Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Nat Immunol ; 22(6): 699-710, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34040226

RESUMEN

It is increasingly recognized that immune development within mucosal tissues is under the control of environmental factors during early life. However, the cellular mechanisms that underlie such temporally and regionally restrictive governance of these processes are unclear. Here, we uncover an extrathymic pathway of immune development within the colon that is controlled by embryonic but not bone marrow-derived macrophages, which determines the ability of these organs to receive invariant natural killer T (iNKT) cells and allow them to establish local residency. Consequently, early-life perturbations of fetal-derived macrophages result in persistent decreases of mucosal iNKT cells and is associated with later-life susceptibility or resistance to iNKT cell-associated mucosal disorders. These studies uncover a host developmental program orchestrated by ontogenically distinct macrophages that is regulated by microbiota, and they reveal an important postnatal function of macrophages that emerge in fetal life.


Asunto(s)
Colitis/inmunología , Mucosa Intestinal/inmunología , Listeriosis/inmunología , Macrófagos/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Animales , Proliferación Celular/genética , Colitis/microbiología , Colitis/patología , Colon/citología , Colon/embriología , Colon/inmunología , Colon/patología , Citocinas/metabolismo , Toxina Diftérica/administración & dosificación , Toxina Diftérica/inmunología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Microbioma Gastrointestinal/inmunología , Regulación del Desarrollo de la Expresión Génica/inmunología , Vida Libre de Gérmenes , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/embriología , Mucosa Intestinal/patología , Listeriosis/microbiología , Listeriosis/patología , Macrófagos/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , RNA-Seq , Transducción de Señal/genética , Transducción de Señal/inmunología
2.
Immunity ; 50(2): 462-476.e8, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30770246

RESUMEN

Although the fetal immune system is considered tolerogenic, preterm infants can suffer from severe intestinal inflammation, including necrotizing enterocolitis (NEC). Here, we demonstrate that human fetal intestines predominantly contain tumor necrosis factor-α (TNF-α)+CD4+CD69+ T effector memory (Tem) cells. Single-cell RNA sequencing of fetal intestinal CD4+ T cells showed a T helper 1 phenotype and expression of genes mediating epithelial growth and cell cycling. Organoid co-cultures revealed a dose-dependent, TNF-α-mediated effect of fetal intestinal CD4+ T cells on intestinal stem cell (ISC) development, in which low T cell numbers supported epithelial development, whereas high numbers abrogated ISC proliferation. CD4+ Tem cell frequencies were higher in inflamed intestines from preterm infants with NEC than in healthy infant intestines and showed enhanced TNF signaling. These findings reveal a distinct population of TNF-α-producing CD4+ T cells that promote mucosal development in fetal intestines but can also mediate inflammation upon preterm birth.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Feto/inmunología , Memoria Inmunológica/inmunología , Intestinos/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Linfocitos T CD4-Positivos/metabolismo , Células Epiteliales/citología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Femenino , Feto/metabolismo , Humanos , Recién Nacido , Mucosa Intestinal/embriología , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/inmunología , Intestinos/embriología , Intestinos/crecimiento & desarrollo , Ratones Endogámicos C57BL , Embarazo , Células Madre/citología , Células Madre/inmunología , Células Madre/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Cell ; 154(2): 274-84, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870119

RESUMEN

Due to its intense self-renewal kinetics and its simple repetitive architecture, the intestinal epithelium has become a prime model for studying adult stem cells in health and disease. Transgenic mouse models allow in vivo visualization and genetic lineage tracing of individual intestinal stem cells and their offspring. Fluorescently marked stem cells can be isolated for molecular analyses or can be cultured to build ever-expanding "mini-guts" in vitro. These studies are filling in the outlines of a robust homeostatic self-renewal process that defies some of the classical definitions of stem cell behavior, such as asymmetric division, quiescence, and exhaustion.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Animales , Técnicas de Cultivo de Célula , Humanos , Mucosa Intestinal/embriología , Mucosa Intestinal/inmunología , Ratones , Ratones Transgénicos , Receptores Acoplados a Proteínas G/metabolismo , Vía de Señalización Wnt
4.
Nat Immunol ; 13(8): 729-36, 2012 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-22706340

RESUMEN

Intestinal microfold cells (M cells) are an enigmatic lineage of intestinal epithelial cells that initiate mucosal immune responses through the uptake and transcytosis of luminal antigens. The mechanisms of M-cell differentiation are poorly understood, as the rarity of these cells has hampered analysis. Exogenous administration of the cytokine RANKL can synchronously activate M-cell differentiation in mice. Here we show the Ets transcription factor Spi-B was induced early during M-cell differentiation. Absence of Spi-B silenced the expression of various M-cell markers and prevented the differentiation of M cells in mice. The activation of T cells via an oral route was substantially impaired in the intestine of Spi-B-deficient (Spib(-/-)) mice. Our study demonstrates that commitment to the intestinal M-cell lineage requires Spi-B as a candidate master regulator.


Asunto(s)
Diferenciación Celular , Células Epiteliales/citología , Mucosa Intestinal/citología , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Animales , Linaje de la Célula , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Humanos , Inmunidad Mucosa/genética , Mucosa Intestinal/embriología , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ligando RANK/farmacología , Linfocitos T/inmunología
5.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G506-G520, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33470182

RESUMEN

The stem/progenitor cells of the developing intestine are biologically distinct from their adult counterparts. Here, we examine the microenvironmental cues that regulate the embryonic stem/progenitor population, focusing on the role of Notch pathway factor delta-like protein-1 (DLK1). mRNA-seq analyses of intestinal mesenchymal cells (IMCs) collected from embryonic day 14.5 (E14.5) or adult IMCs and a novel coculture system with E14.5 intestinal epithelial organoids were used. Following addition of recombinant DLK1 (rDLK) or Dlk1 siRNA (siDlk1), epithelial characteristics were compared using imaging, replating efficiency assays, qPCR, and immunocytochemistry. The intestinal phenotypes of littermate Dlk1+/+ and Dlk1-/- mice were compared using immunohistochemistry. Using transcriptomic analyses, we identified morphogens derived from the embryonic mesenchyme that potentially regulate the developing epithelial cells, to focus on Notch family candidate DLK1. Immunohistochemistry indicated that DLK1 was expressed exclusively in the intestinal stroma at E14.5 at the top of emerging villi, decreased after birth, and shifted to the intestinal epithelium in adulthood. In coculture experiments, addition of rDLK1 to adult IMCs inhibited organoid differentiation, whereas Dlk1 knockdown in embryonic IMCs increased epithelial differentiation to secretory lineage cells. Dlk1-/- mice had restricted Ki67+ cells in the villi base and increased secretory lineage cells compared with Dlk1+/+ embryos. Mesenchyme-derived DLK1 plays an important role in the promotion of epithelial stem/precursor expansion and prevention of differentiation to secretory lineages in the developing intestine.NEW & NOTEWORTHY Using a novel coculture system, transcriptomics, and transgenic mice, we investigated differential molecular signaling between the intestinal epithelium and mesenchyme during development and in the adult. We show that the Notch pathway factor delta-like protein-1 (DLK1) is stromally produced during development and uncover a new role for DLK1 in the regulation of intestinal epithelial stem/precursor expansion and differentiation to secretory lineages.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Comunicación Celular , Diferenciación Celular , Proliferación Celular , Células Madre Embrionarias/enzimología , Células Epiteliales/enzimología , Mucosa Intestinal/enzimología , Células del Estroma/enzimología , Animales , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Linaje de la Célula , Células Cultivadas , Técnicas de Cocultivo , Regulación del Desarrollo de la Expresión Génica , Mucosa Intestinal/embriología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Organoides , Vías Secretoras , Transducción de Señal , Nicho de Células Madre , Transcriptoma
6.
Int J Mol Sci ; 21(21)2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153048

RESUMEN

The intestine is an organ essential to organismal nutrient absorption, metabolic control, barrier function and immunoprotection. The Caenorhabditis elegans intestine consists of 20 cells harboring a dense intermediate filament network positioned below the apical plasma membrane that forms a junction-anchored sheath around the intestinal lumen. This evolutionarily conserved arrangement provides mechanical and overall stress-protection, and it serves as an important model for deciphering the role of intestinal architecture in metazoan biology. We recently reported that the loss-of-function mutation of the intestinal intermediate filament organizer IFO-1 perturbs this architecture, leading to reduced body size and reproduction. Here, we demonstrate that the IFO-1 mutation dramatically affects cholesterol metabolism. Mutants showed an increased sensitivity to cholesterol depletion, reduced cholesterol uptake, and cholesterol transfer to the gonads, which is also observed in worms completely lacking an intermediate filament network. Accordingly, we found striking similarities to transcriptome and lipidome profiles of a nuclear hormone receptor (NHR)-8 mutant. NHR-8 is homologous to mammalian LXR (liver X receptor) that serves as a sterol sensor and transcriptional regulator of lipid metabolism. Remarkably, increasing exogenous cholesterol partially rescues the developmental retardation in IFO-1 mutants. Our results uncover a novel link of the intestinal intermediate filament cytoskeleton to cholesterol metabolism that contributes to compromised growth and reproduction.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Colesterol/metabolismo , Proteínas de Filamentos Intermediarios/genética , Metabolismo de los Lípidos/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Colesterol/farmacología , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Filamentos Intermediarios/metabolismo , Filamentos Intermedios/metabolismo , Mucosa Intestinal/embriología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestructura , Intestinos/embriología , Intestinos/fisiología , Intestinos/ultraestructura , Metabolismo de los Lípidos/efectos de los fármacos , Lipidómica , Receptores Citoplasmáticos y Nucleares/fisiología , Transcriptoma/efectos de los fármacos
7.
Dev Biol ; 439(2): 92-101, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29684311

RESUMEN

During development, the embryo transitions from a metabolism favoring glycolysis to a metabolism favoring mitochondrial respiration. How metabolic shifts regulate developmental processes, or how developmental processes regulate metabolic shifts, remains unclear. To test the requirement of mitochondrial function in developing endoderm-derived tissues, we genetically inactivated the mitochondrial transcription factor, Tfam, using the Shh-Cre driver. Tfam mutants did not survive postnatally, exhibiting defects in lung development. In the developing intestine, TFAM-loss was tolerated until late fetal development, during which the process of villus elongation was compromised. While progenitor cell populations appeared unperturbed, markers of enterocyte maturation were diminished and villi were blunted. Loss of TFAM was also tested in the adult intestinal epithelium, where enterocyte maturation was similarly dependent upon the mitochondrial transcription factor. While progenitor cells in the transit amplifying zone of the adult intestine remained proliferative, intestinal stem cell renewal was dependent upon TFAM, as indicated by molecular profiling and intestinal organoid formation assays. Taken together, these studies point to critical roles for the mitochondrial regulator TFAM for multiple aspects of intestinal development and maturation, and highlight the importance of mitochondrial regulators in tissue development and homeostasis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas del Grupo de Alta Movilidad/fisiología , Mucosa Intestinal/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , Autorrenovación de las Células/fisiología , Proteínas de Unión al ADN/genética , Feto/metabolismo , Regulación de la Expresión Génica/genética , Glucólisis/genética , Glucólisis/fisiología , Proteínas del Grupo de Alta Movilidad/genética , Mucosa Intestinal/embriología , Mucosa Intestinal/crecimiento & desarrollo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Organogénesis/genética , Organogénesis/fisiología , Organoides/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo
8.
Cells Tissues Organs ; 208(1-2): 37-47, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32248197

RESUMEN

INTRODUCTION: Cytochrome (CYP) epoxygenases (CYP2C and CYP2J) and soluble epoxide hydrolase (sEH) participate in the metabolism of arachidonic acid and may also have a potential role in enterocyte differentiation. The first critical step in the study of intestinal cell differentiation is the determination of a suitable in vitro model, which must be as similar as possible to the conditions of a living organism. It is known that HT-29 and Caco2 cell lines derived from human colorectal carcinomas can differentiate into enterocyte-like cells in appropriate culture conditions. MATERIAL AND METHODS: We tested 4 different approaches of enterocyte-like differentiation and determined the most appropriate culture conditions for each model. Subsequently, the changes in the expression of CYP epoxygenases and sEH in undifferentiated and differentiated cells were measured by In-Cell ELISA. These results were compared with immunohistochemical profiles of expression of CYP epoxygenases and sEH in samples of human embryonic and fetal intestines as well as adult duodenum and colon. RESULTS: Our results show that sodium butyrate (NaBt)-differentiated HT-29 cells and spontaneously differentiated Caco2 cells resemble CYP epoxygenases and sEH profiles, corresponding with different types of intestines. CONCLUSION: Our study revealed that the most suitable models for the study of the role of CYP epoxygenases and sEH expression in differentiation of intestinal epithelium are NaBt-differentiated HT-29 cells and spontaneously differentiated Caco2 cells.


Asunto(s)
Diferenciación Celular , Sistema Enzimático del Citocromo P-450/metabolismo , Enterocitos/enzimología , Epóxido Hidrolasas/metabolismo , Mucosa Intestinal , Ácido Araquidónico/metabolismo , Células CACO-2 , Células HT29 , Humanos , Técnicas In Vitro , Mucosa Intestinal/embriología , Mucosa Intestinal/metabolismo , Intestinos/citología , Intestinos/embriología
9.
Development ; 142(12): 2163-72, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26023099

RESUMEN

The DNA methyltransferase Dnmt1 maintains DNA methylation patterns and genomic stability in several in vitro cell systems. Ablation of Dnmt1 in mouse embryos causes death at the post-gastrulation stage; however, the functions of Dnmt1 and DNA methylation in organogenesis remain unclear. Here, we report that Dnmt1 is crucial during perinatal intestinal development. Loss of Dnmt1 in intervillus progenitor cells causes global hypomethylation, DNA damage, premature differentiation, apoptosis and, consequently, loss of nascent villi. We further confirm the crucial role of Dnmt1 during crypt development using the in vitro organoid culture system, and illustrate a clear differential requirement for Dnmt1 in immature versus mature organoids. These results demonstrate an essential role for Dnmt1 in maintaining genomic stability during intestinal development and the establishment of intestinal crypts.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/fisiología , Metilación de ADN/genética , Inestabilidad Genómica/genética , Mucosa Intestinal/embriología , Organogénesis/genética , Células Madre/citología , Animales , Apoptosis/genética , Proliferación Celular/genética , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , Daño del ADN/genética , Regulación del Desarrollo de la Expresión Génica , Mucosa Intestinal/citología , Ratones , Ratones Noqueados , Datos de Secuencia Molecular
10.
Proc Natl Acad Sci U S A ; 112(9): 2770-5, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25730872

RESUMEN

The intestinal epithelium forms a barrier protecting the organism from microbes and other proinflammatory stimuli. The integrity of this barrier and the proper response to infection requires precise regulation of powerful immune homing signals such as tumor necrosis factor (TNF). Dysregulation of TNF leads to inflammatory bowel diseases (IBD), but the mechanism controlling the expression of this potent cytokine and the events that trigger the onset of chronic inflammation are unknown. Here, we show that loss of function of the epigenetic regulator ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1) in zebrafish leads to a reduction in tnfa promoter methylation and the induction of tnfa expression in intestinal epithelial cells (IECs). The increase in IEC tnfa levels is microbe-dependent and results in IEC shedding and apoptosis, immune cell recruitment, and barrier dysfunction, consistent with chronic inflammation. Importantly, tnfa knockdown in uhrf1 mutants restores IEC morphology, reduces cell shedding, and improves barrier function. We propose that loss of epigenetic repression and TNF induction in the intestinal epithelium can lead to IBD onset.


Asunto(s)
Metilación de ADN , Epigénesis Genética/fisiología , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/embriología , Pez Cebra/embriología , Animales , Células Epiteliales/metabolismo , Células Epiteliales/patología , Inflamación/genética , Inflamación/mortalidad , Inflamación/patología , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Transactivadores/genética , Transactivadores/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 312(5): G434-G442, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28280141

RESUMEN

An important characteristic of intrauterine growth restricted (IUGR) neonate is the impaired intestinal barrier function. With the use of a pig model, this study was conducted to identify the responsible microRNA (miRNA) for the intestinal damage in IUGR neonates through comparing the miRNA profile of IUGR and normal porcine neonates and to investigate the regulation mechanism. Compared with the normal ones, we identified 83 upregulated and 76 downregulated miRNAs in the jejunum of IUGR pigs. Notably, IUGR is associated with profoundly increasesd miR-29 family and decreased expression of extracellular matrix (ECM) and tight junction (TJ) proteins in the jejunum. Furthermore, in vitro study using theporcine intestinal epithelial cell line (IPEC-1) showed that inhibition of miR-29a expression could improve the monolayer integrity by increasing cell proliferation and transepithelial resistance. Also, overexpression/inhibition of miR-29a in IPEC-1 cells can suppress/increase the expression of integrin-ß1, collagen I, collagen IV, fibronectin, and claudin 1, both at transcriptional and translational levels. Subsequent luciferase reporter assay confirmed a direct interaction between miR-29a and the 3'-untranslated regions of these genes. In conclusion, this study reveals that IUGR-impaired intestinal barrier function is associated with downregulated ECM and TJ protein expression mediated by the upregulation of miR-29a.NEW & NOTEWORTHY Intrauterine growth restricted (IUGR) remains a major problem for both human health and animal production due to its association with high rates of preweaning morbidity and mortality. We have identified the abnormal expression of microRNA-29a (miR-29a) in the small intestine of IUGR neonates, as well as its targets and mechanisms. These results provide new information about biological characteristics of IUGR-affected intestinal dysfunction and can lead to the development of potentially solution for preventing and treating IUGR in the future.


Asunto(s)
Retardo del Crecimiento Fetal/metabolismo , Absorción Intestinal , Mucosa Intestinal/metabolismo , Yeyuno/metabolismo , Animales , Retardo del Crecimiento Fetal/patología , Mucosa Intestinal/embriología , Mucosa Intestinal/patología , Yeyuno/embriología , Yeyuno/patología , MicroARNs/metabolismo , Porcinos
12.
Gastroenterology ; 151(5): 836-844, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27521479

RESUMEN

The gastrointestinal (GI) tract is essential for the absorption of nutrients, induction of mucosal and systemic immune responses, and maintenance of a healthy gut microbiota. Key aspects of gastrointestinal physiology are controlled by the enteric nervous system (ENS), which is composed of neurons and glial cells. The ENS is exposed to and interacts with the outer (microbiota, metabolites, and nutrients) and inner (immune cells and stromal cells) microenvironment of the gut. Although the cellular blueprint of the ENS is mostly in place by birth, the functional maturation of intestinal neural networks is completed within the microenvironment of the postnatal gut, under the influence of gut microbiota and the mucosal immune system. Recent studies have shown the importance of molecular interactions among microbiota, enteric neurons, and immune cells for GI homeostasis. In addition to its role in GI physiology, the ENS has been associated with the pathogenesis of neurodegenerative disorders, such as Parkinson's disease, raising the possibility that microbiota-ENS interactions could offer a viable strategy for influencing the course of brain diseases. Here, we discuss recent advances on the role of microbiota and the immune system on the development and homeostasis of the ENS, a key relay station along the gut-brain axis.


Asunto(s)
Sistema Nervioso Entérico/inmunología , Sistema Nervioso Entérico/microbiología , Microbioma Gastrointestinal , Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/fisiología , Microbioma Gastrointestinal/inmunología , Microbioma Gastrointestinal/fisiología , Homeostasis/fisiología , Humanos , Mucosa Intestinal/embriología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/fisiología , Enfermedad de Parkinson/etiología
13.
Cell Mol Life Sci ; 72(20): 3883-96, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26126787

RESUMEN

The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior-posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal-epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal-epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal-epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration.


Asunto(s)
Mucosa Intestinal/embriología , Mesodermo/embriología , Comunicación Celular , Diferenciación Celular , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/metabolismo , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Miocitos del Músculo Liso/citología , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
14.
Proc Natl Acad Sci U S A ; 110(26): 10525-30, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23754398

RESUMEN

Embryogenesis offers a real laboratory for pattern formation, buckling, and postbuckling induced by growth of soft tissues. Each part of our body is structured in multiple adjacent layers: the skin, the brain, and the interior of organs. Each layer has a complex biological composition presenting different elasticity. Generated during fetal life, these layers will experience growth and remodeling in the early postfertilization stages. Here, we focus on a herringbone pattern occurring in fetal intestinal tissues. Common to many mammalians, this instability is a precursor of the villi, finger-like projections into the lumen. For avians (chicks' and turkeys' embryos), it has been shown that, a few days after fertilization, the mucosal epithelium of the duodenum is smooth, and then folds emerge, which present 2 d later a pronounced zigzag instability. Many debates and biological studies are devoted to this specific morphology, which regulates the cell renewal in the intestine. After reviewing experimental results about duodenum morphogenesis, we show that a model based on simplified hypothesis for the growth of the mesenchyme can explain buckling and postbuckling instabilities. Being completely analytical, it is based on biaxial compressive stresses due to differential growth between layers and it predicts quantitatively the morphological changes. The growth anisotropy increasing with time, the competition between folds and zigzags, is proved to occur as a secondary instability. The model is compared with available experimental data on chick's duodenum and can be applied to other intestinal tissues, the zigzag being a common and spectacular microstructural pattern of intestine embryogenesis.


Asunto(s)
Tipificación del Cuerpo/fisiología , Intestinos/embriología , Modelos Biológicos , Animales , Fenómenos Biofísicos , Embrión de Pollo , Duodeno/embriología , Duodeno/fisiología , Elasticidad/fisiología , Mucosa Intestinal/embriología , Mucosa Intestinal/fisiología , Intestinos/fisiología , Pavos/embriología
15.
Dev Biol ; 392(2): 283-94, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24929016

RESUMEN

The intestinal epithelium performs vital roles in organ function by absorbing nutrients and providing a protective barrier. The zinc-finger containing transcription factors GATA4 and GATA6 regulate enterocyte gene expression and control regional epithelial cell identity in the adult intestinal epithelium. Although GATA4 and GATA6 are expressed in the developing intestine, loss of either factor alone during the period of epithelial morphogenesis and cytodifferentiation fails to disrupt these processes. Therefore, we tested the hypothesis that GATA4 and GATA6 function redundantly to control these aspects of intestinal development. We used Villin-Cre, which deletes specifically in the intestinal epithelium during the period of villus development and epithelial cytodifferentiation, to generate Gata4Gata6 double conditional knockout embryos. Mice lacking GATA4 and GATA6 in the intestinal epithelium died within 24h of birth. At E18.5, intestinal villus architecture and epithelial cell populations were altered. Enterocytes were lost, and goblet cells were increased. Proliferation was also increased in GATA4-GATA6 deficient intestinal epithelium. Although villus morphology appeared normal at E16.5, the first time at which both Gata4 and Gata6 were efficiently reduced, changes in expression of markers of enterocytes, goblet cells, and proliferative cells were detected. Moreover, goblet cell number was increased at E16.5. Expression of the Notch ligand Dll1 and the Notch target Olfm4 were reduced in mutant tissue indicating decreased Notch signaling. Finally, we found that GATA4 occupies chromatin near the Dll1 transcription start site suggesting direct regulation of Dll1 by GATA4. We demonstrate that GATA4 and GATA6 play an essential role in maintaining proper intestinal epithelial structure and in regulating intestinal epithelial cytodifferentiation. Our data highlight a novel role for GATA factors in fine tuning Notch signaling during intestinal epithelial development to repress goblet cell differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Factor de Transcripción GATA4/metabolismo , Factor de Transcripción GATA6/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Mucosa Intestinal/embriología , Animales , Proteínas de Unión al Calcio , Diferenciación Celular/genética , Inmunoprecipitación de Cromatina , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mucosa Intestinal/citología , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Notch/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología
16.
Development ; 139(22): 4111-21, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23093423

RESUMEN

Organ formation during embryogenesis is a complex process that involves various local cell-cell interactions at the molecular and mechanical levels. Despite this complexity, organogenesis can be modelled in vitro. In this article, we focus on two recent examples in which embryonic stem cells can self-organise into three-dimensional structures - the optic cup and the pituitary epithelium; and one case of self-organising adult stem cells - the gut epithelium. We summarise how these approaches have revealed intrinsic programs that drive locally autonomous modes of organogenesis and homeostasis. We also attempt to interpret the results of previous in vivo studies of retinal development in light of the self-organising nature of the retina.


Asunto(s)
Células Madre Adultas/citología , Células Madre Embrionarias/citología , Organogénesis/fisiología , Animales , Diferenciación Celular , Células Epiteliales , Ojo/embriología , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/embriología , Hipófisis/embriología , Retina/embriología
17.
Cell Tissue Res ; 360(2): 273-85, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25616556

RESUMEN

The asymmetric shape of component cells determines the asymmetric features of developing organs. Here, we focused on the murine duodenojejunal flexure (DJF), which bends without affecting the mesentery, and analyzed the morphological asymmetries of the mucosal epithelium and gut wall cells between the inner and outer bending sides at embryonic days 10.75-11.75. In the mucosal epithelium, the cell shape and the expression of epithelial markers (Cdx2, E-cadherin) showed no differences between the two DJF sides. In contrast, the gut wall cells comprising the inner and outer sides of the DJF were elongated along the inner-outer axis and perpendicular to this axis, respectively. Furthermore, the gut wall cells in the outer side possessed cytoplasmic processes connecting cells via adherens junctions, but those in the inner side were attached via adherens junctions of juxtaposed cell bodies and were relatively more crowded. In immunohistochemistry experiments, there was no remarkable difference in the positive reactions of markers for mesenchyme (vimentin), smooth muscle cells (αSMA), endothelial cells (LYVE-1, CD34), and undifferentiated neurons (Sox10) between the DJF sides. Interestingly, Tuj1-positive cells, indicating differentiated neurons, were observed in the middle layer of the gut wall, and these cells were significantly more abundant and tended to be larger in the inner side than in the outer side of the DJF. In conclusion, we clarified the asymmetries of gut wall cell morphology and neural differentiation between the inner and outer sides of the DJF. These characteristics of the developing murine DJF indicate its asymmetric formation.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Duodeno/citología , Duodeno/embriología , Yeyuno/citología , Yeyuno/embriología , Animales , Células Endoteliales/citología , Células Endoteliales/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/embriología , Ratones , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Neuronas/citología , Neuronas/metabolismo
18.
Pediatr Res ; 77(1-2): 205-13, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25310760

RESUMEN

The microbiome, of which the bacterial component alone (microbiota), is estimated to include 10 times more cells than human cells of the body, blooms immediately after birth and evolves in composition and complexity throughout childhood. The gut microbiome has a profound impact on gastrointestinal tract development, maintenance of mucosal surface integrity, and contributes to the nutritional status of the host and thus plays a pivotal role in health and disease. New technologies have enabled the detailed characterization of normal microbial symbionts and dysbiosis-disease associations. This review summarizes the stepwise establishment of the intestinal microbiota, influential environmental factors, and how this may be perturbed in preterm very-low-birth-weight infants. The contribution of the microbiota to provision of energy and nutrients for intestinal development and the nutritional status of the host are reviewed. In addition, the crucial role of the gut microbiota in maintaining mucosal integrity is explored along with how its breakdown can lead to sepsis, necrotizing enterocolitis, and systemic inflammatory response syndrome. Finally, the role of enteral feeding type (human milk, formula, and nutrient fortification) in mediating these processes is discussed, and guidance is provided for nutritional strategies to promote health in these fragile infants.


Asunto(s)
Tracto Gastrointestinal/microbiología , Fenómenos Fisiológicos Nutricionales del Lactante/fisiología , Recién Nacido de muy Bajo Peso , Mucosa Intestinal/embriología , Intercambio Materno-Fetal , Microbiota , Femenino , Humanos , Recién Nacido , Mucosa Intestinal/microbiología , Embarazo
19.
Pediatr Res ; 78(6): 626-33, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26270575

RESUMEN

BACKGROUND: Evidence suggests that excessive inflammation of the immature intestine may predispose premature infants to necrotizing enterocolitis (NEC). We investigated the anti-inflammatory effects of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA) in human fetal and adult intestinal epithelial cells (IEC) in primary culture. METHODS: Human fetal IEC in culture were derived from a healthy fetal small intestine (H4) or resected small intestine of a neonate with NEC (NEC-IEC). Intestinal cell lines Caco2 and NCM460 in culture were used as models for mature IEC. IEC in culture were pretreated with 100 µmol/l palmitic acid (PAL), DHA, EPA, ARA, or ARA+DHA for 48 h and then stimulated with proinflammatory IL-1ß. RESULTS: DHA significantly attenuated IL-1ß induced proinflammatory IL-8 and IL-6 protein and mRNA in fetal H4, NEC-IEC, and mature Caco2, NCM460 IEC, compared to control and PAL treatment. DHA downregulated IL-1R1 (IL-1ß receptor) and NFk ß1 mRNA expression in fetal and adult IEC. ARA had potent anti-inflammatory effects with lower IL-8 and IL-6 (protein and mRNA) in fetal H4 but not in NEC-IEC or adult IEC. CONCLUSION: The present study provides evidence that DHA and ARA may have important anti-inflammatory functions for prevention of NEC in premature infants.


Asunto(s)
Antiinflamatorios/farmacología , Ácido Araquidónico/farmacología , Ácidos Docosahexaenoicos/farmacología , Enterocolitis Necrotizante/tratamiento farmacológico , Células Epiteliales/efectos de los fármacos , Íleon/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Interleucina-1beta/farmacología , Mucosa Intestinal/efectos de los fármacos , Células CACO-2 , Citoprotección , Ácido Eicosapentaenoico/farmacología , Enterocolitis Necrotizante/genética , Enterocolitis Necrotizante/metabolismo , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Íleon/embriología , Íleon/metabolismo , Recién Nacido , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Mucosa Intestinal/embriología , Mucosa Intestinal/metabolismo , Subunidad p50 de NF-kappa B/genética , Subunidad p50 de NF-kappa B/metabolismo , Ácido Palmítico/farmacología , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo
20.
Arch Toxicol ; 89(8): 1337-46, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25033990

RESUMEN

In case of mycotoxin contaminations, food and feedstuff are usually contaminated by more than one toxin. However toxicological data concerning the effects of mycotoxin combinations are sparse. The intestinal epithelium is the first barrier against food contaminants and this constantly renewing organ is particularly sensitive to mycotoxins. The aim of this study was to investigate the effects of deoxynivalenol (DON) and four other type B trichothecenes (TCTB), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol (NIV) and fusarenon-X (FX) alone or in combination on intestinal epithelial cells. Proliferating, non-transformed IPEC-1 cells were exposed to increasing doses of TCTB, alone or in binary mixtures and mycotoxin-induced cytotoxicity was measured with MTT test. The toxicological interactions were assessed using the isobologram-Combination index method. The five tested mycotoxins and their mixtures had a dose-dependent effect on the proliferating enterocytes. DON-NIV, DON-15-ADON and 15-ADON-3-ADON combinations were synergistic, with magnitude of synergy for 10 % cytotoxicity ranging from 2 to 7. The association between DON and 3-ADON also demonstrated a synergy but only at high doses, at lower doses antagonism was noted. Additivity was observed between NIV and FX, and antagonism between DON and FX. These results indicate that the simultaneous presence of mycotoxins in food commodities and diet may be more toxic than predicted from the mycotoxins alone. This synergy should be taken into account considering the frequent co-occurrence of TCTB in the diet.


Asunto(s)
Mucosa Intestinal/efectos de los fármacos , Tricotecenos/toxicidad , Animales , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Mucosa Intestinal/embriología , Mucosa Intestinal/patología , Porcinos/embriología , Tricotecenos/administración & dosificación , Tricotecenos/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda