Miniatura , Cadenas Pesadas de Miosina/biosíntesis , Cadenas Pesadas de Miosina/genética , Neuronas/ultraestructura , Miosina Tipo IIB no Muscular/biosíntesis , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Sinapsis/ultraestructura
9.
J Immunol ; 183(1): 27-31, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19535635

RESUMEN

Autoimmune attack on the heart is linked to host immune responses against cardiac myosin, the most abundant protein in the heart. Although adaptive immunity is required for disease, little is known about innate immune mechanisms. In this study we report that human cardiac myosin (HCM) acted as an endogenous ligand to directly stimulate human TLRs 2 and 8 and to activate human monocytes to release proinflammatory cytokines. In addition, pathogenic epitopes of human cardiac myosin, the S2 fragment peptides S2-16 and S2-28, stimulated TLRs directly and activated human monocytes. Our data suggest that cardiac myosin and its pathogenic T cell epitopes may link innate and adaptive immunity in a novel mechanism that could promote chronic inflammation in the myocardium.


Asunto(s)
Miosinas Cardíacas/fisiología , Inmunidad Innata , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/metabolismo , Receptor Toll-Like 2/fisiología , Receptor Toll-Like 8/fisiología , Línea Celular , Línea Celular Tumoral , Citocinas/metabolismo , Silenciador del Gen/inmunología , Humanos , Inmunidad Innata/genética , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/fisiología , Monocitos/inmunología , Monocitos/metabolismo , Miocarditis/inmunología , Miocarditis/metabolismo , Miocarditis/patología , Miocitos Cardíacos/patología , Péptidos/genética , Péptidos/inmunología , Péptidos/metabolismo , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/genética , Receptor Toll-Like 8/deficiencia , Receptor Toll-Like 8/genética
10.
Dev Biol ; 336(1): 20-9, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19769958

RESUMEN

Mechanisms coupling heart function and cardiac morphogenesis can be accessed in lower vertebrate embryos that can survive to swimming tadpole stages on diffused oxygen. Forward genetic screens in Xenopus tropicalis have identified more than 80 mutations affecting diverse developmental processes, including cardiac morphogenesis and function. In the first positional cloning of a mutation in X. tropicalis, we show that non-contractile hearts in muzak (muz) embryos are caused by a premature stop codon in the cardiac myosin heavy chain gene myh6. The mutation deletes the coiled-coil domain responsible for polymerization into thick filaments, severely disrupting the cardiomyocyte cytoskeleton. Despite the lack of contractile activity and absence of a major structural protein, early stages of cardiac morphogenesis including looping and chamber formation are grossly normal. Muz hearts subsequently develop dilated chambers with compressed endocardium and fail to form identifiable cardiac valves and trabeculae.


Asunto(s)
Miosinas Cardíacas/genética , Codón sin Sentido , Contracción Miocárdica/genética , Cadenas Pesadas de Miosina/genética , Proteínas de Xenopus/genética , Xenopus/genética , Animales , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/fisiología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Corazón/fisiología , Immunoblotting , Inmunohistoquímica , Hibridación in Situ , Masculino , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xenopus/embriología , Xenopus/crecimiento & desarrollo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/fisiología
11.
Heart Fail Rev ; 14(4): 289-98, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19234787

RESUMEN

Decreased systolic function is a central factor in the pathogenesis of heart failure, yet there are no safe medical therapies to improve cardiac function in patients. Currently available inotropes, such as dobutamine and milrinone, increase cardiac contractility at the expense of increased intracellular concentrations of calcium and cAMP, contributing to increased heart rate, hypotension, arrhythmias, and mortality. These adverse effects are inextricably linked to their inotropic mechanism of action. A new class of pharmacologic agents, cardiac myosin activators, directly targets the kinetics of the myosin head. In vitro studies have demonstrated that these agents increase the rate of effective myosin cross-bridge formation, increasing the duration and amount of myocyte contraction, and inhibit non-productive consumption of ATP, potentially improving myocyte energy utilization, with no effect on intracellular calcium or cAMP. Animal models have shown that this novel mechanism increases the systolic ejection time, resulting in improved stroke volume, fractional shortening, and hemodynamics with no effect on myocardial oxygen demand, culminating in significant increases in cardiac efficiency. A first-in-human study in healthy volunteers with the lead cardiac myosin activator, CK-1827452, as well as preliminary results from a study in patients with stable chronic heart failure, have extended these findings to humans, demonstrating significant increases in systolic ejection time, fractional shortening, stroke volume, and cardiac output. These studies suggest that cardiac myosin activators offer the promise of a safe and effective treatment for heart failure. A program of clinical studies are being planned to test whether CK-1827452 will fulfill that promise.


Asunto(s)
Miosinas Cardíacas/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Urea/análogos & derivados , Animales , Miosinas Cardíacas/fisiología , Cardiotónicos/uso terapéutico , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Humanos , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Urea/administración & dosificación , Urea/farmacología , Urea/uso terapéutico , Función Ventricular Izquierda/efectos de los fármacos , Función Ventricular Izquierda/fisiología
12.
Gene ; 697: 159-164, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30794915

RESUMEN

Mutations in the MYH7 gene are the source of an allelic series of diseases, including various cardiomyopathies and skeletal myopathies that usually manifest in adulthood. We observed a 1.5 y.o. male patient with congenital weaknesses of the axial muscles, "dropped head" syndrome, and dilated cardiomyopathy. The clinical evaluation included medical history, an echocardiogram, electromyography, and a histopathological study. The genetic evaluation included whole exome sequencing. Muscle biopsy samples from the proband were used for mRNA extraction. We revealed a novel genetic variant c.5655 + 5G > C in the MYH7 gene. The analysis of the cDNA showed an in-frame skipping of exon 38 (p.1854_1885del). This variant and two previously published mutations (c.5655G > A and c.5655 + 1G > A), also presumably leading to exon 38 skipping, were studied by expression analysis in the HEK293T cell line transfected with 4 plasmids containing the MYH7 minigene (wt, c.5655G > C, c.5655 + 1G > A and c.5655 + 5G > A). A quantitative difference in expression was shown for cell lines with each of the three mutant plasmids. All mutation carriers had a similar phenotype and included congenital axial myopathy and variable cardiac involvement. Prominent dropped head syndrome was mentioned in all patients. Early-onset axial myopathy with a dropped head syndrome is a distinct clinical entity within MYH7-related disorders. We suggest that mutations in the MYH7 gene affecting the C-terminal domain of beta-myosin heavy chain should also be considered as a possible cause in cases of early-onset myopathy with "dropped head" syndrome.


Asunto(s)
Miosinas Cardíacas/genética , Miopatías Estructurales Congénitas/genética , Cadenas Pesadas de Miosina/genética , Adulto , Miosinas Cardíacas/fisiología , Electromiografía , Femenino , Estudios de Asociación Genética , Cabeza/fisiología , Humanos , Lactante , Masculino , Músculo Esquelético , Enfermedades Musculares/genética , Mutación , Cadenas Pesadas de Miosina/fisiología , Linaje
13.
J Gen Physiol ; 151(1): 77-89, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30573635

RESUMEN

The loss of cardiac myosin binding protein C (cMyBP-C) results in left ventricular dilation, cardiac hypertrophy, and impaired ventricular function in both constitutive and conditional cMyBP-C knockout (MYBPC3 null) mice. It remains unclear whether the structural and functional phenotypes expressed in the MYBPC3 null mouse are reversible, which is an important question, since reduced expression of cMyBP-C is an important cause of hypertrophic cardiomyopathy in humans. To investigate this question, we generated a cardiac-specific transgenic mouse model using a Tet-Off inducible system to permit the controlled expression of WT cMyBP-C on the MYBPC3 null background. Functional Tet-Off mice expressing WT cMyBP-C (FT-WT) were generated by crossing tetracycline transactivator mice with responder mice carrying the WT cMyBP-C transgene. Prior to dietary doxycycline administration, cMyBP-C was expressed at normal levels in FT-WT myocardium, which exhibited similar levels of steady-state force and in vivo left ventricular function as WT mice. Introduction of dietary doxycycline for four weeks resulted in a partial knockdown of cMyBP-C expression and commensurate impairment of systolic and diastolic function to levels approaching those observed in MYBPC 3 null mice. Subsequent withdrawal of doxycycline from the diet resulted in the reexpression of cMyBP-C to levels comparable to those observed in WT mice, along with near-complete recovery of in vivo ventricular function. These results show that the cardiac phenotypes associated with MYBPC3 null mice are reversible. Our work also validates the use of the Tet-Off inducible system as a means to study the mechanisms underlying hypertrophic cardiomyopathy.


Asunto(s)
Miosinas Cardíacas/metabolismo , Proteínas Portadoras/metabolismo , Función Ventricular Izquierda/fisiología , Animales , Miosinas Cardíacas/fisiología , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/fisiopatología , Diástole/efectos de los fármacos , Diástole/fisiología , Doxiciclina/farmacología , Ratones , Ratones Noqueados , Ratones Transgénicos , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Fenotipo , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo , Sarcómeros/fisiología , Sístole/efectos de los fármacos , Sístole/fisiología , Función Ventricular Izquierda/efectos de los fármacos
14.
Free Radic Biol Med ; 44(1): 14-23, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18045543

RESUMEN

We determined the effects of peroxynitrite (ONOO-) on cardiac myosin, actin, and thin filaments in order to more clearly understand the impact of this reactive compound in ischemia/reperfusion injury and heart failure. Actin filaments, native thin filaments, and alpha-cardiac myosin from rat hearts were exposed to ONOO- in the presence of 2 mM bicarbonate. Filament velocities over myosin, calcium sensitivity, and relative force generated by myosin were assessed in an in vitro motility assay in the absence of reducing agents. ONOO- concentrations > or =10 microM significantly reduced the velocities of thin filaments or bare actin filaments over alpha-cardiac myosin when any of these proteins were exposed individually. These functional deficits were linearly related to the degree of tyrosine nitration, with myosin being the most sensitive. However, at 10 microM ONOO- the calcium sensitivity of thin filaments remained unchanged. Cotreatment of myosin and thin filaments, analogous to the in vivo situation, resulted in a significantly greater functional deficit. The load supported by myosin after ONOO- exposure was estimated using mixtures experiments to be increased threefold. These data suggest that nitration of myofibrillar proteins can contribute to cardiac contractile dysfunction in pathologic states in which ONOO- is liberated.


Asunto(s)
Proteínas Motoras Moleculares/efectos de los fármacos , Contracción Miocárdica , Miofibrillas/efectos de los fármacos , Ácido Peroxinitroso/farmacología , Actinas/efectos de los fármacos , Actinas/fisiología , Algoritmos , Animales , Calcio/metabolismo , Miosinas Cardíacas/efectos de los fármacos , Miosinas Cardíacas/fisiología , Técnicas In Vitro , Modelos Moleculares , Proteínas Motoras Moleculares/fisiología , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Miofibrillas/metabolismo , Estrés Oxidativo , Ácido Peroxinitroso/metabolismo , Ratas , Especies Reactivas de Oxígeno
15.
Sci STKE ; 2007(404): pe51, 2007 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-17878409

RESUMEN

Disruption of cell architecture and change of energy metabolism are two traits of malignant cells. Yet, there was scant evidence that these two cancer hallmarks involved perturbations of a common signaling pathway. Enter LKB1, a kinase that is a tumor suppressor and that is an upstream activator of the adenosine monophosphate (AMP)-activated protein kinase (AMPK), a key sensor of cellular energy status. Four studies now reveal that LKB1 signals through AMPK to facilitate the formation of tight junctions and to maintain epithelial polarity. Thus, LKB1 appears to be a novel class of tumor suppressor that acts as an energy-sensing and polarity checkpoint.


Asunto(s)
Polaridad Celular/fisiología , Proteínas de Drosophila/fisiología , Metabolismo Energético/fisiología , Complejos Multienzimáticos/fisiología , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Uniones Estrechas/fisiología , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Adenosina Trifosfato/metabolismo , Animales , Miosinas Cardíacas/fisiología , Perros , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Cadenas Ligeras de Miosina/fisiología , Síndrome de Peutz-Jeghers/genética , Fosforilación , Proteínas Quinasas/química , Proteínas Quinasas/genética , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/fisiología
16.
Ann N Y Acad Sci ; 1123: 96-104, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18375581

RESUMEN

Cardiac muscle performance can be determined by factors intrinsic to each cardiac muscle cell, such as protein isoform expression. One protein whose expression plays a major role in determining cardiac performance is myosin. Myosin is the heart's molecular motor which transduces the chemical energy from ATP hydrolysis into the mechanical energy of each heartbeat. Alterations of myosin isoform expression are routinely associated with acquired and inherited cases of cardiomyopathy. For example, human heart failure is consistently associated with increased expression of a slow myosin motor isoform and a concomitant decreased expression of the heart's fast myosin motor isoform. Further, mutations of the cardiac myosin gene are the most common cause of inherited hypertrophic cardiomyopathy. Transgenic animal studies have provided insight into cardiac functional effects caused by myosin isoform gene switching (fast-to-slow myosin or slow-to-fast myosin) or by expression of a disease-related mutant motor. More direct structure-function analysis using acute gene transfer of myosin motors provides evidence that the inotropic state of cardiac muscle can be affected by motor protein isoform shifting independent of intracellular calcium handling. Because most therapies for the diseased heart target intracellular calcium handling, acute gene transfer of cardiac molecular motors to modulate heart performance offers a novel therapeutic strategy for the compromised heart. Although the development of safe vectors for therapeutic myosin gene delivery are in their infancy, studies focused on acute genetic engineering of the heart's molecular motor will provide a foundation for therapeutic vector development and insight into mechanisms that contribute to cardiomyopathy.


Asunto(s)
Técnicas de Transferencia de Gen , Corazón/fisiología , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/fisiología , Animales , Miosinas Cardíacas/genética , Miosinas Cardíacas/fisiología , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Ingeniería Genética/métodos , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Miosinas Ventriculares/genética , Miosinas Ventriculares/fisiología
17.
Circ Res ; 99(3): 323-31, 2006 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16809551

RESUMEN

Although it is well known that mutations in the cardiac regulatory myosin light chain-2 (mlc-2) gene cause hypertrophic cardiomyopathy, the precise in vivo structural and functional roles of MLC-2 in the heart are only poorly understood. We have isolated a mutation in zebrafish, tell tale heart (tel(m225)), which selectively perturbs contractility of the embryonic heart. By positional cloning, we identified tel to encode the zebrafish mlc-2 gene. In contrast to mammals, zebrafish have only 1 cardiac-specific mlc-2 gene, which we find to be expressed in atrial and ventricular cardiomyocytes during early embryonic development, but also in the adult heart. Accordingly, loss of zMLC-2 function cannot be compensated for by upregulation of another mlc-2 gene. Surprisingly, ultrastructural analysis of tel cardiomyocytes reveals complete absence of organized thick myofilaments. Thus, our findings provide the first in vivo evidence that cardiac MLC-2 is required for thick-filament stabilization and contractility in the vertebrate heart.


Asunto(s)
Miosinas Cardíacas/fisiología , Corazón/crecimiento & desarrollo , Corazón/fisiología , Desarrollo de Músculos , Contracción Miocárdica , Cadenas Ligeras de Miosina/fisiología , Animales , Miosinas Cardíacas/metabolismo , Embrión no Mamífero , Corazón/embriología , Atrios Cardíacos/citología , Ventrículos Cardíacos/citología , Mutación , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Pez Cebra
18.
Open Biol ; 8(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29669825

RESUMEN

Myosin transduces ATP free energy into mechanical work in muscle. Cardiac muscle has dynamically wide-ranging power demands on the motor as the muscle changes modes in a heartbeat from relaxation, via auxotonic shortening, to isometric contraction. The cardiac power output modulation mechanism is explored in vitro by assessing single cardiac myosin step-size selection versus load. Transgenic mice express human ventricular essential light chain (ELC) in wild- type (WT), or hypertrophic cardiomyopathy-linked mutant forms, A57G or E143K, in a background of mouse α-cardiac myosin heavy chain. Ensemble motility and single myosin mechanical characteristics are consistent with an A57G that impairs ELC N-terminus actin binding and an E143K that impairs lever-arm stability, while both species down-shift average step-size with increasing load. Cardiac myosin in vivo down-shifts velocity/force ratio with increasing load by changed unitary step-size selections. Here, the loaded in vitro single myosin assay indicates quantitative complementarity with the in vivo mechanism. Both have two embedded regulatory transitions, one inhibiting ADP release and a second novel mechanism inhibiting actin detachment via strain on the actin-bound ELC N-terminus. Competing regulators filter unitary step-size selection to control force-velocity modulation without myosin integration into muscle. Cardiac myosin is muscle in a molecule.


Asunto(s)
Miosinas Cardíacas/fisiología , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiología , Animales , Miosinas Cardíacas/química , Miosinas Cardíacas/genética , Humanos , Ratones , Ratones Transgénicos , Modelos Moleculares , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/genética , Miosinas Ventriculares/química , Miosinas Ventriculares/genética , Miosinas Ventriculares/fisiología
19.
Gene Expr Patterns ; 7(7): 738-45, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17638597

RESUMEN

Mrf4 (Myf6) is a member of the basic helix-loop-helix (bHLH) myogenic regulatory transcription factor (MRF) family, which also contains Myod, Myf5 and myogenin. Mrf4 is implicated in commitment of amniote cells to skeletal myogenesis and is also abundantly expressed in many adult muscle fibres. The specific role of Mrf4 is unclear both because mrf4 null mice are viable, suggesting redundancy with other MRFs, and because of genetic interactions at the complex mrf4/myf5 locus. We report the cloning and expression of an mrf4 gene from zebrafish, Danio rerio, which shows conservation of linkage to myf5. Mrf4 mRNA accumulates in a subset of terminally differentiated muscle fibres in parallel with myosin protein in the trunk and fin. Although most, possibly all, trunk muscle expresses mrf4, the level of mRNA is dynamically regulated. No expression is detected in muscle precursor cell populations prior to myosin accumulation. Moreover, mrf4 expression is not detected in head muscles, at least at early stages. As fish mature, mrf4 expression is pronounced in the region of slow muscle fibres.


Asunto(s)
Factores Reguladores Miogénicos/biosíntesis , Factores Reguladores Miogénicos/fisiología , Secuencia de Aminoácidos , Amnios/citología , Animales , Miosinas Cardíacas/biosíntesis , Miosinas Cardíacas/fisiología , Regulación de la Expresión Génica , Modelos Biológicos , Datos de Secuencia Molecular , Músculos/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Miogenina/metabolismo , Cadenas Ligeras de Miosina/biosíntesis , Cadenas Ligeras de Miosina/fisiología , Filogenia , Homología de Secuencia de Aminoácido , Distribución Tisular , Pez Cebra
20.
PLoS One ; 12(4): e0174690, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28423017

RESUMEN

Myosin motors in cardiac ventriculum convert ATP free energy to the work of moving blood volume under pressure. The actin bound motor cyclically rotates its lever-arm/light-chain complex linking motor generated torque to the myosin filament backbone and translating actin against resisting force. Previous research showed that the unloaded in vitro motor is described with high precision by single molecule mechanical characteristics including unitary step-sizes of approximately 3, 5, and 8 nm and their relative step-frequencies of approximately 13, 50, and 37%. The 3 and 8 nm unitary step-sizes are dependent on myosin essential light chain (ELC) N-terminus actin binding. Step-size and step-frequency quantitation specifies in vitro motor function including duty-ratio, power, and strain sensitivity metrics. In vivo, motors integrated into the muscle sarcomere form the more complex and hierarchically functioning muscle machine. The goal of the research reported here is to measure single myosin step-size and step-frequency in vivo to assess how tissue integration impacts motor function. A photoactivatable GFP tags the ventriculum myosin lever-arm/light-chain complex in the beating heart of a live zebrafish embryo. Detected single GFP emission reports time-resolved myosin lever-arm orientation interpreted as step-size and step-frequency providing single myosin mechanical characteristics over the active cycle. Following step-frequency of cardiac ventriculum myosin transitioning from low to high force in relaxed to auxotonic to isometric contraction phases indicates that the imposition of resisting force during contraction causes the motor to down-shift to the 3 nm step-size accounting for >80% of all the steps in the near-isometric phase. At peak force, the ATP initiated actomyosin dissociation is the predominant strain inhibited transition in the native myosin contraction cycle. The proposed model for motor down-shifting and strain sensing involves ELC N-terminus actin binding. Overall, the approach is a unique bottom-up single molecule mechanical characterization of a hierarchically functional native muscle myosin.


Asunto(s)
Actinas/química , Actomiosina/química , Miosinas Cardíacas/química , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Cadenas Ligeras de Miosina/química , Actinas/genética , Actinas/fisiología , Actomiosina/genética , Actomiosina/fisiología , Animales , Fenómenos Biomecánicos , Miosinas Cardíacas/genética , Miosinas Cardíacas/fisiología , Embrión no Mamífero , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Contracción Isométrica , Miocardio/ultraestructura , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/fisiología , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Imagen Individual de Molécula , Pez Cebra/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda