Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.210
Filtrar
Más filtros

Publication year range
1.
Mol Ther ; 32(3): 619-636, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38310355

RESUMEN

Mucopolysaccharidosis type II (MPS II), or Hunter syndrome, is a rare X-linked recessive lysosomal storage disorder due to a mutation in the lysosomal enzyme iduronate-2-sulfatase (IDS) gene. IDS deficiency leads to a progressive, multisystem accumulation of glycosaminoglycans (GAGs) and results in central nervous system (CNS) manifestations in the severe form. We developed up to clinical readiness a new hematopoietic stem cell (HSC) gene therapy approach for MPS II that benefits from a novel highly effective transduction protocol. We first provided proof of concept of efficacy of our approach aimed at enhanced IDS enzyme delivery to the CNS in a murine study of immediate translational value, employing a lentiviral vector (LV) encoding a codon-optimized human IDS cDNA. Then the therapeutic LV was tested for its ability to efficiently and safely transduce bona fide human HSCs in clinically relevant conditions according to a standard vs. a novel protocol that demonstrated superior ability to transduce bona fide long-term repopulating HSCs. Overall, these results provide strong proof of concept for the clinical translation of this approach for the treatment of Hunter syndrome.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Humanos , Animales , Ratones , Mucopolisacaridosis II/terapia , Mucopolisacaridosis II/tratamiento farmacológico , Iduronato Sulfatasa/genética , Iduronato Sulfatasa/metabolismo , Terapia Genética , Sistema Nervioso Central/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Células Madre Hematopoyéticas/metabolismo
2.
Biochem Biophys Res Commun ; 696: 149490, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38241811

RESUMEN

The Lysosomal Storage disease known as Mucopolysaccharidosis type II, is caused by mutations affecting the iduronate-2-sulfatase required for heparan and dermatan sulfate catabolism. The central nervous system (CNS) is mostly and severely affected by the accumulation of both substrates. The complexity of the CNS damage observed in MPS II patients has been limitedly explored. The use of mass spectrometry (MS)-based proteomics tools to identify protein profiles may yield valuable information about the pathological mechanisms of Hunter syndrome. In this further study, we provide a new comparative proteomic analysis of MPS II models by using a pipeline consisting of the identification of native protein complexes positioned selectively by using a specific antibody, coupled with mass spectrometry analysis, allowing us to identify changes involving in a significant number of new biological functions, including a specific brain antioxidant response, a down-regulated autophagic, the suppression of sulfur catabolic process, a prominent liver immune response and the stimulation of phagocytosis among others.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Humanos , Mucopolisacaridosis II/genética , Proteómica , Iduronato Sulfatasa/genética , Iduronato Sulfatasa/metabolismo , Glicosaminoglicanos/metabolismo , Encéfalo/metabolismo
3.
Mol Genet Metab ; 142(3): 108507, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815294

RESUMEN

Mucopolysaccharidoses are inherited metabolic diseases caused by mutations in genes encoding enzymes required for degradation of glycosaminoglycans. A lack or severe impairment of activity of these enzymes cause accumulation of GAGs which is the primary biochemical defect. Depending on the kind of the deficient enzyme, there are 12 types and subtypes of MPS distinguished. Despite the common primary metabolic deficit (inefficient GAG degradation), the course and symptoms of various MPS types can be different, though majority of the diseases from the group are characterized by severe symptoms and significantly shortened live span. Here, we analysed the frequency of specific, direct causes of death of patients with different MPS types, the subject which was not investigated comprehensively to date. We examined a total of 1317 cases of death among MPS patients, including 393 cases of MPS I, 418 cases of MPS II, 232 cases of MPS III, 45 cases of MPS IV, 208 cases of MPS VI, and 22 cases of MPS VII. Our analyses indicated that the most frequent causes of death differ significantly between MPS types, with cardiovascular and respiratory failures being predominant in MPS I, MPS II, and MPS VI, neurological deficits in MPS III, respiratory issues in MPS IV, and hydrops fetalis in MPS VII. Results of such studies suggest what specific clinical problems should be considered with the highest priority in specific MPS types, apart from attempts to correct the primary causes of the diseases, to improve the quality of life of patients and to prolong their lives.


Asunto(s)
Causas de Muerte , Mucopolisacaridosis , Humanos , Mucopolisacaridosis/genética , Mucopolisacaridosis/complicaciones , Masculino , Niño , Femenino , Preescolar , Adolescente , Lactante , Adulto , Adulto Joven , Recién Nacido , Glicosaminoglicanos/metabolismo , Persona de Mediana Edad , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/mortalidad
4.
Cell Biochem Funct ; 42(2): e3932, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332678

RESUMEN

Mucopolysaccharidosis type II (MPS II) is an inborn error of the metabolism resulting from several possible mutations in the gene coding for iduronate-2-sulfatase (IDS), which leads to a great clinical heterogeneity presented by these patients. Many studies demonstrate the involvement of oxidative stress in the pathogenesis of inborn errors of metabolism, and mitochondrial dysfunction and oxidative stress can be related since most of reactive oxygen species come from mitochondria. Cellular models have been used to study different diseases and are useful in biochemical research to investigate them in a new promising way. The aim of this study is to develop a heterozygous cellular model for MPS II and analyze parameters of oxidative stress and mitochondrial dysfunction and investigate the in vitro effect of genistein and coenzyme Q10 on these parameters for a better understanding of the pathophysiology of this disease. The HP18 cells (heterozygous c.261_266del6/c.259_261del3) showed almost null results in the activity of the IDS enzyme and presented accumulation of glycosaminoglycans (GAGs), allowing the characterization of this knockout cellular model by MPS II gene editing. An increase in the production of reactive species was demonstrated (p < .05 compared with WT vehicle group) and genistein at concentrations of 25 and 50 µm decreased in vitro its production (p < .05 compared with HP18 vehicle group), but there was no effect of coenzyme Q10 in this parameter. There was a tendency for lysosomal pH change in HP18 cells in comparison to WT group and none of the antioxidants tested demonstrated any effect on this parameter. There was no increase in the activity of the antioxidant enzymes superoxide dismutase and catalase and oxidative damage to DNA in HP18 cells in comparison to WT group and neither genistein nor coenzyme q10 had any effect on these parameters. Regarding mitochondrial membrane potential, genistein induced mitochondrial depolarization in both concentrations tested (p < .05 compared with HP18 vehicle group and compared with WT vehicle group) and incubation with coenzyme Q10 demonstrated no effect on this parameter. In conclusion, it is hypothesized that our cellular model could be compared with a milder MPS II phenotype, given that the accumulation of GAGs in lysosomes is not as expressive as another cellular model for MPS II presented in the literature. Therefore, it is reasonable to expect that there is no mitochondrial depolarization and no DNA damage, since there is less lysosomal impairment, as well as less redox imbalance.


Asunto(s)
Iduronato Sulfatasa , Enfermedades Mitocondriales , Mucopolisacaridosis II , Ubiquinona/análogos & derivados , Humanos , Mucopolisacaridosis II/tratamiento farmacológico , Mucopolisacaridosis II/genética , Genisteína/farmacología , Potencial de la Membrana Mitocondrial , Estrés Oxidativo , Iduronato Sulfatasa/metabolismo , Iduronato Sulfatasa/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo
5.
Neurol Sci ; 45(1): 365-367, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37792110

RESUMEN

A 27-year-old female patient suffered from recurrent episodes of dizziness, visual rotation, and intermittent right-hand numbness over one month. Symptoms persisted and were triggered by rotating the head to the right or left for more than 10 seconds. Neurological examination showed that the symptoms were most pronounced when the head was rotated over 45 degrees to the right. Dynamic digital subtraction angiography (dDSA) was performed to confirm the diagnosis. Leftward head rotation caused occlusion of the right vertebral artery(VA) . However, the symptoms were mild, owing to sufficient compensation by the right posterior communicating artery (PCA) . Rightward head rotation exceeding 45 degrees resulted in occlusion of the left VA. The resultant symptoms were pronounced due to inadequate compensation of the left PCA. CT angiographic reconstruction showed bilateral vertebral arteries with tortuous loops of vessels at the level of the C2 vertebrae . CT images showed no cleavage between the left VA and the anterior surface of the left C2 transverse foramen. Conservative treatment was recommended considering the patient's young age and limited severity of her symptoms. Bow Hunter's syndrome is a rare neurovascular disorder characterized by dynamic occlusion of the VAs during head rotation, leading to inadequate blood flow to the posterior cerebral circulation. Bow hunter syndrome, where bilateral dynamic occlusion occurs without a discernible dominant side of the VA, is uncommon. The medical community must acknowledge cervical vertigo as a distinct disorder. dDSA remains the gold standard for its diagnosis.


Asunto(s)
Mucopolisacaridosis II , Insuficiencia Vertebrobasilar , Humanos , Femenino , Adulto , Insuficiencia Vertebrobasilar/diagnóstico por imagen , Mucopolisacaridosis II/complicaciones , Angiografía de Substracción Digital/efectos adversos , Angiografía Cerebral , Arteria Vertebral/diagnóstico por imagen , Arteria Vertebral/cirugía
6.
Childs Nerv Syst ; 40(5): 1603-1607, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38165414

RESUMEN

Mucopolysaccharidosis type II (MPS II) results from the genetic deficiency of a lysosomal enzyme and is associated with central nervous system (CNS) dysfunction. In Japan, in addition to intravenous enzyme administration, intracerebroventricular enzyme delivery through the Ommaya reservoir has recently gained approval. Nevertheless, the ideal approach for safely implanting the reservoir into the narrow ventricles of infantile MPS II patients remains uncertain. In this report, we present two cases of successful reservoir placement in infantile MPS II patients using ultrasound guidance via the anterior fontanelle, coupled with flameless electromagnetic neuronavigation.


Asunto(s)
Fontanelas Craneales , Mucopolisacaridosis II , Humanos , Neuronavegación/métodos , Fenómenos Electromagnéticos , Sistemas de Liberación de Medicamentos/métodos
7.
Paediatr Anaesth ; 34(1): 89-91, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37577929

RESUMEN

Toxic epidermal necrolysis and mucopolysaccharidosis are both rare diseases that pose significant airway maintenance challenges to anesthesiologists. In this report, we describe the anesthesia management in a 4-year-old male with mucopolysaccharidosis type II who developed toxic epidermal necrolysis and presented for ophthalmic surgical procedures. Combined use of propofol and ketamine with the support of high-flow nasal oxygen enabled adequate analgesia and sedation while maintaining spontaneous ventilation and airway patency. The strategy presented in this report may contribute to enhancing the safety of sedation in spontaneously breathing children with abnormal airways.


Asunto(s)
Anestesia , Ketamina , Mucopolisacaridosis II , Propofol , Síndrome de Stevens-Johnson , Masculino , Humanos , Niño , Preescolar , Síndrome de Stevens-Johnson/complicaciones , Síndrome de Stevens-Johnson/terapia , Anestesia/métodos , Mucopolisacaridosis II/complicaciones
8.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39201256

RESUMEN

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a rare, X-linked disorder caused by deficient activity of the enzyme iduronate-2-sulfatase. Signs and symptoms typically emerge at 1.5-4 years of age and may include cognitive impairment, depending on whether patients have the neuronopathic or non-neuronopathic form of the disease. Treatment is available in the form of enzyme replacement therapy (ERT) with recombinant iduronate-2-sulfatase (idursulfase). A systematic literature review was conducted to assess the evidence regarding efficacy, effectiveness, and safety of ERT with intravenous idursulfase for MPS II. Electronic databases were searched in January 2023, and 33 eligible articles were found. These were analyzed to evaluate the effects of intravenous idursulfase and the overall benefits and disadvantages in patient subgroups. Studies showed that intravenous idursulfase treatment resulted in improved short- and long-term clinical and patient-centered outcomes, accompanied by a favorable safety profile. Patients with non-neuronopathic MPS II had more pronounced improvements in clinical outcomes than those with neuronopathic MPS II. In addition, the review identified that improvements in clinical outcomes are particularly apparent if intravenous idursulfase is started early in life, strengthening previous recommendations for early ERT initiation to maximally benefit patients. This review provides a comprehensive summary of our current knowledge on the efficacy of ERT in different populations of patients with MPS II and will help to inform the overall management of the disease in an evolving treatment landscape.


Asunto(s)
Administración Intravenosa , Terapia de Reemplazo Enzimático , Iduronato Sulfatasa , Mucopolisacaridosis II , Mucopolisacaridosis II/tratamiento farmacológico , Humanos , Iduronato Sulfatasa/uso terapéutico , Iduronato Sulfatasa/administración & dosificación , Terapia de Reemplazo Enzimático/métodos , Resultado del Tratamiento
9.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542525

RESUMEN

Among the many lysosomal storage disorders (LSDs) that would benefit from the establishment of novel cell models, either patient-derived or genetically engineered, is mucopolysaccharidosis type II (MPS II). Here, we present our results on the establishment and characterization of two MPS II patient-derived stem cell line(s) from deciduous baby teeth. To the best of our knowledge, this is the first time a stem cell population has been isolated from LSD patient samples obtained from the dental pulp. Taking into account our results on the molecular and biochemical characterization of those cells and the fact that they exhibit visible and measurable disease phenotypes, we consider these cells may qualify as a valuable disease model, which may be useful for both pathophysiological assessments and in vitro screenings. Ultimately, we believe that patient-derived dental pulp stem cells (DPSCs), particularly those isolated from human exfoliated deciduous teeth (SHEDs), may represent a feasible alternative to induced pluripotent stem cells (iPSCs) in many labs with standard cell culture conditions and limited (human and economic) resources.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Mucopolisacaridosis II , Humanos , Células Madre , Línea Celular , Diente Primario , Lisosomas , Pulpa Dental , Diferenciación Celular/fisiología , Proliferación Celular
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(8): 916-924, 2024 Aug 10.
Artículo en Zh | MEDLINE | ID: mdl-39097272

RESUMEN

OBJECTIVE: To explore the clinical phenotype and genetic variant in a Chinese pedigree affected with Hunter syndrome and create immortalized cell lines for the affected pedigree members. METHODS: A pedigree of six members who had visited Xi'an Children's Hospital in July 2022 was selected as the study subject. Clinical data was collected. Whole exome sequencing was carried out for the pedigree members. Candidate variant was verified by Sanger sequencing. In addition, peripheral B lymphocytes were transfected with Epstein-Barr virus to create immortalized cell lines, which were then subjected to enzyme activity analysis. RESULTS: The patient, a five-year-and-seven-month-old boy, had exhibited stiff limbs and enlarged joints. He had developed hernia, scaphocephaly, and barrel chest from 3 months of age. His uncle also had stiff limbs, poor hearing, blindness, and right oblique inguinal hernia. Above features had resembled those of Hunter syndrome. Genetic testing revealed that both the child and his uncle had harbored an IDS (NM_000202.8): c.823G>A (p.D275N) variant, which was unreported previously. Bioinformatic analysis indicated that the D275 to be a highly conserved site, and the D275N variant may affect the stability of the protein's spatial conformation, thereby decrease the catalytic activity of the enzyme. The successfully constructed immortalized lymphoblastoid cell lines for the child and his parents showed increased volume, irregular shape, burr structure and cluster growth. And the value of IDS activity of the patient's immortalized lymphoblastoid cells was below the limit of detection. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was classified as likely pathogenic (PS3+PM2_Supporting+PM5+PP1+PP3). CONCLUSION: Above finding has enriched the phenotypic and mutational spectra of Hunter syndrome, and provided a basis for the genetic counseling for this pedigree. The creation of immortalized cell lines has offered a model for further investigation of the impact of variant on the function of IDS and development of targeted drugs.


Asunto(s)
Mucopolisacaridosis II , Células Cultivadas , Linaje , Separación Celular , Técnicas de Cultivo de Célula , Preescolar , Mucopolisacaridosis II/genética , Asesoramiento Genético , Femenino , Fenotipo , Hernia/genética , Exosomas/genética , Secuenciación del Exoma , Craneosinostosis/genética , Mutación
11.
Gene Ther ; 30(3-4): 288-296, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35835952

RESUMEN

A hematopoietic stem cell (HSC) gene therapy (GT) using lentiviral vectors has attracted interest as a promising treatment approach for neuropathic lysosomal storage diseases. To proceed with the clinical development of HSC-GT, evaluation of the therapeutic potential of gene-transduced human CD34+ (hCD34+) cells in vivo is one of the key issues before human trials. Here, we established an immunodeficient murine model of mucopolysaccharidosis type II (MPS II), which are transplantable human cells, and demonstrated the application of those mice in evaluating the therapeutic efficacy of gene-modified hCD34+ cells. NOG/MPS II mice, which were generated using CRISPR/Cas9, exhibited a reduction of disease-causing enzyme iduronate-2-sulfatatase (IDS) activity and the accumulation of glycosaminoglycans in their tissues. When we transplanted hCD34+ cells transduced with a lentiviral vector carrying the IDS gene into NOG/MPS II mice, a significant amelioration of biochemical pathophenotypes was observed in the visceral and neuronal tissues of those mice. In addition, grafted cells in the NOG/MPS II mice showed the oligoclonal integration pattern of the vector, but no obvious clonal dominance was detected in the mice. Our findings indicate the promising application of NOG/MPS II mice to preclinical study of HSC-GT for MPS II using human cells.


Asunto(s)
Mucopolisacaridosis II , Humanos , Animales , Ratones , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/terapia , Mucopolisacaridosis II/metabolismo , Terapia Genética , Glicosaminoglicanos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Modelos Animales de Enfermedad
12.
Genet Med ; 25(2): 100330, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36445366

RESUMEN

Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is an X-linked condition caused by pathogenic variants in the iduronate-2-sulfatase gene. The resulting reduced activity of the enzyme iduronate-2-sulfatase leads to accumulation of glycosaminoglycans that can progressively affect multiple organ systems and impair neurologic development. In 2006, the US Food and Drug Administration approved idursulfase for intravenous enzyme replacement therapy for MPS II. After the data suggesting that early treatment is beneficial became available, 2 states, Illinois and Missouri, implemented MPS II newborn screening. Following a recommendation of the Advisory Committee on Heritable Disorders in Newborns and Children in February 2022, in August 2022, the US Secretary of Health and Human Services added MPS II to the Recommended Uniform Screening Panel, a list of conditions recommended for newborn screening. MPS II was added to the Recommended Uniform Screening Panel after a systematic evidence review reported the accuracy of screening, the benefit of presymptomatic treatment compared with usual case detection, and the feasibility of implementing MPS II newborn screening. This manuscript summarizes the findings of the evidence review that informed the Advisory Committee's decision.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Niño , Humanos , Recién Nacido , Estados Unidos , Mucopolisacaridosis II/diagnóstico , Mucopolisacaridosis II/genética , Tamizaje Neonatal , Ácido Idurónico , Iduronato Sulfatasa/uso terapéutico , Glicosaminoglicanos , Terapia de Reemplazo Enzimático/métodos
13.
Mol Genet Metab ; 140(3): 107652, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37506513

RESUMEN

BACKGROUND: Mucopolysaccharidosis II (MPS II) is a rare, X-linked lysosomal storage disease caused by pathogenic variants of the iduronate-2-sulfatase gene (IDS) and is characterized by a highly variable disease spectrum. MPS II severity is difficult to predict based on IDS variants alone; while some genotypes are associated with specific phenotypes, the disease course of most genotypes remains unknown. This study aims to refine the genotype-phenotype categorization by combining information from the scientific literature with data from two clinical studies in MPS II. METHODS: Genotype, cognitive, and behavioral data from 88 patients in two clinical studies (NCT01822184, NCT02055118) in MPS II were analyzed post hoc in combination with published information on IDS variants from the biomedical literature through a semi-automated multi-stage review process. The Differential Ability Scales, second edition (DAS-II) and the Vineland Adaptive Behavior Scales™, second edition (VABS-II) were used to measure cognitive function and adaptive behavior. RESULTS: The most common category of IDS variant was missense (47/88, 53.4% of total variants). The mean (standard deviation [SD]) baseline DAS-II General Conceptual Ability (GCA) and VABS-II Adaptive Behavior Composite (ABC) scores were 74.0 (16.4) and 82.6 (14.7), respectively. All identified IDS complete deletions/large rearrangements (n = 7) and large deletions (n = 1) were associated with a published 'severe' or 'predicted severe' progressive neuronopathic phenotype, characterized by central nervous system involvement. In categories comprising more than one participant, mean baseline DAS-II GCA scores (SD) were lowest among individuals with complete deletions/large rearrangements 64.0 (9.1, n = 4) and highest among those with splice site variants 83.8 (14.2, n = 4). Mean baseline VABS-II ABC scores (SD) were lowest among patients with unclassifiable variants 79.3 (4.9, n = 3) and highest among those with a splice site variant 87.2 (16.1, n = 5), in variant categories with more than one participant. CONCLUSIONS: Most patients in the studies had an MPS II phenotype categorized as 'severe' or 'predicted severe' according to classifications, as reported in the literature. Patients with IDS complete deletion/large rearrangement variants had lower mean DAS-II GCA scores than those with other variants, as well as low VABS-II ABC, confirming an association with the early progressive 'severe' (neuronopathic) disease. These data provide a starting point to improve the classification of MPS II phenotypes and the characterization of the genotype-phenotype relationship.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Humanos , Mucopolisacaridosis II/genética , Mutación , Iduronato Sulfatasa/genética , Genotipo , Gravedad del Paciente , Adaptación Psicológica
14.
Mol Genet Metab ; 140(4): 107709, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37922836

RESUMEN

Intravenous idursulfase is standard treatment for mucopolysaccharidosis II (MPS II) in Japan. In the interim analysis of this open-label, phase 1/2 study (Center for Clinical Trials, Japan Medical Association: JMA-IIA00350), intracerebroventricular (ICV) idursulfase beta was well tolerated, suppressed cerebrospinal fluid (CSF) heparan sulfate (HS) levels, and stabilized developmental decline over 100 weeks in Japanese children with MPS II. Here, we report the final study results, representing 5 years of ICV idursulfase beta treatment. Six male patients with MPS II and developmental delay were enrolled starting in June 2016 and followed until March 2021. Patients received up to 30 mg ICV idursulfase beta every 4 weeks. Outcomes included CSF HS levels, developmental age (DA) (assessed by the Kyoto Scale of Psychological Development), and safety (adverse events). Monitoring by laboratory biochemistry tests, urinary uronic tests, immunogenicity tests, and head computed tomography or magnetic resonance imaging were also conducted regularly. Following ICV idursulfase beta administration, mean CSF HS concentrations decreased from 7.75 µg/mL at baseline to 2.15 µg/mL at final injection (72.3% reduction). Mean DA increased from 23.2 months at screening to 36.0 months at final observation. In five patients with null mutations, mean DA at the final observation was higher than or did not regress compared with that of historical controls receiving intravenous idursulfase only, and the change in DA was greater in patients who started administration aged ≤3 years than in those aged >3 years (+28.7 vs -6.5 months). The difference in DA change versus historical controls in individual patients was +39.5, +40.8, +17.8, +10.5, +7.6 and - 4.5 (mean + 18.6). Common ICV idursulfase beta-related adverse events were vomiting, pyrexia, gastroenteritis, and upper respiratory tract infection (most mild/moderate). These results suggest that long-term ICV idursulfase beta treatment improved neurological symptoms in Japanese children with neuronopathic MPS II.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Niño , Humanos , Masculino , Mucopolisacaridosis II/patología , Japón , Terapia de Reemplazo Enzimático/métodos , Administración Intravenosa , Investigación
15.
Mol Genet Metab ; 140(1-2): 107557, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36907694

RESUMEN

We describe our experience with population-based newborn screening for mucopolysaccharidosis type II (MPS II) in 586,323 infants by measurement of iduronate-2-sulfatase activity in dried blood spots between December 12, 2017 and April 30, 2022. A total of 76 infants were referred for diagnostic testing, 0.01% of the screened population. Of these, eight cases of MPS II were diagnosed for an incidence of 1 in 73,290. At least four of the eight cases detected had an attenuated phenotype. In addition, cascade testing revealed a diagnosis in four extended family members. Fifty-three cases of pseudodeficiency were also identified, for an incidence of 1 in 11,062. Our data suggest that MPS II may be more common than previously recognized with a higher prevalence of attenuated cases.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Lactante , Recién Nacido , Humanos , Mucopolisacaridosis II/diagnóstico , Mucopolisacaridosis II/epidemiología , Mucopolisacaridosis II/genética , Tamizaje Neonatal , Incidencia , Familia
16.
Mol Genet Metab ; 138(4): 107539, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37023503

RESUMEN

Mucopolysaccharidosis type II (Hunter syndrome, MPS II) is an inherited X-linked recessive disease caused by deficiency of iduronate-2-sulfatase (IDS), resulting in the accumulation of the glycosaminoglycans (GAG) heparan and dermatan sulfates. Mouse models of MPS II have been used in several reports to study disease pathology and to conduct preclinical studies for current and next generation therapies. Here, we report the generation and characterization of an immunodeficient mouse model of MPS II, where CRISPR/Cas9 was employed to knock out a portion of the murine IDS gene on the NOD/SCID/Il2rγ (NSG) immunodeficient background. IDS-/- NSG mice lacked detectable IDS activity in plasma and all analyzed tissues and exhibited elevated levels of GAGs in those same tissues and in the urine. Histopathology revealed vacuolized cells in both the periphery and CNS of NSG-MPS II mice. This model recapitulates skeletal disease manifestations, such as increased zygomatic arch diameter and decreased femur length. Neurocognitive deficits in spatial memory and learning were also observed in the NSG-MPS II model. We anticipate that this new immunodeficient model will be appropriate for preclinical studies involving xenotransplantation of human cell products intended for the treatment of MPS II.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Humanos , Animales , Ratones , Mucopolisacaridosis II/terapia , Ratones Endogámicos NOD , Ratones SCID , Iduronato Sulfatasa/genética , Glicosaminoglicanos
17.
Clin Genet ; 103(6): 655-662, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36945845

RESUMEN

Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal storage disease caused by a disease-associated variant in the IDS gene, which encodes iduronate 2-sulfatase (IDS). We aimed to characterize the clinical characteristics and genotypes of the largest cohort of Chinese patients with MPS II and so gain a deeper understanding of natural disease progression. Patients with confirmed MPS II and without treatment were included. The disease was classified as severe in patients with neurological impairment, and as attenuated in patients aged >6 years without neurological impairment. Of the 201 male patients, 78.1% had severe MPS II. Cognitive regression occurred before age 6 years in 94.3% of patients. Of 122 IDS variants identified, 37 were novel. Among the large gene alteration types identified, only the frequency of IDS-IDS2 recombination was significantly higher in severe versus attenuated MPS II (P = 0.032). Some identified point variants could inform the understanding of genotype-phenotype correlations. In conclusion, this study showed that classification of the disease as attenuated should only be made in patients aged >6 years. Our findings expand the understanding of the genotype-phenotype relationship, inform the diagnostic process, and provide an indication of the likely prognosis.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Masculino , Humanos , Mucopolisacaridosis II/diagnóstico , Mucopolisacaridosis II/genética , Estudios Retrospectivos , Iduronato Sulfatasa/genética , Genotipo , Mutación
18.
Mol Pharm ; 20(11): 5901-5909, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37860991

RESUMEN

Mucopolysaccharidoses (MPSs) make up a group of lysosomal storage diseases characterized by the aberrant accumulation of glycosaminoglycans throughout the body. Patients with MPSs display various signs and symptoms, such as retinopathy, which is also observed in patients with MPS II. Unfortunately, retinal disorders in MPS II are resistant to conventional intravenous enzyme-replacement therapy because the blood-retinal barrier (BRB) impedes drug penetration. In this study, we show that a fusion protein, designated pabinafusp alfa, consisting of an antihuman transferrin receptor antibody and iduronate-2-sulfatase (IDS), crosses the BRB and reaches the retina in a murine model of MPS II. We found that retinal function, as assessed by electroretinography (ERG) in MPS II mice, deteriorated with age. Early intervention with repeated intravenous treatment of pabinafusp alfa decreased heparan sulfate deposition in the retina, optic nerve, and visual cortex, thus preserving or even improving the ERG response in MPS II mice. Histological analysis further revealed that pabinafusp alfa mitigated the loss of the photoreceptor layer observed in diseased mice. In contrast, recombinant nonfused IDS failed to reach the retina and hardly affected the retinal disease. These results support the hypothesis that transferrin receptor-targeted IDS can penetrate the BRB, thereby ameliorating retinal dysfunction in MPS II.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Enfermedades de la Retina , Animales , Ratones , Barrera Hematorretinal/metabolismo , Glicosaminoglicanos , Iduronato Sulfatasa/metabolismo , Iduronato Sulfatasa/uso terapéutico , Ácido Idurónico , Mucopolisacaridosis II/tratamiento farmacológico , Mucopolisacaridosis II/diagnóstico , Receptores de Transferrina , Enfermedades de la Retina/tratamiento farmacológico
19.
J Inherit Metab Dis ; 46(4): 695-704, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36840680

RESUMEN

The mucopolysaccharidosis (MPS) disorders have many potential new therapies on the horizon. Thus, historic control data on disease progression and variability are urgently needed. We conducted a 10-year prospective observational study of 55 children with MPS IH (N = 23), MPS IA (N = 10), non-neuronopathic MPS II (N = 13), and MPS VI (N = 9) to systematically evaluate bone and joint disease. Annual measurements included height, weight, and goniometry. Mixed effects modeling was used to evaluate changes over time. All participants had been treated with hematopoietic cell transplantation and/or enzyme replacement therapy. Height z-score decreased over time in MPS IH, MPS II, and MPS VI, but not MPS IA. Adult heights were 136 ± 10 cm in MPS IH, 161 ± 11 cm in MPS IA, 161 ± 14 cm in MPS II, and 128 ± 15 cm in MPS VI. Adult average BMI percentiles were high: 75 ± 30%ile in MPS IH, 71 ± 37%ile in MPS IA, 71 ± 25%ile in MPS II, and 60 ± 42%ile in MPS VI. Every participant had joint contractures of the shoulders, elbows, hips, and/or knees. Joint contractures remained stable over time. In conclusion, despite current treatments for MPS I, II, and VI, short stature and joint contractures persist. The elevation in average BMI may be related, in part, to physical inactivity due to the ongoing bone and joint disease. Data from this longitudinal historical control study may be used to expedite testing of experimental bone and joint directed therapies and to highlight the need for weight management as part of routine clinical care for patients with MPS.


Asunto(s)
Contractura , Artropatías , Mucopolisacaridosis , Mucopolisacaridosis II , Mucopolisacaridosis I , Mucopolisacaridosis VI , Niño , Adulto , Humanos , Estudios Prospectivos , Mucopolisacaridosis I/tratamiento farmacológico , Mucopolisacaridosis/terapia , Mucopolisacaridosis VI/tratamiento farmacológico , Mucopolisacaridosis II/tratamiento farmacológico
20.
Exp Cell Res ; 412(1): 113007, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34990619

RESUMEN

Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a rare, lysosomal disorder caused by mutations in a gene encoding iduronate-2-sulfatase (IDS). IDS deficiency results in an accumulation of glycosaminoglycans (GAGs) and secondary accumulations of other lipids in lysosomes. Symptoms of MPS II include a variety of soft and hard tissue problems, developmental delay, and deterioration of multiple organs. Enzyme replacement therapy is an approved treatment for MPS II, but fails to improve neuronal symptoms. Cell-based neuronal models of MPS II disease are needed for compound screening and drug development for the treatment of the neuronal symptoms in MPS II. In this study, three induced pluripotent stem cell (iPSC) lines were generated from three MPS II patient-derived dermal fibroblast cell lines that were differentiated into neural stem cells and neurons. The disease phenotypes were measured using immunofluorescence staining and Nile red dye staining. In addition, the therapeutic effects of recombinant human IDS enzyme, delta-tocopherol (DT), and hydroxypropyl-beta-cyclodextrin (HPBCD) were determined in the MPS II disease cells. Finally, the neural stem cells from two of the MPS II iPSC lines exhibited typical disease features including a deficiency of IDS activity, abnormal glycosaminoglycan storage, and secondary lipid accumulation. Enzyme replacement therapy partially rescued the disease phenotypes in these cells. DT showed a significant effect in reducing the secondary accumulation of lipids in the MPS II neural stem cells. In contrast, HPBCD displayed limited or no effect in these cells. Our data indicate that these MPS II cells can be used as a cell-based disease model to study disease pathogenesis, evaluate drug efficacy, and screen compounds for drug development.


Asunto(s)
Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Mucopolisacaridosis II/tratamiento farmacológico , Mucopolisacaridosis II/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/uso terapéutico , Línea Celular , Terapia de Reemplazo Enzimático , Glicosaminoglicanos/metabolismo , Humanos , Iduronato Sulfatasa/uso terapéutico , Células Madre Pluripotentes Inducidas/patología , Metabolismo de los Lípidos/efectos de los fármacos , Modelos Neurológicos , Mucopolisacaridosis II/patología , Células-Madre Neurales/patología , Fenotipo , Proteínas Recombinantes/uso terapéutico , Tocoferoles/uso terapéutico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda