Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 2.432
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042822

RESUMEN

Functional and versatile nano- and microassemblies formed by biological molecules are found at all levels of life, from cell organelles to full organisms. Understanding the chemical and physicochemical determinants guiding the formation of these assemblies is crucial not only to understand the biological processes they carry out but also to mimic nature. Among the synthetic peptides forming well-defined nanostructures, the octapeptide Lanreotide has been considered one of the best characterized, in terms of both the atomic structure and its self-assembly process. In the present work, we determined the atomic structure of Lanreotide nanotubes at 2.5-Å resolution by cryoelectron microscopy (cryo-EM). Surprisingly, the asymmetric unit in the nanotube contains eight copies of the peptide, forming two tetramers. There are thus eight different environments for the peptide, and eight different conformations in the nanotube. The structure built from the cryo-EM map is strikingly different from the molecular model, largely based on X-ray fiber diffraction, proposed 20 y ago. Comparison of the nanotube with a crystal structure at 0.83-Å resolution of a Lanreotide derivative highlights the polymorphism for this peptide family. This work shows once again that higher-order assemblies formed by even well-characterized small peptides are very difficult to predict.


Asunto(s)
Nanotubos/química , Nanotubos/ultraestructura , Péptidos Cíclicos/química , Somatostatina/análogos & derivados , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Péptidos/química , Péptidos Cíclicos/metabolismo , Somatostatina/química , Somatostatina/metabolismo , Difracción de Rayos X/métodos
2.
Nano Lett ; 24(28): 8696-8701, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38967319

RESUMEN

DNA nanotubes with controllable geometries hold a wide range of interdisciplinary applications. When preparing DNA nanotubes of varying widths or distinct chirality, existing methods require repeatedly designing and synthesizing specific DNA sequences, which can be costly and laborious. Here, we proposed an intercalator-assisted DNA tile assembly method which enables the production of DNA nanotubes of diverse widths and chirality using identical DNA strands. Through adjusting the concentration of intercalators during assembly, the twisting direction and extent of DNA tiles could be modulated, leading to the formation of DNA nanotubes featuring controllable widths and chirality. Moreover, through introducing additional intercalators and secondary annealing, right-handed nanotubes could be reconfigured into distinct left-handed nanotubes. We expect that this method could be universally applied to modulating the self-assembly pathways of various DNA tiles and other chiral materials, advancing the landscape of DNA tile assembly.


Asunto(s)
ADN , Nanotubos , Nanotubos/química , Nanotubos/ultraestructura , ADN/química , Conformación de Ácido Nucleico , Nanotecnología/métodos , Sustancias Intercalantes/química , Estereoisomerismo
3.
Anal Chem ; 94(40): 13842-13851, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36174112

RESUMEN

The nucleolus, as a main "cellular stress receptor", is the hub of the stress response driving cancer development and has great research value in the field of organelle-targeting photothermal therapy. However, there are few studies focused on monitoring nucleolar stress response and revealing how the energy metabolism of cells regulates the nucleolar stress response during photothermal therapy. Herein, by designing a nucleolus-targeting and ATP- and photothermal-responsive plasmonic fluorescent nanoprobe (AuNRs-CDs) based on gold nanorods (AuNRs) and fluorescent carbon quantum dots (CDs), we achieved real-time fluorescence imaging of nucleus morphology while monitoring changes of ATP content at the subcellular level. We found that the green fluorescence diminished at 5 min of photothermal therapy, and the nucleolus morphology began to shrink and became smaller in cancerous HepG2 cells. In contrast, there is no significant change of green fluorescence in the nucleolar region of normal HL-7702 cells. ATP content monitoring also showed similar results. Apparently, in response to photothermal stimuli, cancerous cells produce more ATP (energy) along with obvious change in nucleolus morphology and state compared to normal cells under the hyperthermia-induced cell apoptosis. The developed AuNRs-CDs as a nucleolus imaging nanoprobe and effective photothermal agent present promising applications for nucleolar stress studies and targeted photothermal therapy.


Asunto(s)
Hipertermia Inducida , Nanotubos , Adenosina Trifosfato , Apoptosis , Carbono/farmacología , Línea Celular Tumoral , Oro/farmacología , Hipertermia Inducida/métodos , Nanotubos/ultraestructura , Fototerapia/métodos
4.
Biochem J ; 478(22): 3977-3998, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34813650

RESUMEN

Tunneling nanotubes (TNTs) are F-actin-based, membrane-enclosed tubular connections between animal cells that transport a variety of cellular cargo. Over the last 15 years since their discovery, TNTs have come to be recognized as key players in normal cell communication and organism development, and are also exploited for the spread of various microbial pathogens and major diseases like cancer and neurodegenerative disorders. TNTs have also been proposed as modalities for disseminating therapeutic drugs between cells. Despite the rapidly expanding and wide-ranging relevance of these structures in both health and disease, there is a glaring dearth of molecular mechanistic knowledge regarding the formation and function of these important but enigmatic structures. A series of fundamental steps are essential for the formation of functional nanotubes. The spatiotemporally controlled and directed modulation of cortical actin dynamics would be required to ensure outward F-actin polymerization. Local plasma membrane deformation to impart negative curvature and membrane addition at a rate commensurate with F-actin polymerization would enable outward TNT elongation. Extrinsic tactic cues, along with cognate intrinsic signaling, would be required to guide and stabilize the elongating TNT towards its intended target, followed by membrane fusion to create a functional TNT. Selected cargoes must be transported between connected cells through the action of molecular motors, before the TNT is retracted or destroyed. This review summarizes the current understanding of the molecular mechanisms regulating these steps, also highlighting areas that deserve future attention.


Asunto(s)
Comunicación Celular , Animales , Transporte Biológico , Línea Celular , Membrana Celular , Estructuras de la Membrana Celular/inmunología , Estructuras de la Membrana Celular/metabolismo , Estructuras de la Membrana Celular/ultraestructura , Humanos , Fusión de Membrana , Nanotubos/ultraestructura
5.
Proc Natl Acad Sci U S A ; 116(29): 14456-14464, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31262809

RESUMEN

Tandem repeat proteins exhibit native designability and represent potentially useful scaffolds for the construction of synthetic biomimetic assemblies. We have designed 2 synthetic peptides, HEAT_R1 and LRV_M3Δ1, based on the consensus sequences of single repeats of thermophilic HEAT (PBS_HEAT) and Leucine-Rich Variant (LRV) structural motifs, respectively. Self-assembly of the peptides afforded high-aspect ratio helical nanotubes. Cryo-electron microscopy with direct electron detection was employed to analyze the structures of the solvated filaments. The 3D reconstructions from the cryo-EM maps led to atomic models for the HEAT_R1 and LRV_M3Δ1 filaments at resolutions of 6.0 and 4.4 Å, respectively. Surprisingly, despite sequence similarity at the lateral packing interface, HEAT_R1 and LRV_M3Δ1 filaments adopt the opposite helical hand and differ significantly in helical geometry, while retaining a local conformation similar to previously characterized repeat proteins of the same class. The differences in the 2 filaments could be rationalized on the basis of differences in cohesive interactions at the lateral and axial interfaces. These structural data reinforce previous observations regarding the structural plasticity of helical protein assemblies and the need for high-resolution structural analysis. Despite these observations, the native designability of tandem repeat proteins offers the opportunity to engineer novel helical nanotubes. Moreover, the resultant nanotubes have independently addressable and chemically distinguishable interior and exterior surfaces that would facilitate applications in selective recognition, transport, and release.


Asunto(s)
Secuencias Hélice-Asa-Hélice , Nanotubos/ultraestructura , Péptidos/química , Microscopía por Crioelectrón , Imagenología Tridimensional , Modelos Moleculares , Conformación Proteica en Hélice alfa , Secuencias Repetidas en Tándem
6.
J Mater Sci Mater Med ; 33(1): 10, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022850

RESUMEN

Herein we report synthesis of hematite (α-Fe2O3) nanorods by calcinating hydrothermally synthesized goethite nanorods at 5000C. The structural, optical and MRI imaging guided cancer therapeutic properties of fabricated nanorods have been discussed in this manscript. FESEM and TEM imaging techniques were used to confirm the nanorod like morphology of as prepared materials. As we know that Fe2O3 nanorods with size in the range of 25-30 nm exhibit super magnetism. After coating with the PEG, the as prepared nanorods can be used as T2 MR imaging contrast agents. An excellent T2 MRI contrast of 38.763 mM-1s-1 achieved which is highest reported so far for α-Fe2O3. Besides the as prepared nanorods display an excellent photothermal conversion efficiency of 39.5% thus acts as an excellent photothermal therapeutic agent. Thus, we envision the idea of testing our nanorods for photothermal therapy and MR imaging application both in vitro and in vivo, achieving an excellent T2 MRI contrast and photothermal therapy effect with as prepared PEGylated nanorods.


Asunto(s)
Compuestos Férricos/química , Nanotubos/química , Animales , Materiales Biocompatibles/química , Línea Celular , Supervivencia Celular , Femenino , Compuestos Férricos/toxicidad , Células HeLa , Humanos , Técnicas In Vitro , Imagen por Resonancia Magnética , Ensayo de Materiales , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Microscopía Electrónica de Rastreo , Nanotubos/toxicidad , Nanotubos/ultraestructura , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Fototerapia/métodos , Polietilenglicoles/química , Espectrometría Raman , Difracción de Rayos X
7.
Lab Invest ; 101(12): 1571-1584, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34537825

RESUMEN

Osteoclasts are multinucleated cells formed through specific recognition and fusion of mononuclear osteoclast precursors derived from hematopoietic stem cells. Detailed cellular events concerning cell fusion in osteoclast differentiation remain ambiguous. Tunneling nanotubes (TNTs), actin-based membrane structures, play an important role in intercellular communication between cells. We have previously reported the presence of TNTs in the fusion process of osteoclastogenesis. Here we analyzed morphological details of TNTs using scanning electron microscopy. The osteoclast precursor cell line RAW-D was stimulated to form osteoclast-like cells, and morphological details in the appearance of TNTs were extensively analyzed. Osteoclast-like cells could be classified into three types; early osteoclast precursors, late osteoclast precursors, and multinucleated osteoclast-like cells based on the morphological characteristics. TNTs were frequently observed among these three types of cells. TNTs could be classified into thin, medium, and thick TNTs based on the diameter and length. The shapes of TNTs were dynamically changed from thin to thick. Among them, medium TNTs were often observed between two remote cells, in which side branches attached to the culture substrates and beaded bulge-like structures were often observed. Cell-cell interaction through TNTs contributed to cell migration and rapid transport of information between cells. TNTs were shown to be involved in cell-cell fusion between osteoclast precursors and multinucleated osteoclast-like cells, in which movement of membrane vesicles and nuclei was observed. Formation of TNTs was also confirmed in primary cultures of osteoclasts. Furthermore, we have successfully detected TNTs formed between osteoclasts observed in the bone destruction sites of arthritic rats. Thus, formation of TNTs may be important for the differentiation of osteoclasts both in vitro and in vivo. TNTs could be one target cellular structure for the regulation of osteoclast differentiation and function in bone diseases.


Asunto(s)
Estructuras de la Membrana Celular/ultraestructura , Nanotubos/ultraestructura , Osteogénesis , Animales , Fusión Celular , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas Endogámicas Lew
8.
Biochem Biophys Res Commun ; 535: 33-38, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33340763

RESUMEN

Nano titanium implants induce osteogenesis, but how osteoblasts respond to this physical stimulation remains unclear. In this study, we tried to reveal the role of the mitochondrial fission-fusion of osteoblasts in response to a nano titanium surface during the process of osteogenesis, which is important for the design of the surface structure of titanium implants. A TiO2 nanotube array (nano titanium, NT) was fabricated by anodization, and a smooth surface (smooth titanium, ST) was used as a control. We investigated changes in the mitochondrial fission-fusion (MFF) dynamics in MC3T3-E1 cells on the NT surface with those on the ST surface by performing transmission electron microscopy (TEM), confocal laser scanning microscope (CLSM) and real-time PCR. At the same time, we also detected changes in the MFF and osteogenic differentiation of MC3T3-E1 cells after DRP1 downregulation with RNA interference. Cells on the NT surface exhibited more mitochondrial fusion than those on the ST surface, and DRP1 was the key regulatory molecule. Interestingly, DRP1 increased for only a short time at the early stage on the NT surface, and when DRP1 was inhibited by siRNA at the early stage, the osteogenic differentiation of MC3T3-E1 cells significantly decreased. In conclusion, DRP1-regulated mitochondrial dynamics played a key role in the nanotopography-accelerated osteogenic differentiation of MC3T3-E1 cells.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Nanotubos/toxicidad , Osteogénesis/efectos de los fármacos , Titanio/toxicidad , Animales , Diferenciación Celular/genética , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Dinaminas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Dinámicas Mitocondriales/genética , Nanotubos/ultraestructura , Osteogénesis/genética , Propiedades de Superficie
9.
Nanomedicine ; 32: 102326, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33166666

RESUMEN

Drug release systems co-encapusulated with ammonium bicarbonate (ABC) could facilitate drug release upon acidic or thermal stimulations to improve therapeutic effect. However, it is not easy to control drug release rate, owing to relative stable temperature and acidic condition in living body. Besides, the additional loaded ABC reduces drug loading capacity. Herein, a near-infrared light triggered rapid drug release system with high loading capacity was developed by loading ABC and doxorubicin into yolk-shell structured Au nanorods@mesoporous silica. Gas bubbles were generated from the thermolysis of ABC utilizing photothermal effect of Au nanorods to extrude drug molecules. The mesoporous silica shell was finally destroyed along with growing bubbles, resulting in burst drug release. The photothermal therapeutic effect of Au nanorods also contributed in tumor treatment. The excellent therapeutic effect was demonstrated in cancer cells and tumor-bearing mice, which provides a new reference to achieve controllable rapid drug release in cancer medicine.


Asunto(s)
Liberación de Fármacos , Yema de Huevo/química , Gases/química , Oro/química , Rayos Infrarrojos , Nanotubos/química , Animales , Bicarbonatos/química , Muerte Celular/efectos de los fármacos , Doxorrubicina/farmacología , Femenino , Células HeLa , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Nanotubos/ultraestructura , Porosidad , Dióxido de Silicio , Temperatura
10.
Molecules ; 26(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670610

RESUMEN

This paper presents a facile and low-cost strategy for fabrication lysozyme-loaded mesoporous silica nanotubes (MSNTs) by using silk fibroin (SF) nanofiber templates. The "top-down method" was adopted to dissolve degummed silk in CaCl2/ formic acid (FA) solvent, and the solution containing SF nanofibrils was used for electrospinning to prepare SF nanofiber templates. As SF contains a large number of -OH, -NH2 and -COOH groups, the silica layer could be easily formed on its surface by the Söber sol-gel method without adding any surfactant or coupling agent. After calcination, the MSNTs were obtained with inner diameters about 200 nm, the wall thickness ranges from 37 ± 2 nm to 66 ± 3 nm and the Brunauer-Emmett-Teller (BET) specific surface area was up to 200.48 m2/g, the pore volume was 1.109 cm3/g. By loading lysozyme, the MSNTs exhibited relatively high drug encapsulation efficiency up to 31.82% and an excellent long-term sustained release in 360 h (15 days). These results suggest that the MSNTs with the hierarchical structure of mesoporous and macroporous will be a promising carrier for applications in biomacromolecular drug delivery systems.


Asunto(s)
Fibroínas/química , Muramidasa/metabolismo , Nanofibras/química , Nanotubos/química , Dióxido de Silicio/química , Cloruro de Calcio/química , Liberación de Fármacos , Formiatos/química , Nanofibras/ultraestructura , Nanotubos/ultraestructura , Porosidad , Silanos/química , Soluciones , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Termogravimetría , Viscosidad
11.
Molecules ; 26(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669712

RESUMEN

Hydroxyapatite (HA) is the main inorganic mineral that constitutes bone matrix and represents the most used biomaterial for bone regeneration. Over the years, it has been demonstrated that HA exhibits good biocompatibility, osteoconductivity, and osteoinductivity both in vitro and in vivo, and can be prepared by synthetic and natural sources via easy fabrication strategies. However, its low antibacterial property and its fragile nature restricts its usage for bone graft applications. In this study we functionalized a MgHA scaffold with gold nanorods (AuNRs) and evaluated its antibacterial effect against S. aureus and E. coli in both suspension and adhesion and its cytotoxicity over time (1 to 24 days). Results show that the AuNRs nano-functionalization improves the antibacterial activity with 100% bacterial reduction after 24 h. The toxicity study, however, indicates a 4.38-fold cell number decrease at 24 days. Although further optimization on nano-functionalization process are needed for cytotoxicity, these data indicated that Au-NRs nano-functionalization is a very promising method for improving the antibacterial properties of HA.


Asunto(s)
Antiinfecciosos/farmacología , Durapatita/farmacología , Oro/farmacología , Magnesio/farmacología , Nanotubos/química , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Nanotubos/ultraestructura , Espectroscopía de Fotoelectrones , Staphylococcus aureus/efectos de los fármacos , Andamios del Tejido/química
12.
Biochem Biophys Res Commun ; 523(4): 1014-1019, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31973818

RESUMEN

Dynein motor proteins usually work as a group in vesicle transport, mitosis, and ciliary/flagellar beating inside cells. Despite the obvious importance of the functions of dynein, the effect of inter-dynein interactions on collective motility remains poorly understood due to the difficulty in building large dynein ensembles with defined geometry. Here, we describe a method to build dynein ensembles to investigate the collective motility of dynein on microtubules. Using electron microscopy, we show that tens to hundreds of cytoplasmic dynein monomers were anchored along a 4- or 10-helix DNA nanotube with an average periodicity of 19 or 44 nm (a programmed periodicity of 14 or 28 nm, respectively). They drove the sliding movement of DNA nanotubes along microtubules at a velocity of 170-620 nm/s. Reducing the stiffness of DNA nanotubes made the nanotube movement discontinuous and considerably slower. Decreasing the spacing between motors simply slowed down the nanotube movement. This slowdown was independent of the number of motors involved but heavily dependent on motor-motor distance. This suggests that steric hindrance or mechanical coupling between dynein molecules was responsible for the slowdown. Furthermore, we observed cyclical buckling of DNA nanotubes on microtubules, reminiscent of ciliary/flagellar beating. These results highlight the importance of the geometric arrangement of dynein motors on their collective motility.


Asunto(s)
ADN/metabolismo , Dineínas/metabolismo , Nanotubos/química , ADN/ultraestructura , Dineínas/ultraestructura , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Nanotubos/ultraestructura , Transporte de Proteínas , Proteínas Recombinantes/metabolismo
13.
Bioconjug Chem ; 31(2): 182-193, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31940174

RESUMEN

Precise detection and effective treatment are crucial to prolong cancer patients' lives. Surface-enhanced Raman scattering (SERS) imaging coupled with photothermal therapy has been considered a precise and effective strategy for cancer theranostics. Nevertheless, Raman reporters employed in the literature usually possessed multiple shift peaks in the fingerprint region, which are overlapped with background signals from endogenous biological molecules. Herein, we fabricated a new kind of bioorthogonal Raman reporter and aptamer functionalized SERS nanotags. The SERS nanotags demonstrated a strong Raman signal at 2205 cm-1 in the biologically Raman-silent region and recognized MCF-7 breast cancer cells for Raman imaging with high specificity. Laser irradiation induced serious toxicity of MCF-7 cells due to the excellent photothermal capability of the SERS nanotags. After intravenous administration of the SERS nanotags, tumor Raman spectral detection and mapping in living mice were successfully achieved. Further in vivo antitumor experiments manifested that the aptamer-modified SERS nanotags significantly restrained tumor growth after laser irradiation with 99% inhibition rate and good biocompatibility. These results clearly revealed that the SERS nanotags could serve as a novel and precise theranostic platform for in vivo cancer diagnosis and photothermal therapy.


Asunto(s)
Aptámeros de Nucleótidos/uso terapéutico , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/terapia , Oro/uso terapéutico , Nanotubos , Células 3T3-L1 , Animales , Aptámeros de Nucleótidos/análisis , Femenino , Oro/análisis , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanotubos/análisis , Nanotubos/ultraestructura , Terapia Fototérmica/métodos , Espectrometría Raman/métodos , Nanomedicina Teranóstica/métodos
14.
Anal Bioanal Chem ; 412(4): 841-848, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31897553

RESUMEN

A sensitive photoelectrochemical (PEC) aptasensor was constructed for prostate-specific antigen (PSA) detection using an enhanced photocurrent response strategy. The p-n heterostructure CdS-Cu2O nanorod arrays were prepared on Ti mesh (CdS-Cu2O NAs/TM) by a simple hydrothermal method and successive ionic-layer adsorption reactions. Compared with the original CdS/TM, the synergistic effect of p-n type CdS-Cu2O NAs/TM and the internal electric field realizes the effective separation of photoinduced electron-hole pairs and improves the PEC performance. In order to construct the aptasensor, an amino-modified aptamer was immobilized on CdS-Cu2O NAs/TM to serve as a recognition unit for PSA. After the introduction of PSA, PSA was specifically captured by the aptamer on the PEC aptasensor, which can be oxidized by photogenerated holes to prevent electron-hole recombination and increase photocurrent. Under optimal conditions, the constructed PEC aptasensor has a linear range of 0.1-100 ng·mL-1 and a detection limit as low as 0.026 ng·mL-1. The results of aptasensor detection of human serum indicate that it has broad application prospects in biosensors and photoelectrochemical analysis.


Asunto(s)
Aptámeros de Nucleótidos/química , Compuestos de Cadmio/química , Cobre/química , Nanotubos/química , Antígeno Prostático Específico/sangre , Sulfuros/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Humanos , Límite de Detección , Nanotubos/ultraestructura
15.
Nucleic Acids Res ; 46(3): 1052-1058, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29272518

RESUMEN

Nucleic acids are biomolecules of amazing versatility. Beyond their function for information storage they can be used for building nano-objects. We took advantage of loop-loop or kissing interactions between hairpin building blocks displaying complementary loops for driving the assembly of nucleic acid nano-architectures. It is of interest to make the interaction between elementary units dependent on an external trigger, thus allowing the control of the scaffold formation. To this end we exploited the binding properties of structure-switching aptamers (aptaswitch). Aptaswitches are stem-loop structured oligonucleotides that engage a kissing complex with an RNA hairpin in response to ligand-induced aptaswitch folding. We demonstrated the potential of this approach by conditionally assembling oligonucleotide nanorods in response to the addition of adenosine.


Asunto(s)
Adenosina/química , Aptámeros de Nucleótidos/química , ADN/química , Nanotubos/química , Oligonucleótidos/química , ARN/química , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Secuencias Invertidas Repetidas , Ligandos , Nanotecnología/métodos , Nanotubos/ultraestructura , Conformación de Ácido Nucleico
16.
Lasers Med Sci ; 35(8): 1729-1740, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31965353

RESUMEN

Despite of high in vitro anticancer efficacy of many chemotherapeutics, their in vivo use is limited due to lack of biocompatibility and tumor targeting. Near-infrared (NIR) photothermally induced phase transition of PLGA-PEG regime was utilized for developing highly efficient photoresponsive drug delivery systems. Co-encapsulation of plasmonic gold nanorods (GNRs), as NIR-trigger, with the novel and highly efficient anticancer drug N'-(2-Methoxybenzylidene)-3-methyl-1-phenyl-H-Thieno[2,3-c]Pyrazole-5-Carbohyd-razide (MTPC) produced NIR-responsive biodegradable polymeric (PLGA-b-PEG) nanocapsules. This remotely controllable drug release significantly enhanced both biodistribution and pharmacokinetics of the hydrophobic drug. Intravenous (IV) injection of the prepared nanocapsules (MTPC/GNRs@PLGA-PEG) to tumor-bearing mice followed by extracorporeal exposure of the tumor to NIR light resulted in highly selective drug accumulation at the tumor sites. In vivo biodistribution and pharmacokinetics utilizing iodine-131 drug-radiolabelling technique revealed a maximum target to non-target ratio (T/NT) of 5.8, 4 h post-injection with maximum drug level in the tumor (6.3 ± 0.6% of the injected dose). Graphical abstract.


Asunto(s)
Antineoplásicos/uso terapéutico , Oro/química , Nanotubos/química , Polietilenglicoles/química , Poliglactina 910/química , Espectroscopía Infrarroja Corta , Animales , Preparaciones de Acción Retardada , Liberación de Fármacos , Femenino , Humanos , Hidrazinas/química , Hidrazinas/farmacocinética , Hidrazinas/uso terapéutico , Radioisótopos de Yodo/química , Células MCF-7 , Ratones , Nanocápsulas/química , Nanotubos/ultraestructura , Distribución Tisular
17.
Sensors (Basel) ; 20(3)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050725

RESUMEN

There has been growing interest in using strong field enhancement and light localization in plasmonic nanostructures to control the polarization properties of light. Various experimental techniques are now used to fabricate twisted metallic nanoparticles and metasurfaces, where strongly enhanced chiral near-fields are used to intensify circular dichroism (CD) signals. In this review, state-of-the-art strategies to develop such chiral plasmonic nanoparticles and metasurfaces are summarized, with emphasis on the most recent trends for the design and development of functionalizable surfaces. The major objective is to perform enantiomer selection which is relevant in pharmaceutical applications and for biosensing. Enhanced sensing capabilities are key for the design and manufacture of lab-on-a-chip devices, commonly named point-of-care biosensing devices, which are promising for next-generation healthcare systems.


Asunto(s)
Técnicas Biosensibles , Sistemas de Atención de Punto , ADN/química , Electricidad , Oro/química , Imagenología Tridimensional , Membrana Dobles de Lípidos/química , Nanoestructuras/química , Nanotubos/química , Nanotubos/ultraestructura , Puntos Cuánticos/química , Estereoisomerismo , Agua/química
18.
Nano Lett ; 19(6): 3751-3760, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31140279

RESUMEN

Self-assembled DNA nanostructures have potential applications in therapeutics, diagnostics, and synthetic biology. A challenge in using DNA nanostructures in biological environments or cell culture, however, is that they may be degraded by enzymes found in these environments, such as nucleases. Such degradation can be slowed by introducing alternative substrates for nucleases, or by coating nanostructures with membranes or peptides. Here we demonstrate a means by which degradation can be reversed in situ through the repair of nanostructure defects. To demonstrate this effect, we show that degradation rates of DNA nanotubes, micron-scale self-assembled structures, are at least 4-fold lower in the presence of tiles that can repair nanotube defects during the degradation process. Micrographs of nanotubes show that tiles from solution incorporate into nanotubes and that this incorporation increases nanotube lifetime to several days in serum. We use experimental data to formulate a simple model of nanostructure self-healing. This model suggests how introducing even a relatively low rate of repair could allow a nanostructure to survive almost indefinitely because of a dynamic equilibrium between microscale repair and degradation processes. The ability to repair nanostructures could thus allow particular structures or devices to operate for long periods of time and might offer a single means to resist different types of chemical degradation.


Asunto(s)
ADN/química , Nanotubos/química , Polietilenglicoles/química , Suero/metabolismo , Animales , Bovinos , ADN/metabolismo , Nanotecnología , Nanotubos/ultraestructura , Conformación de Ácido Nucleico , Polietilenglicoles/metabolismo
19.
Int J Mol Sci ; 21(22)2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33233379

RESUMEN

Polypyrrole one-dimensional nanostructures (nanotubes, nanobelts and nanofibers) were prepared using three various dyes (Methyl Orange, Methylene Blue and Eriochrome Black T). Their high electrical conductivity (from 17.1 to 60.9 S cm-1), good thermal stability (in the range from 25 to 150 °C) and resistivity against ageing (half-time of electrical conductivity around 80 days and better) were used in preparation of lightweight and flexible composites with silicone for electromagnetic interference shielding in the C-band region (5.85-8.2 GHz). The nanostructures' morphology and chemical structure were characterized by scanning electron microscopy, Brunauer-Emmett-Teller specific surface measurement and attenuated total reflection Fourier-transform infrared spectroscopy. DC electrical conductivity was measured using the Van der Pauw method. Complex permittivity and AC electrical conductivity of respective silicone composites were calculated from the measured scattering parameters. The relationships between structure, electrical properties and shielding efficiency were studied. It was found that 2 mm-thick silicone composites of polypyrrole nanotubes and nanobelts shield almost 80% of incident radiation in the C-band at very low loading of conductive filler in the silicone (5% w/w). Resulting lightweight and flexible polypyrrole composites exhibit promising properties for shielding of electromagnetic interference in sensitive biological and electronic systems.


Asunto(s)
Radiación Electromagnética , Nanoestructuras/química , Polímeros/química , Pirroles/química , Siliconas/química , Compuestos Azo/química , Azul de Metileno/química , Microscopía Electrónica de Rastreo , Nanofibras/química , Nanofibras/efectos de la radiación , Nanoestructuras/efectos de la radiación , Nanoestructuras/ultraestructura , Nanotubos/química , Nanotubos/efectos de la radiación , Nanotubos/ultraestructura , Polímeros/efectos de la radiación , Pirroles/efectos de la radiación , Siliconas/efectos de la radiación
20.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33374960

RESUMEN

To increase the efficiency of therapy via enhancing its selectivity, the usage of gold nanorods (GNR) as a factor sensitizing cancer cells to radiation was proposed. Due to gold nanoparticles' characteristics, the smaller doses of radiation would be sufficient in the treatment, protecting the healthy tissue around the tumor. The aim of this study was to investigate the effect of gold nanorods on cancer and normal prostate cells and the role of nanorods in the cell response to ionizing radiation. The effect was evaluated by measuring the toxicity, cell cycle, cell granularity, reactive oxygen species (ROS) level, and survival fractions. Nanorods showed a strong toxicity dependent on the concentration and incubation time toward all used cell lines. A slight effect of nanorods on the cycle distribution was observed. The results demonstrated that the administration of nanorods at higher concentrations resulted in an increased level of generated radicals. The results of cellular proliferation after irradiation are ambiguous; however, there are noticeable differences after the application of nanorods before irradiation. The obtained results lead to the conclusion that nanorods affect the physiology of both normal and cancer cells. Nanorods might become a potential tool used to increase the effectiveness of radiation treatment.


Asunto(s)
Oro/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Radiación Ionizante , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Oro/química , Humanos , Masculino , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Nanotubos/química , Nanotubos/ultraestructura , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Fármacos Sensibilizantes a Radiaciones/química , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda