Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.605
Filtrar
Más filtros

Publication year range
1.
Chemistry ; 19(36): 12104-12, 2013 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-23873669

RESUMEN

Vancomycin-resistant Staphylococcus aureus (S. aureus) (VRSA) uses depsipeptide-containing modified cell-wall precursors for the biosynthesis of peptidoglycan. Transglycosylase is responsible for the polymerization of the peptidoglycan, and the penicillin-binding protein 2 (PBP2) plays a major role in the polymerization among several transglycosylases of wild-type S. aureus. However, it is unclear whether VRSA processes the depsipeptide-containing peptidoglycan precursor by using PBP2. Here, we describe the total synthesis of depsi-lipid I, a cell-wall precursor of VRSA. By using this chemistry, we prepared a depsi-lipid II analogue as substrate for a cell-free transglycosylation system. The reconstituted system revealed that the PBP2 of S. aureus is able to process a depsi-lipid II intermediate as efficiently as its normal substrate. Moreover, the system was successfully used to demonstrate the difference in the mode of action of the two antibiotics moenomycin and vancomycin.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Pared Celular/química , Depsipéptidos/química , Depsipéptidos/farmacología , Staphylococcus aureus Resistente a Meticilina/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Muramoilpentapéptido Carboxipeptidasa/biosíntesis , Muramoilpentapéptido Carboxipeptidasa/química , Oligosacáridos/química , Oligosacáridos/farmacología , Proteínas de Unión a las Penicilinas/química , Peptidoglicano/biosíntesis , Staphylococcus aureus/química , Staphylococcus aureus/efectos de los fármacos , Vancomicina/química , Vancomicina/farmacología , Pared Celular/metabolismo , Muramoilpentapéptido Carboxipeptidasa/metabolismo , Proteínas de Unión a las Penicilinas/biosíntesis , Peptidoglicano/química , Staphylococcus aureus/metabolismo
2.
Science ; 218(4571): 479-81, 1982 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-7123246

RESUMEN

The three-dimensional structure of a penicillin-sensitive D-alanyl-carboxypeptidase-transpeptidase has been determined by x-ray crystallography to a resolution of 2.8 angstroms. The site of binding of the beta-lactam antibiotics penicillin and cephalosporin has been located. These findings constitute direct observation of the interaction of beta-lactams with a transpeptidase enzyme and establish the feasibility of defining the molecular stereochemistry of this interaction for purposes of drug design.


Asunto(s)
Carboxipeptidasas , Cefalosporinas , Muramoilpentapéptido Carboxipeptidasa , Penicilinas , Sitios de Unión , Cristalografía , Modelos Moleculares , Conformación Proteica , Difracción de Rayos X
3.
Science ; 259(5092): 227-30, 1993 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-8093647

RESUMEN

Soon after methicillin was introduced into clinical practice in the early 1960s, resistant strains of Staphylococcus aureus (MRSA) appeared, bearing a newly acquired resistance gene, mecA, that encodes a penicillin binding protein, PBP2a. MRSA have spread throughout the world, and an investigation of the clonality of 472 isolates by DNA hybridization was performed. All 472 isolates could be divided into six temporally ordered mecA hybridization patterns, and three of these were subdivided by the chromomosomal transposon Tn554. Each Tn554 pattern occurred in association with one and only one mecA pattern, suggesting that mecA divergence preceded the acquisition of Tn554 in all cases and therefore that mecA may have been acquired just once by S. aureus.


Asunto(s)
Proteínas Bacterianas , Hexosiltransferasas , Resistencia a la Meticilina/genética , Peptidil Transferasas , Staphylococcus aureus/genética , Evolución Biológica , Proteínas Portadoras/genética , Elementos Transponibles de ADN , ADN Bacteriano/análisis , ADN Bacteriano/genética , Desoxirribonucleasas de Localización Especificada Tipo II , Muramoilpentapéptido Carboxipeptidasa/genética , Hibridación de Ácido Nucleico , Proteínas de Unión a las Penicilinas , Polimorfismo de Longitud del Fragmento de Restricción , Staphylococcus aureus/efectos de los fármacos
4.
Science ; 264(5157): 388-93, 1994 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-8153626

RESUMEN

The development of resistance to antibiotics by reductions in the affinities of their enzymatic targets occurs most rapidly for antibiotics that inactivate a single target and that are not analogs of substrate. In these cases of resistance (for example, resistance to rifampicin), numerous single amino acid substitutions may provide large decreases in the affinity of the target for the antibiotic, leading to clinically significant levels of resistance. Resistance due to target alterations should occur much more slowly for those antibiotics (penicillin, for example) that inactivate multiple targets irreversibly by acting as close analogs of substrate. Resistance to penicillin because of target changes has emerged, by unexpected mechanisms, only in a limited number of species. However, inactivating enzymes commonly provide resistance to antibiotics that, like penicillin, are derived from natural products, although such enzymes have not been found for synthetic antibiotics. Thus, the ideal antibiotic would be produced by rational design, rather than by the modification of a natural product.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Proteínas Bacterianas , Proteínas Portadoras/metabolismo , Farmacorresistencia Microbiana , Hexosiltransferasas , Muramoilpentapéptido Carboxipeptidasa/metabolismo , Peptidil Transferasas , 4-Quinolonas , Secuencia de Aminoácidos , Antiinfecciosos/farmacología , Bacterias/genética , Bacterias/metabolismo , Proteínas Portadoras/genética , Lactamas , Datos de Secuencia Molecular , Muramoilpentapéptido Carboxipeptidasa/genética , Neisseria/efectos de los fármacos , Neisseria/genética , Neisseria/metabolismo , Resistencia a las Penicilinas , Proteínas de Unión a las Penicilinas , Recombinación Genética , Rifampin/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
5.
Science ; 283(5402): 703-6, 1999 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-9924033

RESUMEN

A carbapenem antibiotic, L-786,392, was designed so that the side chain that provides high-affinity binding to the penicillin-binding proteins responsible for bacterial resistance was also the structural basis for ameliorating immunopathology. Expulsion of the side chain upon opening of the beta-lactam ring retained antibacterial activity while safely expelling the immunodominant epitope. L-786,392 was well tolerated in animal safety studies and had significant in vitro and in vivo activities against methicillin- and vancomycin-resistant Staphylococci and vancomycin-resistant Enterococci.


Asunto(s)
Proteínas Bacterianas , Carbapenémicos/inmunología , Carbapenémicos/farmacología , Diseño de Fármacos , Hexosiltransferasas , Lactamas/farmacología , Peptidil Transferasas , Tiazoles/farmacología , Animales , Anticuerpos/sangre , Carbapenémicos/química , Carbapenémicos/metabolismo , Carbapenémicos/toxicidad , Proteínas Portadoras/metabolismo , Dipeptidasas/metabolismo , Farmacorresistencia Microbiana , Resistencia a Múltiples Medicamentos , Enterococcus/efectos de los fármacos , Eritrocitos/inmunología , Haptenos , Humanos , Epítopos Inmunodominantes , Inmunoglobulina G/sangre , Lactamas/síntesis química , Lactamas/química , Lactamas/metabolismo , Activación de Linfocitos , Macaca mulatta , Ratones , Ratones Endogámicos DBA , Pruebas de Sensibilidad Microbiana , Muramoilpentapéptido Carboxipeptidasa/metabolismo , Proteínas de Unión a las Penicilinas , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus/efectos de los fármacos , Tiazoles/síntesis química , Tiazoles/química , Tiazoles/metabolismo
6.
Trends Biochem Sci ; 27(9): 438, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12217513

RESUMEN

The PASTA domain (for penicillin-binding protein and serine/threonine kinase associated domain) is found in the high molecular weight penicillin-binding proteins and eukaryotic-like serine/threonine kinases of a range of pathogens. We describe this previously uncharacterized domain and infer that it binds beta-lactam antibiotics and their peptidoglycan analogues. We postulate that PknB-like kinases are key regulators of cell-wall biosynthesis. The essential function of these enzymes suggests an additional pathway for the action of beta-lactam antibiotics.


Asunto(s)
Proteínas Bacterianas , Proteínas Portadoras/metabolismo , Hexosiltransferasas , Muramoilpentapéptido Carboxipeptidasa/metabolismo , Peptidil Transferasas , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Portadoras/química , Proteínas Portadoras/genética , Bases de Datos de Proteínas , Datos de Secuencia Molecular , Muramoilpentapéptido Carboxipeptidasa/química , Muramoilpentapéptido Carboxipeptidasa/genética , Proteínas de Unión a las Penicilinas , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Alineación de Secuencia , beta-Lactamas
7.
Microbiol Mol Biol Rev ; 62(4): 1079-93, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9841666

RESUMEN

The monofunctional penicillin-binding DD-peptidases and penicillin-hydrolyzing serine beta-lactamases diverged from a common ancestor by the acquisition of structural changes in the polypeptide chain while retaining the same folding, three-motif amino acid sequence signature, serine-assisted catalytic mechanism, and active-site topology. Fusion events gave rise to multimodular penicillin-binding proteins (PBPs). The acyl serine transferase penicillin-binding (PB) module possesses the three active-site defining motifs of the superfamily; it is linked to the carboxy end of a non-penicillin-binding (n-PB) module through a conserved fusion site; the two modules form a single polypeptide chain which folds on the exterior of the plasma membrane and is anchored by a transmembrane spanner; and the full-size PBPs cluster into two classes, A and B. In the class A PBPs, the n-PB modules are a continuum of diverging sequences; they possess a five-motif amino acid sequence signature, and conserved dicarboxylic amino acid residues are probably elements of the glycosyl transferase catalytic center. The PB modules fall into five subclasses: A1 and A2 in gram-negative bacteria and A3, A4, and A5 in gram-positive bacteria. The full-size class A PBPs combine the required enzymatic activities for peptidoglycan assembly from lipid-transported disaccharide-peptide units and almost certainly prescribe different, PB-module specific traits in peptidoglycan cross-linking. In the class B PBPs, the PB and n-PB modules cluster in a concerted manner. A PB module of subclass B2 or B3 is linked to an n-PB module of subclass B2 or B3 in gram-negative bacteria, and a PB module of subclass B1, B4, or B5 is linked to an n-PB module of subclass B1, B4, or B5 in gram-positive bacteria. Class B PBPs are involved in cell morphogenesis. The three motifs borne by the n-PB modules are probably sites for module-module interaction and the polypeptide stretches which extend between motifs 1 and 2 are sites for protein-protein interaction. The full-size class B PBPs are an assortment of orthologs and paralogs, which prescribe traits as complex as wall expansion and septum formation. PBPs of subclass B1 are unique to gram-positive bacteria. They are not essential, but they represent an important mechanism of resistance to penicillin among the enterococci and staphylococci. Natural evolution and PBP- and beta-lactamase-mediated resistance show that the ability of the catalytic centers to adapt their properties to new situations is limitless. Studies of the reaction pathways by using the methods of quantum chemistry suggest that resistance to penicillin is a road of no return.


Asunto(s)
Proteínas Bacterianas , Proteínas Portadoras , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Hexosiltransferasas , Muramoilpentapéptido Carboxipeptidasa , Penicilinas/metabolismo , Peptidil Transferasas , Secuencia de Aminoácidos , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Evolución Molecular , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Datos de Secuencia Molecular , Muramoilpentapéptido Carboxipeptidasa/química , Muramoilpentapéptido Carboxipeptidasa/genética , Muramoilpentapéptido Carboxipeptidasa/metabolismo , Resistencia a las Penicilinas , Proteínas de Unión a las Penicilinas , Penicilinas/farmacología , Relación Estructura-Actividad
8.
Microbiol Mol Biol Rev ; 66(4): 702-38, table of contents, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12456788

RESUMEN

The bacterial acyltransferases of the SxxK superfamily vary enormously in sequence and function, with conservation of particular amino acid groups and all-alpha and alpha/beta folds. They occur as independent entities (free-standing polypeptides) and as modules linked to other polypeptides (protein fusions). They can be classified into three groups. The group I SxxK D,D-acyltransferases are ubiquitous in the bacterial world. They invariably bear the motifs SxxK, SxN(D), and KT(S)G. Anchored in the plasma membrane with the bulk of the polypeptide chain exposed on the outer face of it, they are implicated in the synthesis of wall peptidoglycans of the most frequently encountered (4-->3) type. They are inactivated by penicillin and other beta-lactam antibiotics acting as suicide carbonyl donors in the form of penicillin-binding proteins (PBPs). They are components of a morphogenetic apparatus which, as a whole, controls multiple parameters such as shape and size and allows the bacterial cells to enlarge and duplicate their particular pattern. Class A PBP fusions comprise a glycosyltransferase module fused to an SxxK acyltransferase of class A. Class B PBP fusions comprise a linker, i.e., protein recognition, module fused to an SxxK acyltransferase of class B. They ensure the remodeling of the (4-->3) peptidoglycans in a cell cycle-dependent manner. The free-standing PBPs hydrolyze D,D peptide bonds. The group II SxxK acyltransferases frequently have a partially modified bar code, but the SxxK motif is invariant. They react with penicillin in various ways and illustrate the great plasticity of the catalytic centers. The secreted free-standing PBPs, the serine beta-lactamases, and the penicillin sensors of several penicillin sensory transducers help the D,D-acyltransferases of group I escape penicillin action. The group III SxxK acyltransferases are indistinguishable from the PBP fusion proteins of group I in motifs and membrane topology, but they resist penicillin. They are referred to as Pen(r) protein fusions. Plausible hypotheses are put forward on the roles that the Pen(r) protein fusions, acting as L,D-acyltransferases, may play in the (3-->3) peptidoglycan-synthesizing molecular machines. Shifting the wall peptidoglycan from the (4-->3) type to the (3-->3) type could help Mycobacterium tuberculosis and Mycobacterium leprae survive by making them penicillin resistant.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Bacterianas , Proteínas Portadoras/metabolismo , Hexosiltransferasas , Muramoilpentapéptido Carboxipeptidasa/metabolismo , Mycobacterium tuberculosis/enzimología , Resistencia a las Penicilinas/fisiología , Penicilinas/farmacología , Peptidil Transferasas , Aciltransferasas/genética , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Unión a las Penicilinas , Penicilinas/metabolismo , Peptidoglicano/metabolismo
9.
Microbiol Mol Biol Rev ; 67(1): 52-65, table of contents, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12626683

RESUMEN

Work on two diverse rod-shaped bacteria, Escherichia coli and Bacillus subtilis, has defined a set of about 10 conserved proteins that are important for cell division in a wide range of eubacteria. These proteins are directed to the division site by the combination of two negative regulatory systems. Nucleoid occlusion is a poorly understood mechanism whereby the nucleoid prevents division in the cylindrical part of the cell, until chromosome segregation has occurred near midcell. The Min proteins prevent division in the nucleoid-free spaces near the cell poles in a manner that is beginning to be understood in cytological and biochemical terms. The hierarchy whereby the essential division proteins assemble at the midcell division site has been worked out for both E. coli and B. subtilis. They can be divided into essentially three classes depending on their position in the hierarchy and, to a certain extent, their subcellular localization. FtsZ is a cytosolic tubulin-like protein that polymerizes into an oligomeric structure that forms the initial ring at midcell. FtsA is another cytosolic protein that is related to actin, but its precise function is unclear. The cytoplasmic proteins are linked to the membrane by putative membrane anchor proteins, such as ZipA of E. coli and possibly EzrA of B. subtilis, which have a single membrane span but a cytoplasmic C-terminal domain. The remaining proteins are either integral membrane proteins or transmembrane proteins with their major domains outside the cell. The functions of most of these proteins are unclear with the exception of at least one penicillin-binding protein, which catalyzes a key step in cell wall synthesis in the division septum.


Asunto(s)
Bacterias/citología , Proteínas del Citoesqueleto , Proteínas de Escherichia coli , Muramoilpentapéptido Carboxipeptidasa , Peptidoglicano Glicosiltransferasa , Peptidoglicano/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , División Celular , Membrana Celular/metabolismo , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas de Unión a las Penicilinas , Peptidil Transferasas/metabolismo , Esporas Bacterianas/citología , Esporas Bacterianas/metabolismo
10.
J Clin Invest ; 76(1): 325-31, 1985 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-4019783

RESUMEN

In addition to the four typical penicillin-binding proteins (PBPs), a strain of heterogeneously methicillin-resistant Staphylococcus aureus produced an extra 78-kD PBP (PBP 2a) that had a low affinity for nafcillin and penicillin. Addition of nafcillin to cultures of this strain caused a rapid increase in the amount of this PBP in cell membranes. This increase occurred at subinhibitory concentrations of drug within minutes of exposure, and was blocked by inhibitors of protein and RNA synthesis. This suggests that the synthesis of PBP 2a can be stimulated by exposure to beta-lactam antibiotics. This process may, in part, explain the heterogeneity in methicillin-resistant S. aureus.


Asunto(s)
Proteínas Bacterianas , Carboxipeptidasas/metabolismo , Proteínas Portadoras/metabolismo , Hexosiltransferasas , Muramoilpentapéptido Carboxipeptidasa/metabolismo , Resistencia a las Penicilinas , Peptidil Transferasas , Staphylococcus aureus/metabolismo , Membranas/metabolismo , Pruebas de Sensibilidad Microbiana , Peso Molecular , Nafcilina/farmacología , Proteínas de Unión a las Penicilinas , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética
11.
J Clin Invest ; 88(3): 750-4, 1991 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-1653273

RESUMEN

Myeloperoxidase (MPO), H2O2, and chloride comprise a potent antimicrobial system believed to contribute to the antimicrobial functions of neutrophils and monocytes. The mechanisms of microbicidal action are complex and not fully defined. This report describes the MPO-mediated inactivation, in Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, of a class of cytoplasmic membrane enzymes (penicillin-binding proteins, PBPs) found in all eubacteria, that covalently bind beta-lactam antibiotics to their active sites with loss of enzymatic activity. Inactivation of "essential" PBPs, including PBP1-PBP3 of E. coli, leads to unbalanced bacterial growth and cell death. MPO treatment of bacteria was associated with loss of penicillin binding by PBPs, strongly suggesting PBP inactivation. In E. coli, PBP inactivation was most rapid with PBP3, where the rate of decline in binding activity approximated but did not equal loss of viability. Changes in E. coli morphology (elongation), observed just before bacteriolysis, were consistent with early predominant inactivation of PBP3. We conclude that inactivation of essential PBPs is sufficient to account for an important fraction of MPO-mediated bacterial action. This feature of MPO action interestingly recapitulates an antibacterial strategy evolved by beta-lactam-producing molds that must compete with bacteria for limited ecologic niches.


Asunto(s)
Proteínas Bacterianas , Proteínas Portadoras/metabolismo , Hexosiltransferasas , Muramoilpentapéptido Carboxipeptidasa/metabolismo , Neutrófilos/enzimología , Peptidil Transferasas , Peroxidasa/farmacología , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Humanos , Lactamas , Proteínas de Unión a las Penicilinas , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo
13.
Curr Opin Microbiol ; 6(6): 594-9, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14662355

RESUMEN

The penicillin-binding proteins (PBPs) polymerize and modify peptidoglycan, the stress-bearing component of the bacterial cell wall. As part of this process, the PBPs help to create the morphology of the peptidoglycan exoskeleton together with cytoskeleton proteins that regulate septum formation and cell shape. Genetic and microscopic studies reveal clear morphological responsibilities for class A and class B PBPs and suggest that the mechanism of shape determination involves differential protein localization and interactions with specific cell components. In addition, the low molecular weight PBPs, by varying the substrates on which other PBPs act, alter peptidoglycan synthesis or turnover, with profound effects on morphology.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas Portadoras/fisiología , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Gramnegativas/fisiología , Hexosiltransferasas/fisiología , Muramoilpentapéptido Carboxipeptidasa/fisiología , Peptidil Transferasas/fisiología , Proteínas de Unión a las Penicilinas
14.
Structure ; 8(9): 971-80, 2000 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-10986464

RESUMEN

BACKGROUND: beta-Lactam compounds are the most widely used antibiotics. They inactivate bacterial DD-transpeptidases, also called penicillin-binding proteins (PBPs), involved in cell-wall biosynthesis. The most common bacterial resistance mechanism against beta-lactam compounds is the synthesis of beta-lactamases that hydrolyse beta-lactam rings. These enzymes are believed to have evolved from cell-wall DD-peptidases. Understanding the biochemical and mechanistic features of the beta-lactam targets is crucial because of the increasing number of resistant bacteria. DAP is a D-aminopeptidase produced by Ochrobactrum anthropi. It is inhibited by various beta-lactam compounds and shares approximately 25% sequence identity with the R61 DD-carboxypeptidase and the class C beta-lactamases. RESULTS: The crystal structure of DAP has been determined to 1.9 A resolution using the multiple isomorphous replacement (MIR) method. The enzyme folds into three domains, A, B and C. Domain A, which contains conserved catalytic residues, has the classical fold of serine beta-lactamases, whereas domains B and C are both antiparallel eight-stranded beta barrels. A loop of domain C protrudes into the substrate-binding site of the enzyme. CONCLUSIONS: Comparison of the biochemical properties and the structure of DAP with PBPs and serine beta-lactamases shows that although the catalytic site of the enzyme is very similar to that of beta-lactamases, its substrate and inhibitor specificity rests on residues of domain C. DAP is a new member of the family of penicillin-recognizing proteins (PRPs) and, at the present time, its enzymatic specificity is clearly unique.


Asunto(s)
Aminopeptidasas/química , Proteínas Bacterianas , Hexosiltransferasas , Ochrobactrum anthropi/enzimología , Peptidil Transferasas , Secuencia de Aminoácidos , Bacillus/enzimología , Sitios de Unión , Carboxipeptidasas/química , Proteínas Portadoras/química , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Muramoilpentapéptido Carboxipeptidasa/química , Proteínas de Unión a las Penicilinas , Estructura Secundaria de Proteína , Streptomyces/enzimología , beta-Lactamasas/química
15.
Structure ; 8(12): 1289-98, 2000 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11188693

RESUMEN

BACKGROUND: beta-lactam antibiotic therapies are commonly challenged by the hydrolytic activities of beta-lactamases in bacteria. These enzymes have been grouped into four classes: A, B, C, and D. Class B beta-lactamases are zinc dependent, and enzymes of classes A, C, and D are transiently acylated on a serine residue in the course of the turnover chemistry. While class A and C beta-lactamases have been extensively characterized by biochemical and structural methods, class D enzymes remain the least studied despite their increasing importance in the clinic. RESULTS: The crystal structure of the OXA10 class D beta-lactamase has been solved to 1.66 A resolution from a gold derivative and MAD phasing. This structure reveals that beta-lactamases from classes D and A, despite very poor sequence similarity, share a similar overall fold. An additional beta strand in OXA10 mediates the association into dimers characterized by analytical ultracentrifugation. Major differences are found when comparing the molecular details of the active site of this class D enzyme to the corresponding regions in class A and C beta-lactamases. In the native structure of the OXA10 enzyme solved to 1.8 A, Lys-70 is carbamylated. CONCLUSIONS: Several features were revealed by this study: the dimeric structure of the OXA10 beta-lactamase, an extension of the substrate binding site which suggests that class D enzymes may bind other substrates beside beta-lactams, and carbamylation of the active site Lys-70 residue. The CO2-dependent activity of the OXA10 enzyme and the kinetic properties of the natural OXA17 mutant protein suggest possible relationships between carbamylation, inhibition of the enzyme by anions, and biphasic behavior of the enzyme.


Asunto(s)
Proteínas Bacterianas , Hexosiltransferasas , Peptidil Transferasas , Pseudomonas aeruginosa/enzimología , beta-Lactamasas/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/antagonistas & inhibidores , Catálisis , Cristalización , Cristalografía por Rayos X , Dimerización , Evolución Molecular , Datos de Secuencia Molecular , Muramoilpentapéptido Carboxipeptidasa/antagonistas & inhibidores , Proteínas de Unión a las Penicilinas , Penicilinas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/efectos de los fármacos , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Resistencia betalactámica , beta-Lactamasas/metabolismo , beta-Lactamasas/farmacología
16.
FEMS Microbiol Rev ; 13(1): 1-12, 1994 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8117464

RESUMEN

The major penicillin-binding proteins (PBPs) of Escherichia coli play vital roles in cell wall biosynthesis and are located in the inner membrane. The high M(r) PBPs 1A, 1B, 2 and 3 are essential bifunctional transglycosylases/transpeptidases which are thought to be type II integral inner membrane proteins with their C-terminal enzymatic domains projecting into the periplasm. The low M(r) PBP4 is a DD-carboxypeptidase/endopeptidase, whereas PBPs 5 and 6 are DD-carboxypeptidases. All three low M(r) PBPs act in the modification of peptidoglycan to allow expansion of the sacculus and are thought to be periplasmic proteins attached with varying affinities to the inner membrane via C-terminal amphiphilic alpha-helices. It is possible that the PBPs and other inner membrane proteins form a peptidoglycan synthesizing complex to coordinate their activities.


Asunto(s)
Proteínas Bacterianas , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Hexosiltransferasas , Muramoilpentapéptido Carboxipeptidasa/metabolismo , Peptidil Transferasas , Secuencia de Aminoácidos , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas de Unión a las Penicilinas , Unión Proteica
17.
Trends Microbiol ; 2(10): 372-80, 1994 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7850204

RESUMEN

In the past, new antibacterial agents have been selected either from natural sources or by 'trial and error' modification of existing antibacterials. Future therapeutic strategies are likely to depend on increased knowledge of existing drug targets and the search for new targets. The machinery for the assembly of bacterial-cell-wall peptidoglycan is an ideal place to look.


Asunto(s)
Antibacterianos/síntesis química , Proteínas Bacterianas , Proteínas Portadoras/química , Hexosiltransferasas , Muramoilpentapéptido Carboxipeptidasa/química , Peptidil Transferasas , beta-Lactamasas/química , Secuencia de Aminoácidos , Evolución Biológica , Proteínas Portadoras/fisiología , Diseño de Fármacos , Datos de Secuencia Molecular , Peso Molecular , Muramoilpentapéptido Carboxipeptidasa/fisiología , Proteínas de Unión a las Penicilinas , Peptidoglicano/biosíntesis , Conformación Proteica
18.
Trends Microbiol ; 2(10): 389-93, 1994 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7850207

RESUMEN

Methicillin-resistant staphylococci have an additional low-affinity penicillin-binding protein, PBP2a (PBP2'), encoded by the mecA gene. The typical heterogeneity seen in the expression of resistance to methicillin and in levels of resistance depends on the concerted action of chromosomally encoded genes, including fem and aux, that are also present in the genome of susceptible staphylococci.


Asunto(s)
Proteínas Bacterianas , Genes Bacterianos , Hexosiltransferasas , Resistencia a la Meticilina/genética , Peptidil Transferasas , Staphylococcus/genética , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Genes Bacterianos/genética , Genes Bacterianos/fisiología , Datos de Secuencia Molecular , Muramoilpentapéptido Carboxipeptidasa/genética , Muramoilpentapéptido Carboxipeptidasa/fisiología , Proteínas de Unión a las Penicilinas , Peptidoglicano/biosíntesis
19.
Trends Microbiol ; 2(10): 361-6, 1994 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7850202

RESUMEN

Resistance to beta-lactam antibiotics in some naturally transformable bacterial pathogens has arisen by interspecies recombinational events that have generated hybrid penicillin-binding proteins with reduced affinity for the antibiotics. This type of resistance is of particular concern in pneumococci, in which it is increasing worldwide.


Asunto(s)
Proteínas Bacterianas , Proteínas Portadoras/genética , Hexosiltransferasas , Muramoilpentapéptido Carboxipeptidasa/genética , Resistencia a las Penicilinas/genética , Peptidil Transferasas , Streptococcus pneumoniae/genética , Células Clonales , Técnicas de Transferencia de Gen , Proteínas de Unión a las Penicilinas , Infecciones Neumocócicas/epidemiología , Recombinación Genética , Resistencia betalactámica/genética
20.
Trends Microbiol ; 9(10): 486-93, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11597450

RESUMEN

Significant advances have been made in recent years in our understanding of how methicillin resistance is acquired by Staphylococcus aureus. Integration of a staphylococcal cassette chromosome mec (SCCmec) element into the chromosome converts drug-sensitive S. aureus into the notorious hospital pathogen methicilin-resistant S. aureus (MRSA), which is resistant to practically all beta-lactam antibiotics. SCCmec is a novel class of mobile genetic element that is composed of the mec gene complex encoding methicillin resistance and the ccr gene complex that encodes recombinases responsible for its mobility. These elements also carry various resistance genes for non-beta-lactam antibiotics. After acquiring an SCCmec element, MRSA undergoes several mutational events and evolves into the most difficult-to-treat pathogen in hospitals, against which all extant antibiotics including vancomycin are ineffective. Recent epidemiological data imply that MRSA has embarked on another evolutionary path as a community pathogen, as at least one novel SCCmec element seems to have been successful in converting S. aureus strains from the normal human flora into MRSA.


Asunto(s)
Proteínas Bacterianas , Evolución Molecular , Hexosiltransferasas , Resistencia a la Meticilina/genética , Peptidil Transferasas , Staphylococcus aureus/efectos de los fármacos , Proteínas Portadoras/genética , Elementos Transponibles de ADN , Humanos , Epidemiología Molecular , Muramoilpentapéptido Carboxipeptidasa/genética , Mutagénesis Insercional , Proteínas de Unión a las Penicilinas , Infecciones Estafilocócicas/epidemiología , Staphylococcus aureus/genética , Resistencia a la Vancomicina/genética , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda