Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2320388121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805284

RESUMEN

Essential for reactive oxygen species (EROS) protein is a recently identified molecular chaperone of NOX2 (gp91phox), the catalytic subunit of phagocyte NADPH oxidase. Deficiency in EROS is a recently identified cause for chronic granulomatous disease, a genetic disorder with recurrent bacterial and fungal infections. Here, we report a cryo-EM structure of the EROS-NOX2-p22phox heterotrimeric complex at an overall resolution of 3.56Å. EROS and p22phox are situated on the opposite sides of NOX2, and there is no direct contact between them. EROS associates with NOX2 through two antiparallel transmembrane (TM) α-helices and multiple ß-strands that form hydrogen bonds with the cytoplasmic domain of NOX2. EROS binding induces a 79° upward bend of TM2 and a 48° backward rotation of the lower part of TM6 in NOX2, resulting in an increase in the distance between the two hemes and a shift of the binding site for flavin adenine dinucleotide (FAD). These conformational changes are expected to compromise superoxide production by NOX2, suggesting that the EROS-bound NOX2 is in a protected state against activation. Phorbol myristate acetate, an activator of NOX2 in vitro, is able to induce dissociation of NOX2 from EROS with concurrent increase in FAD binding and superoxide production in a transfected COS-7 model. In differentiated neutrophil-like HL-60, the majority of NOX2 on the cell surface is dissociated with EROS. Further studies are required to delineate how EROS dissociates from NOX2 during its transport to cell surface, which may be a potential mechanism for regulation of NOX2 activation.


Asunto(s)
Microscopía por Crioelectrón , NADPH Oxidasa 2 , NADPH Oxidasas , Fagocitos , Humanos , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/química , Fagocitos/metabolismo , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/química , Unión Proteica , Sitios de Unión , Enfermedad Granulomatosa Crónica/metabolismo , Enfermedad Granulomatosa Crónica/genética , Modelos Moleculares , Especies Reactivas de Oxígeno/metabolismo
2.
J Biol Chem ; 300(4): 107130, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432630

RESUMEN

The actin cytoskeleton and reactive oxygen species (ROS) both play crucial roles in various cellular processes. Previous research indicated a direct interaction between two key components of these systems: the WAVE1 subunit of the WAVE regulatory complex (WRC), which promotes actin polymerization and the p47phox subunit of the NADPH oxidase 2 complex (NOX2), which produces ROS. Here, using carefully characterized recombinant proteins, we find that activated p47phox uses its dual Src homology 3 domains to bind to multiple regions within the WAVE1 and Abi2 subunits of the WRC, without altering WRC's activity in promoting Arp2/3-mediated actin polymerization. Notably, contrary to previous findings, p47phox uses the same binding pocket to interact with both the WRC and the p22phox subunit of NOX2, albeit in a mutually exclusive manner. This observation suggests that when activated, p47phox may separately participate in two distinct processes: assembling into NOX2 to promote ROS production and engaging with WRC to regulate the actin cytoskeleton.


Asunto(s)
NADPH Oxidasa 2 , Familia de Proteínas del Síndrome de Wiskott-Aldrich , Humanos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Sitios de Unión
3.
Blood ; 141(9): 1007-1022, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36332160

RESUMEN

X-linked chronic granulomatous disease (X-CGD) is a primary immunodeficiency caused by mutations in the CYBB gene, resulting in the inability of phagocytic cells to eliminate infections. To design a lentiviral vector (LV) capable of recapitulating the endogenous regulation and expression of CYBB, a bioinformatics-guided approach was used to elucidate the cognate enhancer elements regulating the native CYBB gene. Using this approach, we analyzed a 600-kilobase topologically associated domain of the CYBB gene and identified endogenous enhancer elements to supplement the CYBB promoter to develop MyeloVec, a physiologically regulated LV for the treatment of X-CGD. When compared with an LV currently in clinical trials for X-CGD, MyeloVec showed improved expression, superior gene transfer to hematopoietic stem and progenitor cells (HSPCs), corrected an X-CGD mouse model leading to complete protection against Burkholderia cepacia infection, and restored healthy donor levels of antimicrobial oxidase activity in neutrophils derived from HSPCs from patients with X-CGD. Our findings validate the bioinformatics-guided design approach and have yielded a novel LV with clinical promise for the treatment of X-CGD.


Asunto(s)
Enfermedad Granulomatosa Crónica , Animales , Ratones , Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/terapia , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , NADPH Oxidasa 2/genética , Terapia Genética/métodos , Mutación
4.
J Neuroinflammation ; 21(1): 115, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698374

RESUMEN

BACKGROUND: Macrophages play a pivotal role in the regulation of Japanese encephalitis (JE), a severe neuroinflammation in the central nervous system (CNS) following infection with JE virus (JEV). Macrophages are known for their heterogeneity, polarizing into M1 or M2 phenotypes in the context of various immunopathological diseases. A comprehensive understanding of macrophage polarization and its relevance to JE progression holds significant promise for advancing JE control and therapeutic strategies. METHODS: To elucidate the role of NADPH oxidase-derived reactive oxygen species (ROS) in JE progression, we assessed viral load, M1 macrophage accumulation, and cytokine production in WT and NADPH oxidase 2 (NOX2)-deficient mice using murine JE model. Additionally, we employed bone marrow (BM) cell-derived macrophages to delineate ROS-mediated regulation of macrophage polarization by ROS following JEV infection. RESULTS: NOX2-deficient mice exhibited increased resistance to JE progression rather than heightened susceptibility, driven by the regulation of macrophage polarization. These mice displayed reduced viral loads in peripheral lymphoid tissues and the CNS, along with diminished infiltration of inflammatory cells into the CNS, thereby resulting in attenuated neuroinflammation. Additionally, NOX2-deficient mice exhibited enhanced JEV-specific Th1 CD4 + and CD8 + T cell responses and increased accumulation of M1 macrophages producing IL-12p40 and iNOS in peripheral lymphoid and inflamed extraneural tissues. Mechanistic investigations revealed that NOX2-deficient macrophages displayed a more pronounced differentiation into M1 phenotypes in response to JEV infection, thereby leading to the suppression of viral replication. Importantly, the administration of H2O2 generated by NOX2 was shown to inhibit M1 macrophage polarization. Finally, oral administration of the ROS scavenger, butylated hydroxyanisole (BHA), bolstered resistance to JE progression and reduced viral loads in both extraneural tissues and the CNS, along with facilitated accumulation of M1 macrophages. CONCLUSION: In light of our results, it is suggested that ROS generated by NOX2 play a role in undermining the control of JEV replication within peripheral extraneural tissues, primarily by suppressing M1 macrophage polarization. Subsequently, this leads to an augmentation in the viral load invading the CNS, thereby facilitating JE progression. Hence, our findings ultimately underscore the significance of ROS-mediated macrophage polarization in the context of JE progression initiated JEV infection.


Asunto(s)
Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2 , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/virología , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , Encefalitis Japonesa/inmunología , Especies Reactivas de Oxígeno/metabolismo , Virus de la Encefalitis Japonesa (Especie) , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/virología , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología
5.
J Neuroinflammation ; 21(1): 105, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649885

RESUMEN

BACKGROUND: NADPH oxidase (NOX), a primary source of endothelial reactive oxygen species (ROS), is considered a key event in disrupting the integrity of the blood-retinal barrier. Abnormalities in neurovascular-coupled immune signaling herald the loss of ganglion cells in glaucoma. Persistent microglia-driven inflammation and cellular innate immune system dysregulation often lead to deteriorating retinal degeneration. However, the crosstalk between NOX and the retinal immune environment remains unresolved. Here, we investigate the interaction between oxidative stress and neuroinflammation in glaucoma by genetic defects of NOX2 or its regulation via gp91ds-tat. METHODS: Ex vivo cultures of retinal explants from wildtype C57BL/6J and Nox2 -/- mice were subjected to normal and high hydrostatic pressure (Pressure 60 mmHg) for 24 h. In vivo, high intraocular pressure (H-IOP) was induced in C57BL/6J mice for two weeks. Both Pressure 60 mmHg retinas and H-IOP mice were treated with either gp91ds-tat (a NOX2-specific inhibitor). Proteomic analysis was performed on control, H-IOP, and treatment with gp91ds-tat retinas to identify differentially expressed proteins (DEPs). The study also evaluated various glaucoma phenotypes, including IOP, retinal ganglion cell (RGC) functionality, and optic nerve (ON) degeneration. The superoxide (O2-) levels assay, blood-retinal barrier degradation, gliosis, neuroinflammation, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative PCR were performed in this study. RESULTS: We found that NOX2-specific deletion or activity inhibition effectively attenuated retinal oxidative stress, immune dysregulation, the internal blood-retinal barrier (iBRB) injury, neurovascular unit (NVU) dysfunction, RGC loss, and ON axonal degeneration following H-IOP. Mechanistically, we unveiled for the first time that NOX2-dependent ROS-driven pro-inflammatory signaling, where NOX2/ROS induces endothelium-derived endothelin-1 (ET-1) overexpression, which activates the ERK1/2 signaling pathway and mediates the shift of microglia activation to a pro-inflammatory M1 phenotype, thereby triggering a neuroinflammatory outburst. CONCLUSIONS: Collectively, we demonstrate for the first time that NOX2 deletion or gp91ds-tat inhibition attenuates iBRB injury and NVU dysfunction to rescue glaucomatous RGC loss and ON axon degeneration, which is associated with inhibition of the ET-1/ERK1/2-transduced shift of microglial cell activation toward a pro-inflammatory M1 phenotype, highlighting NOX2 as a potential target for novel neuroprotective therapies in glaucoma management.


Asunto(s)
Barrera Hematorretinal , Presión Intraocular , Ratones Endogámicos C57BL , NADPH Oxidasa 2 , Enfermedades Neuroinflamatorias , Animales , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , Ratones , Barrera Hematorretinal/patología , Barrera Hematorretinal/metabolismo , Presión Intraocular/fisiología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Ratones Noqueados , Proliferación Celular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Neuroglía/metabolismo , Neuroglía/patología , Hipertensión Ocular/patología , Hipertensión Ocular/metabolismo , Glaucoma/patología , Glaucoma/metabolismo , Estrés Oxidativo/fisiología
6.
Blood ; 139(19): 2855-2870, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35357446

RESUMEN

The leukocyte NADPH oxidase 2 (NOX2) plays a key role in pathogen killing and immunoregulation. Genetic defects in NOX2 result in chronic granulomatous disease (CGD), associated with microbial infections and inflammatory disorders, often involving the lung. Alveolar macrophages (AMs) are the predominant immune cell in the airways at steady state, and limiting their activation is important, given the constant exposure to inhaled materials, yet the importance of NOX2 in this process is not well understood. In this study, we showed a previously undescribed role for NOX2 in maintaining lung homeostasis by suppressing AM activation, in CGD mice or mice with selective loss of NOX2 preferentially in macrophages. AMs lacking NOX2 had increased cytokine responses to Toll-like receptor-2 (TLR2) and TLR4 stimulation ex vivo. Moreover, between 4 and 12 week of age, mice with global NOX2 deletion developed an activated CD11bhigh subset of AMs with epigenetic and transcriptional profiles reflecting immune activation compared with WT AMs. The presence of CD11bhigh AMs in CGD mice correlated with an increased number of alveolar neutrophils and proinflammatory cytokines at steady state and increased lung inflammation after insults. Moreover, deletion of NOX2 preferentially in macrophages was sufficient for mice to develop an activated CD11bhigh AM subset and accompanying proinflammatory sequelae. In addition, we showed that the altered resident macrophage transcriptional profile in the absence of NOX2 is tissue specific, as those changes were not seen in resident peritoneal macrophages. Thus, these data demonstrate that the absence of NOX2 in alveolar macrophages leads to their proinflammatory remodeling and dysregulates alveolar homeostasis.


Asunto(s)
Enfermedad Granulomatosa Crónica , Pulmón , Macrófagos Alveolares , NADPH Oxidasa 2 , Animales , Citocinas , Enfermedad Granulomatosa Crónica/genética , Homeostasis , Pulmón/fisiología , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasa 2/genética
7.
J Immunol ; 209(10): 1960-1972, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36426951

RESUMEN

Aspergillus fumigatus is an important opportunistic fungal pathogen and causes invasive pulmonary aspergillosis in conditions with compromised innate antifungal immunity, including chronic granulomatous disease, which results from inherited deficiency of the superoxide-generating leukocyte NADPH oxidase 2 (NOX2). Derivative oxidants have both antimicrobial and immunoregulatory activity and, in the context of A. fumigatus, contribute to both fungal killing and dampening inflammation induced by fungal cell walls. As the relative roles of macrophage versus neutrophil NOX2 in the host response to A. fumigatus are incompletely understood, we studied mice with conditional deletion of NOX2. When NOX2 was absent in alveolar macrophages as a result of LysM-Cre-mediated deletion, germination of inhaled A. fumigatus conidia was increased. Reducing NOX2 activity specifically in neutrophils via S100a8 (MRP8)-Cre also increased fungal burden, which was inversely proportional to the level of neutrophil NOX2 activity. Moreover, diminished NOX2 in neutrophils synergized with corticosteroid immunosuppression to impair lung clearance of A. fumigatus. Neutrophil-specific reduction in NOX2 activity also enhanced acute inflammation induced by inhaled sterile fungal cell walls. These results advance understanding into cell-specific roles of NOX2 in the host response to A. fumigatus. We show that alveolar macrophage NOX2 is a nonredundant effector that limits germination of inhaled A. fumigatus conidia. In contrast, reducing NOX2 activity only in neutrophils is sufficient to enhance inflammation to fungal cell walls as well as to promote invasive A. fumigatus. This may be relevant in clinical settings with acquired defects in NOX2 activity due to underlying conditions, which overlap risk factors for invasive aspergillosis.


Asunto(s)
Aspergillus fumigatus , Neutrófilos , Ratones , Animales , NADPH Oxidasa 2/genética , Macrófagos , Inflamación
8.
Mol Ther ; 31(12): 3424-3440, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37705244

RESUMEN

Stem cell gene therapy using the MFGS-gp91phox retroviral vector was performed on a 27-year-old patient with X-linked chronic granulomatous disease (X-CGD) in 2014. The patient's refractory infections were resolved, whereas the oxidase-positive neutrophils disappeared within 6 months. Thirty-two months after gene therapy, the patient developed myelodysplastic syndrome (MDS), and vector integration into the MECOM locus was identified in blast cells. The vector integration into MECOM was detectable in most myeloid cells at 12 months after gene therapy. However, the patient exhibited normal hematopoiesis until the onset of MDS, suggesting that MECOM transactivation contributed to clonal hematopoiesis, and the blast transformation likely arose after the acquisition of additional genetic lesions. In whole-genome sequencing, the biallelic loss of the WT1 tumor suppressor gene, which occurred immediately before tumorigenesis, was identified as a potential candidate genetic alteration. The provirus CYBB cDNA in the blasts contained 108 G-to-A mutations exclusively in the coding strand, suggesting the occurrence of APOBEC3-mediated hypermutations during the transduction of CD34-positive cells. A hypermutation-mediated loss of oxidase activity may have facilitated the survival and proliferation of the clone with MECOM transactivation. Our data provide valuable insights into the complex mechanisms underlying the development of leukemia in X-CGD gene therapy.


Asunto(s)
Enfermedad Granulomatosa Crónica , Síndromes Mielodisplásicos , Humanos , Adulto , Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/terapia , NADPH Oxidasas/genética , Hematopoyesis Clonal , Terapia Genética , Retroviridae/genética , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , NADPH Oxidasa 2/genética
9.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38892302

RESUMEN

Urban air pollution, a significant environmental hazard, is linked to adverse health outcomes and increased mortality across various diseases. This study investigates the neurotoxic effects of particulate matter (PM), specifically PM2.5 and PM10, by examining their role in inducing oxidative stress and subsequent neuronal cell death. We highlight the novel finding that PM increases mitochondrial ROS production via stimulating NOX4 activity, not through its expression level in Neuro-2A cells. Additionally, PMs provoke ROS production via increasing the expression and activity of NOX2 in SH-SY5Y human neuroblastoma cells, implying differential regulation of NOX proteins. This increase in mitochondrial ROS triggers the opening of the mitochondrial permeability transition pore (mPTP), leading to apoptosis through key mediators, including caspase3, BAX, and Bcl2. Notably, the voltage-dependent anion-selective channel 1 (VDAC1) increases at 1 µg/mL of PM2.5, while PM10 triggers an increase from 10 µg/mL. At the same concentration (100 µg/mL), PM2.5 causes 1.4 times higher ROS production and 2.4 times higher NOX4 activity than PM10. The cytotoxic effects induced by PMs were alleviated by NOX inhibitors GKT137831 and Apocynin. In SH-SY5Y cells, both PM types increase ROS and NOX2 levels, leading to cell death, which Apocynin rescues. Variability in NADPH oxidase sources underscores the complexity of PM-induced neurotoxicity. Our findings highlight NOX4-driven ROS and mitochondrial dysfunction, suggesting a potential therapeutic approach for mitigating PM-induced neurotoxicity.


Asunto(s)
Apoptosis , Mitocondrias , NADPH Oxidasa 4 , Neuronas , Material Particulado , Especies Reactivas de Oxígeno , Material Particulado/toxicidad , NADPH Oxidasa 4/metabolismo , NADPH Oxidasa 4/genética , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Línea Celular Tumoral , Estrés Oxidativo/efectos de los fármacos , Animales , Ratones , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética
10.
Am J Physiol Renal Physiol ; 325(2): F214-F223, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37318993

RESUMEN

Infiltrating T cells in the kidney amplify salt-sensitive (SS) hypertension and renal damage, but the mechanisms are not known. Genetic deletion of T cells (SSCD247-/-) or of the p67phox subunit of NADPH oxidase 2 (NOX2; SSp67phox-/-) attenuates SS hypertension in the Dahl SS rat. We hypothesized that reactive oxygen species produced by NOX2 in T cells drive the SS phenotype and renal damage. T cells were reconstituted by adoptively transferring splenocytes (∼10 million) from the Dahl SS (SS→CD247) rat, the SSp67phox-/- rat (p67phox→CD247), or only PBS (PBS→CD247) into the SSCD247-/- rat on postnatal day 5. Animals were instrumented with radiotelemeters and studied at 8 wk of age. There were no detectable differences in mean arterial pressure (MAP) or albuminuria between groups when rats were maintained on a low-salt (0.4% NaCl) diet. After 21 days of high-salt diet (4.0% NaCl), MAP and albuminuria were significantly greater in SS→CD247 rats compared with p67phox→CD247 and PBS→CD247 rats. Interestingly, there was no difference between p67phox→CD247 and PBS→CD247 rats in albuminuria or MAP after 21 days. The lack of CD3+ cells in PBS→CD247 rats and the presence of CD3+ cells in rats that received the T cell transfer demonstrated the effectiveness of the adoptive transfer. No differences in the number of CD3+, CD4+, or CD8+ cells were observed in the kidneys of SS→CD247 and p67phox→CD247 rats. These results indicate that reactive oxygen species produced by NOX2 in T cells participates in the amplification of SS hypertension and renal damage.NEW & NOTEWORTHY Our current work used the adoptive transfer of T cells that lack functional NADPH oxidase 2 into a genetically T cell-deficient Dahl salt-sensitive (SS) rat model. The results demonstrated that reactive oxygen species produced by NADPH oxidase 2 in T cells participate in the amplification of SS hypertension and associated renal damage and identifies a potential mechanism that exacerbates the salt-sensitive phenotype.


Asunto(s)
Hipertensión , Cloruro de Sodio , Ratas , Animales , Albuminuria , NADPH Oxidasa 2/genética , Especies Reactivas de Oxígeno , Linfocitos T , Ratas Endogámicas Dahl , Riñón , Hipertensión/genética , Cloruro de Sodio Dietético , NADPH Oxidasas/genética
11.
J Clin Immunol ; 43(1): 88-100, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35997928

RESUMEN

Chronic granulomatosis disease (CGD) is a rare inborn error of immunity, characterized by phagocytic respiratory outbreak dysfunction. Mutations causing CGD occur in CYBB on the X chromosome and in the autosomal genes CYBA, NCF1, NCF2, NCF4, RAC2, and CYBC1. Nevertheless, some patients are clinically diagnosed with CGD, due to abnormal respiratory outbursts, while the pathogenic gene mutation is unidentified. Here, we report a patient with CGD who first presented with Bacillus Calmette-Guérin disease and had recurrent pneumonia. He was diagnosed with CGD by nitro blue tetrazolium and respiratory burst tests. Detailed assessment of neutrophil activity revealed that patient neutrophils were almost entirely nonfunctional. Sanger sequencing detected a 6-kb insertion of a LINE-1 transposable element in the third intron of CYBB, leading to abnormal splicing and pseudoexon insertion, as well as introduction of a premature termination codon, resulting in predicted protein truncation. Clonal analysis demonstrated that the patient had somatic mosaicism, and the phagocytes were almost all variant CYBB, while the mosaicism rate of PBMC was about 65%. Finally, deep RNA sequencing and gp91phox expression analysis confirmed the pathogenicity of the mutation. In conclusion, we demonstrate that insertion of a LINE-1 transposon in a CYBB intron was responsible for CGD in our patient. Intron LINE-1 transposon element insertion should be examined in CGD patients without any known disease-causing gene mutation, in addition to identification of new genes.


Asunto(s)
Enfermedad Granulomatosa Crónica , Masculino , Humanos , Enfermedad Granulomatosa Crónica/diagnóstico , Enfermedad Granulomatosa Crónica/genética , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Intrones/genética , Mosaicismo , Elementos de Nucleótido Esparcido Largo , Leucocitos Mononucleares/metabolismo , Mutación/genética , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismo
12.
Clin Exp Immunol ; 212(2): 156-165, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36827093

RESUMEN

Chronic granulomatous disease (CGD) is a rare primary immune disorder caused by mutations in one of the five subunits of the NADPH oxidase complex expressed in phagocytes. Two-thirds of CGD cases are caused by mutations in CYBB that encodes NOX2 or gp91phox. Some rare X91+-CGD point mutations lead to a loss of function but with a normal expression of the mutated NOX2 protein. It is therefore necessary to ensure that this mutation is indeed responsible for the loss of activity in order to make a safe diagnosis for genetic counselling. We previously used the X-CGD PLB-985 cell model of M.C. Dinauer obtained by homologous recombination in the original PLB-985 human myeloid cell line, in order to study the functional impact of such mutations. Although the PLB-985 cell line was originally described by K.A. Tucker et al. in1987 as a distinct cell line isolated from a patient with acute nonlymphocytic leukemia, it is actually identified as a subclone of the HL-60 cells. In order to use a cellular model that meets the quality standard for the functional study of X91+-CGD mutations in CGD diagnosis, we developed our own model using the CRISPR-Cas9 technology in a certified PLB-985 cell line from DSMZ-German Collection of Microorganisms and Cell Cultures. Thanks to this new X-CGD model, we demonstrated that the G412E mutation in NOX2 found in a X91+-CGD patient prohibits access of the electron donor NADPH to its binding site explaining the absence of superoxide production in his neutrophils.


Asunto(s)
Enfermedad Granulomatosa Crónica , Humanos , Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/metabolismo , NADPH Oxidasa 2/genética , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Mutación/genética , Neutrófilos/metabolismo
13.
Blood ; 137(19): 2598-2608, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33623984

RESUMEN

Lentivector gene therapy for X-linked chronic granulomatous disease (X-CGD) has proven to be a viable approach, but random vector integration and subnormal protein production from exogenous promoters in transduced cells remain concerning for long-term safety and efficacy. A previous genome editing-based approach using Streptococcus pyogenes Cas9 mRNA and an oligodeoxynucleotide donor to repair genetic mutations showed the capability to restore physiological protein expression but lacked sufficient efficiency in quiescent CD34+ hematopoietic cells for clinical translation. Here, we report that transient inhibition of p53-binding protein 1 (53BP1) significantly increased (2.3-fold) long-term homology-directed repair to achieve highly efficient (80% gp91phox+ cells compared with healthy donor control subjects) long-term correction of X-CGD CD34+ cells.


Asunto(s)
Reparación del ADN , Edición Génica/métodos , Terapia Genética/métodos , Enfermedad Granulomatosa Crónica/terapia , Trasplante de Células Madre Hematopoyéticas , NADPH Oxidasa 2/genética , Proteína 1 de Unión al Supresor Tumoral P53/antagonistas & inhibidores , Animales , Proteínas Bacterianas , Caspasa 9 , Células Cultivadas , Reparación del ADN/genética , Dependovirus/genética , Exones/genética , Vectores Genéticos/genética , Vectores Genéticos/uso terapéutico , Enfermedad Granulomatosa Crónica/genética , Células Madre Hematopoyéticas/enzimología , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , NADPH Oxidasa 2/deficiencia , Fagocitos/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Mensajero/genética , Especies Reactivas de Oxígeno , Ribonucleoproteínas/genética , Eliminación de Secuencia , Streptococcus pyogenes/enzimología
15.
J Immunol ; 206(2): 323-328, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33288542

RESUMEN

The NOX2 NADPH oxidase (NOX2) produces reactive oxygen species to kill phagosome-confined bacteria. However, we previously showed that Listeria monocytogenes is able to avoid the NOX2 activity in phagosomes and escape to the cytosol. Thus, despite the established role of NOX2 limiting L. monocytogenes infection in mice, the underlying mechanisms of this antibacterial activity remain unclear. In this article, we report that NOX2 controls systemic L. monocytogenes spread through modulation of the type I IFN response, which is known to be exploited by L. monocytogenes during infection. NOX2 deficiency results in increased expression of IFN-stimulated genes in response to type I IFN and leads to 1) promotion of cell-to-cell spread by L. monocytogenes, 2) defective leukocyte recruitment to infection foci, and 3) production of anti-inflammatory effectors IL-10 and thioredoxin 1. Our findings report a novel antimicrobial role for NOX2 through modulation of type I IFN responses to control bacterial dissemination.


Asunto(s)
Inflamación/inmunología , Interferón Tipo I/metabolismo , Leucocitos/inmunología , Listeria monocytogenes/fisiología , Listeriosis/inmunología , Macrófagos/metabolismo , NADPH Oxidasa 2/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Interleucina-10/metabolismo , Listeriosis/transmisión , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2/genética , Tiorredoxinas
16.
J Immunol ; 207(3): 923-937, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34301842

RESUMEN

Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by genetic defects in leukocyte NADPH oxidase, which has both microbicidal and immunomodulatory roles. Hence, CGD is characterized by recurrent bacterial and fungal infections as well as aberrant inflammation. Fungal cell walls induce neutrophilic inflammation in CGD; yet, underlying mechanisms are incompletely understood. This study investigated the receptors and signaling pathways driving aberrant proinflammatory cytokine production in CGD neutrophils activated by fungal cell walls. Although cytokine responses to ß-glucan particles were similar in NADPH oxidase-competent and NADPH oxidase-deficient mouse and human neutrophils, stimulation with zymosan, a more complex fungal particle, induced elevated cytokine production in NADPH oxidase-deficient neutrophils. The dectin-1 C-type lectin receptor, which recognizes ß-glucans (1-3), and TLRs mediated cytokine responses by wild-type murine neutrophils. In the absence of NADPH oxidase, fungal pathogen-associated molecular patterns engaged additional collaborative signaling with Mac-1 and TLRs to markedly increase cytokine production. Mechanistically, this cytokine overproduction is mediated by enhanced proximal activation of tyrosine phosphatase SHP2-Syk and downstream Card9-dependent NF-κB and Card9-independent JNK-c-Jun. This activation and amplified cytokine production were significantly decreased by exogenous H2O2 treatment, enzymatic generation of exogenous H2O2, or Mac-1 blockade. Similar to zymosan, Aspergillus fumigatus conidia induced increased signaling in CGD mouse neutrophils for activation of proinflammatory cytokine production, which also used Mac-1 and was Card9 dependent. This study, to our knowledge, provides new insights into how NADPH oxidase deficiency deregulates neutrophil cytokine production in response to fungal cell walls.


Asunto(s)
Aspergillus fumigatus/fisiología , Enfermedad Granulomatosa Crónica/inmunología , Lectinas Tipo C/metabolismo , Antígeno de Macrófago-1/metabolismo , NADPH Oxidasa 2/metabolismo , Neutrófilos/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Animales , Antígenos Fúngicos/inmunología , Células Cultivadas , Citocinas/metabolismo , Enfermedad Granulomatosa Crónica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2/genética , FN-kappa B/metabolismo , Activación Neutrófila , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Receptor Cross-Talk , Transducción de Señal , beta-Glucanos/inmunología
17.
Mol Cell Proteomics ; 20: 100021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33288685

RESUMEN

We have previously shown that multimers of plasma pentraxin-3 (PTX3) were predictive of survival in patients with sepsis. To characterize the release kinetics and cellular source of plasma protein changes in sepsis, serial samples were obtained from healthy volunteers (n = 10; three time points) injected with low-dose endotoxin (lipopolysaccharide [LPS]) and analyzed using data-independent acquisition MS. The human plasma proteome response was compared with an LPS-induced endotoxemia model in mice. Proteomic analysis of human plasma revealed a rapid neutrophil degranulation signature, followed by a rise in acute phase proteins. Changes in circulating PTX3 correlated with increases in neutrophil-derived proteins following LPS injection. Time course analysis of the plasma proteome in mice showed a time-dependent increase in multimeric PTX3, alongside increases in neutrophil-derived myeloperoxidase (MPO) upon LPS treatment. The mechanisms of oxidation-induced multimerization of PTX3 were explored in two genetic mouse models: MPO global knock-out (KO) mice and LysM Cre Nox2 KO mice, in which NADPH oxidase 2 (Nox2) is only deficient in myeloid cells. Nox2 is the enzyme responsible for the oxidative burst in neutrophils. Increases in plasma multimeric PTX3 were not significantly different between wildtype and MPO or LysM Cre Nox2 KO mice. Thus, PTX3 may already be stored and released in a multimeric form. Through in vivo neutrophil depletion and multiplexed vascular proteomics, PTX3 multimer deposition within the aorta was confirmed to be neutrophil dependent. Proteomic analysis of aortas from LPS-injected mice returned PTX3 as the most upregulated protein, where multimeric PTX3 was deposited as early as 2 h post-LPS along with other neutrophil-derived proteins. In conclusion, the rise in multimeric PTX3 upon LPS injection correlates with neutrophil-related protein changes in plasma and aortas. MPO and myeloid Nox2 are not required for the multimerization of PTX3; instead, neutrophil extravasation is responsible for the LPS-induced deposition of multimeric PTX3 in the aorta.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Endotoxemia/metabolismo , Lipopolisacáridos/farmacología , Proteoma/metabolismo , Animales , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Masculino , Ratones Noqueados , NADPH Oxidasa 2/genética , Neutrófilos/metabolismo , Peroxidasa/genética , Proteómica
18.
BMC Pediatr ; 23(1): 348, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37434114

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is a heterogeneous group of disorders associated with environmental triggers and dysregulated immune responses resulting in chronic, recurrent intestinal inflammation. Very early-onset IBD (VEO-IBD) refers to patients with symptoms or diagnosis before the age of 6 years and is widely thought to be associated with monogenic mutations. Traditional drug therapy is often ineffective in this patient population, while hematopoietic stem cell transplantation (HSCT) represents the definitive cure for patients with gene mutations. CASE PRESENTATION: We report a case of VEO-IBD associated with a monogenic mutation in a 2-year-old girl presenting mainly with gastrointestinal symptoms, including recurrent hematochezia and abdominal pain for more than 3 months. A gastroscopy revealed erosive gastritis and bulbar duodenitis, while a colonoscopy indicated erosive colitis. Abnormal results were obtained from the dihydrohodamine (DHR) assay and immunoglobulin testing. Whole-exome sequencing identified a heterozygous and de novo nonsense mutation (c.388 C > T; p.R130X) in the CYBB gene leading to deficiency of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) (encoded by CYBB), a critical component of phagocytes. HSCT was performed successfully, and the DHR assay showed that normal neutrophil function was restored. Six months after HSCT, clinical remission was observed, and a repeat colonoscopy revealed intestinal mucosal healing was attained. CONCLUSIONS: Patients with CYBB mutations often develop recurrent or severe bacterial or fungal infections, mostly in the lungs, skin, lymph nodes, and liver. Here, we report on a young female child with CYBB mutations presenting predominantly with gastrointestinal symptoms. This study explores the mechanisms of inflammatory bowel disease caused by a monogenic mutation in CYBB to improve early diagnosis and effective treatment rates of this patient population.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Enfermedades Inflamatorias del Intestino , Preescolar , Femenino , Humanos , Inflamación , Mucosa Intestinal , Intestinos , NADPH Oxidasa 2/genética
19.
Proc Natl Acad Sci U S A ; 117(42): 26008-26019, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020304

RESUMEN

Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism. We observed an immediate, robust rise in intracellular calcium (within seconds) followed by a persistent extracellular calcium influx (up to 30 min). This persistent calcium was sustained via microtubule-dependent mechanoactivation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species (ROS), which acted on transient receptor potential cation channel subfamily M member 8 (TRPM8) channels to prolong calcium signaling. In contrast, the introduction of a constitutively active oncogenic KRas mutation inhibited the magnitude of initial calcium signaling and severely blunted persistent calcium influx. The identification that oncogenic KRas suppresses mechanically-induced calcium at the level of ROS provides a mechanism for how KRas could alter cell responses to tumor microenvironment mechanics and may reveal chemotherapeutic targets for cancer. Moreover, we find that expression changes in both NOX2 and TRPM8 mRNA predict poor clinical outcome in estrogen receptor (ER)-negative breast cancer patients, a population with limited available treatment options. The clinical and mechanistic data demonstrating disruption of this mechanically-activated calcium pathway in breast cancer patients and by KRas activation reveal signaling alterations that could influence cancer cell responses to the tumor mechanical microenvironment and impact patient survival.


Asunto(s)
Mama/patología , Calcio/metabolismo , Mecanotransducción Celular , NADPH Oxidasa 2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPM/metabolismo , Mama/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Microtúbulos/metabolismo , NADPH Oxidasa 2/genética , Pronóstico , Proteínas Proto-Oncogénicas p21(ras)/genética , Tasa de Supervivencia , Canales Catiónicos TRPM/genética , Microambiente Tumoral
20.
Zhonghua Jie He He Hu Xi Za Zhi ; 46(5): 493-497, 2023 May 12.
Artículo en Zh | MEDLINE | ID: mdl-37147812

RESUMEN

We reported a 28-year-old male patient who had been admitted to a local hospital for several times in the past four years because of recurrent fever and cough. Each chest CT scan during hospitalization showed consolidation accompanied by exudation and mild pleural effusion. After treatment, the consolidation apparently absorbed, but similar symptoms recurred within half a year, and the new consolidation appeared. For this reason, he was diagnosed with tuberculosis or bacterial pneumonia several times in other hospitals, and was hospitalized two to three times a year. Finally, he was diagnosed with chronic granulomatous disease (CGD) with CYBB gene mutation through whole-exome sequencing.


Asunto(s)
Enfermedad Granulomatosa Crónica , Derrame Pleural , Masculino , Humanos , Adulto , Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/diagnóstico , NADPH Oxidasa 2/genética , Mutación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda