Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 6.992
Filtrar
Más filtros

Publication year range
1.
Cell ; 186(11): 2345-2360.e16, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37167971

RESUMEN

A functional network of blood vessels is essential for organ growth and homeostasis, yet how the vasculature matures and maintains homeostasis remains elusive in live mice. By longitudinally tracking the same neonatal endothelial cells (ECs) over days to weeks, we found that capillary plexus expansion is driven by vessel regression to optimize network perfusion. Neonatal ECs rearrange positions to evenly distribute throughout the developing plexus and become positionally stable in adulthood. Upon local ablation, adult ECs survive through a plasmalemmal self-repair response, while neonatal ECs are predisposed to die. Furthermore, adult ECs reactivate migration to assist vessel repair. Global ablation reveals coordinated maintenance of the adult vascular architecture that allows for eventual network recovery. Lastly, neonatal remodeling and adult maintenance of the skin vascular plexus are orchestrated by temporally restricted, neonatal VEGFR2 signaling. Our work sheds light on fundamental mechanisms that underlie both vascular maturation and adult homeostasis in vivo.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Animales , Ratones , Células Endoteliales/fisiología , Neovascularización Fisiológica/fisiología , Piel , Membrana Celular
2.
Cell ; 185(20): 3753-3769.e18, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179668

RESUMEN

Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Encéfalo , Colágeno , Humanos , Laminina , Midkina , Neovascularización Patológica/patología , Neovascularización Fisiológica/fisiología , Pericitos
3.
Cell ; 176(5): 1128-1142.e18, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30686582

RESUMEN

Collateral arteries are an uncommon vessel subtype that can provide alternate blood flow to preserve tissue following vascular occlusion. Some patients with heart disease develop collateral coronary arteries, and this correlates with increased survival. However, it is not known how these collaterals develop or how to stimulate them. We demonstrate that neonatal mouse hearts use a novel mechanism to build collateral arteries in response to injury. Arterial endothelial cells (ECs) migrated away from arteries along existing capillaries and reassembled into collateral arteries, which we termed "artery reassembly". Artery ECs expressed CXCR4, and following injury, capillary ECs induced its ligand, CXCL12. CXCL12 or CXCR4 deletion impaired collateral artery formation and neonatal heart regeneration. Artery reassembly was nearly absent in adults but was induced by exogenous CXCL12. Thus, understanding neonatal regenerative mechanisms can identify pathways that restore these processes in adults and identify potentially translatable therapeutic strategies for ischemic heart disease.


Asunto(s)
Circulación Colateral/fisiología , Corazón/crecimiento & desarrollo , Regeneración/fisiología , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Quimiocina CXCL12/metabolismo , Vasos Coronarios/crecimiento & desarrollo , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/fisiología , Receptores CXCR4/metabolismo , Transducción de Señal
4.
Cell ; 167(1): 275-284.e6, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662093

RESUMEN

The VEGF-A isoforms play a crucial role in vascular development, and the VEGF signaling pathway is a clinically validated therapeutic target for several pathological conditions. Alternative mRNA splicing leads to the generation of multiple VEGF-A isoforms, including VEGF165. A recent study reported the presence of another isoform, VEGF-Ax, arising from programmed readthrough translation. Compared to VEGF165, VEGF-Ax has a 22-amino-acid extension in the COOH terminus and has been reported to function as a negative regulator of VEGF signaling in endothelial cells, with potent anti-angiogenic effects. Here, we show that, contrary to the earlier report, VEGF-Ax stimulates endothelial cell mitogenesis, angiogenesis, as well as vascular permeability. Accordingly, VEGF-Ax induces phosphorylation of key tyrosine residues in VEGFR-2. Notably, VEGF-Ax was less potent than VEGF165, consistent with its impaired binding to the VEGF co-receptor neuropilin-1.


Asunto(s)
Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular , Empalme Alternativo , Secuencia de Aminoácidos , Inductores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/farmacología , Animales , Permeabilidad Capilar/genética , Permeabilidad Capilar/fisiología , Quimiotaxis/efectos de los fármacos , Clonación Molecular , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Cobayas , Células HEK293 , Humanos , Ratones , Mitógenos/farmacología , Mitosis/efectos de los fármacos , Mitosis/fisiología , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Neuropilina-1/metabolismo , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Tirosina/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
5.
Nat Immunol ; 19(5): 442-452, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29662169

RESUMEN

Mild traumatic brain injury (mTBI) can cause meningeal vascular injury and cell death that spreads into the brain parenchyma and triggers local inflammation and recruitment of peripheral immune cells. The factors that dictate meningeal recovery after mTBI are unknown at present. Here we demonstrated that most patients who had experienced mTBI resolved meningeal vascular damage within 2-3 weeks, although injury persisted for months in a subset of patients. To understand the recovery process, we studied a mouse model of mTBI and found extensive meningeal remodeling that was temporally reliant on infiltrating myeloid cells with divergent functions. Inflammatory myelomonocytic cells scavenged dead cells in the lesion core, whereas wound-healing macrophages proliferated along the lesion perimeter and promoted angiogenesis through the clearance of fibrin and production of the matrix metalloproteinase MMP-2. Notably, a secondary injury experienced during the acute inflammatory phase aborted this repair program and enhanced inflammation, but a secondary injury experienced during the wound-healing phase did not. Our findings demonstrate that meningeal vasculature can undergo regeneration after mTBI that is dependent on distinct myeloid cell subsets.


Asunto(s)
Barrera Hematoencefálica/patología , Conmoción Encefálica/fisiopatología , Meninges/patología , Células Mieloides , Neovascularización Fisiológica/fisiología , Animales , Femenino , Humanos , Masculino , Meninges/irrigación sanguínea , Ratones
6.
Nat Rev Neurosci ; 24(5): 271-298, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36941369

RESUMEN

The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.


Asunto(s)
Neoplasias Encefálicas , Malformaciones Vasculares del Sistema Nervioso Central , Humanos , Neovascularización Fisiológica/fisiología , Encéfalo , Transducción de Señal
7.
Physiol Rev ; 99(1): 665-706, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30475656

RESUMEN

Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.


Asunto(s)
Matriz Extracelular/metabolismo , Hemostasis/fisiología , Neovascularización Fisiológica/fisiología , Cicatrización de Heridas/fisiología , Animales , Plaquetas/metabolismo , Humanos , Piel/metabolismo , Piel/patología
8.
Proc Natl Acad Sci U S A ; 120(46): e2307480120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37943835

RESUMEN

Ischemic diseases lead to considerable morbidity and mortality, yet conventional clinical treatment strategies for therapeutic angiogenesis fall short of being impactful. Despite the potential of biomaterials to deliver pro-angiogenic molecules at the infarct site to induce angiogenesis, their efficacy has been impeded by aberrant vascular activation and off-target circulation. Here, we present a semisynthetic low-molecular sulfated chitosan oligosaccharide (SCOS) that efficiently induces therapeutic arteriogenesis with a spontaneous generation of collateral circulation and blood reperfusion in rodent models of hind limb ischemia and myocardial infarction. SCOS elicits anti-inflammatory macrophages' (Mφs') differentiation into perivascular Mφs, which in turn directs artery formation via a cell-to-cell communication rather than secretory factor regulation. SCOS-mediated arteriogenesis requires a canonical Notch signaling pathway in Mφs via the glycosylation of protein O-glucosyltransferases 2, which results in promoting arterial differentiation and tissue repair in ischemia. Thus, this highly bioactive oligosaccharide can be harnessed to direct efficiently therapeutic arteriogenesis and perfusion for the treatment of ischemic diseases.


Asunto(s)
Neovascularización Fisiológica , Sulfatos , Ratones , Animales , Neovascularización Fisiológica/fisiología , Sulfatos/metabolismo , Ratones Noqueados , Músculo Esquelético/metabolismo , Isquemia/metabolismo , Macrófagos/metabolismo , Miembro Posterior/irrigación sanguínea , Modelos Animales de Enfermedad
9.
Proc Natl Acad Sci U S A ; 120(1): e2208541120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574661

RESUMEN

Impaired endothelial cell (EC)-mediated angiogenesis contributes to critical limb ischemia in diabetic patients. The sonic hedgehog (SHH) pathway participates in angiogenesis but is repressed in hyperglycemia by obscure mechanisms. We investigated the orphan G protein-coupled receptor GPR39 on SHH pathway activation in ECs and ischemia-induced angiogenesis in animals with chronic hyperglycemia. Human aortic ECs from healthy and type 2 diabetic (T2D) donors were cultured in vitro. GPR39 mRNA expression was significantly elevated in T2D. The EC proliferation, migration, and tube formation were attenuated by adenovirus-mediated GPR39 overexpression (Ad-GPR39) or GPR39 agonist TC-G-1008 in vitro. The production of proangiogenic factors was reduced by Ad-GPR39. Conversely, human ECs transfected with GPR39 siRNA or the mouse aortic ECs isolated from GPR39 global knockout (GPR39KO) mice displayed enhanced migration and proliferation compared with their respective controls. GPR39 suppressed the basal and ligand-dependent activation of the SHH effector GLI1, leading to attenuated EC migration. Coimmunoprecipitation revealed that the GPR39 direct binding of the suppressor of fused (SUFU), the SHH pathway endogenous inhibitor, may achieve this. Furthermore, in ECs with GPR39 knockdown, the robust GLI1 activation and EC migration were abolished by SUFU overexpression. In a chronic diabetic model of diet-induced obesity (DIO) and low-dose streptozotocin (STZ)-induced hyperglycemia, the GPR39KO mice demonstrated a faster pace of revascularization from hind limb ischemia and lower incidence of tissue necrosis than GPR39 wild-type (GPR39WT) counterparts. These findings have provided a conceptual framework for developing therapeutic tools that ablate or inhibit GPR39 for ischemic tissue repair under metabolic stress.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Ratones , Animales , Proteínas Hedgehog/metabolismo , Proteína con Dedos de Zinc GLI1 , Células Cultivadas , Neovascularización Fisiológica/fisiología , Células Endoteliales/metabolismo , Neovascularización Patológica , Isquemia , Receptores Acoplados a Proteínas G/genética , Hiperglucemia/genética , Diabetes Mellitus Tipo 2/genética
10.
Physiol Rev ; 98(1): 3-58, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29167330

RESUMEN

Endothelial cells (ECs) are more than inert blood vessel lining material. Instead, they are active players in the formation of new blood vessels (angiogenesis) both in health and (life-threatening) diseases. Recently, a new concept arose by which EC metabolism drives angiogenesis in parallel to well-established angiogenic growth factors (e.g., vascular endothelial growth factor). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3-driven glycolysis generates energy to sustain competitive behavior of the ECs at the tip of a growing vessel sprout, whereas carnitine palmitoyltransferase 1a-controlled fatty acid oxidation regulates nucleotide synthesis and proliferation of ECs in the stalk of the sprout. To maintain vascular homeostasis, ECs rely on an intricate metabolic wiring characterized by intracellular compartmentalization, use metabolites for epigenetic regulation of EC subtype differentiation, crosstalk through metabolite release with other cell types, and exhibit EC subtype-specific metabolic traits. Importantly, maladaptation of EC metabolism contributes to vascular disorders, through EC dysfunction or excess angiogenesis, and presents new opportunities for anti-angiogenic strategies. Here we provide a comprehensive overview of established as well as newly uncovered aspects of EC metabolism.


Asunto(s)
Células Endoteliales/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/fisiología , Enfermedades Vasculares/metabolismo , Animales , Epigénesis Genética/fisiología , Homeostasis/fisiología , Humanos
11.
EMBO J ; 40(6): e105123, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33555074

RESUMEN

Similar to the brain, the eye is considered an immune-privileged organ where tissue-resident macrophages provide the major immune cell constituents. However, little is known about spatially restricted macrophage subsets within different eye compartments with regard to their origin, function, and fate during health and disease. Here, we combined single-cell analysis, fate mapping, parabiosis, and computational modeling to comprehensively examine myeloid subsets in distinct parts of the eye during homeostasis. This approach allowed us to identify myeloid subsets displaying diverse transcriptional states. During choroidal neovascularization, a typical hallmark of neovascular age-related macular degeneration (AMD), we recognized disease-specific macrophage subpopulations with distinct molecular signatures. Our results highlight the heterogeneity of myeloid subsets and their dynamics in the eye that provide new insights into the innate immune system in this organ which may offer new therapeutic targets for ophthalmological diseases.


Asunto(s)
Coroides/irrigación sanguínea , Ojo/inmunología , Macrófagos/inmunología , Células Mieloides/inmunología , Neovascularización Fisiológica/fisiología , Animales , Coroides/embriología , Biología Computacional , Simulación por Computador , Ojo/citología , Ojo/metabolismo , Femenino , Homeostasis/inmunología , Humanos , Inmunidad Innata/inmunología , Degeneración Macular/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/fisiología , Células Mieloides/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcripción Genética/genética
12.
J Cell Sci ; 136(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36718783

RESUMEN

Notch signaling is critical for many developmental and disease-related processes. It is widely accepted that Notch has a mechanotransduction module that regulates receptor cleavage. However, the role of biomechanical properties of the cellular environment in Notch signaling in general is still poorly understood. During angiogenesis, differentiation of endothelial cells into tip and stalk cells is regulated by Notch signaling, and remodeling of the extracellular matrix occurs. We investigated the influence of substrate stiffness on the Notch signaling pathway in endothelial cells. Using stiffness-tuned polydimethylsiloxane (PDMS) substrates, we show that activity of the Notch signaling pathway inversely correlates with a physiologically relevant range of substrate stiffness (i.e. increased Notch signaling activity on softer substrates). Trans-endocytosis of the Notch extracellular domain, but not the overall endocytosis, is regulated by substrate stiffness, and integrin cell-matrix connections are both stiffness dependent and influenced by Notch signaling. We conclude that mechanotransduction of Notch activation is modulated by substrate stiffness, highlighting the role of substrate rigidity as an important cue for signaling. This might have implications in pathological situations associated with stiffening of the extracellular matrix, such as tumor growth.


Asunto(s)
Células Endoteliales , Mecanotransducción Celular , Células Endoteliales/metabolismo , Transducción de Señal/fisiología , Diferenciación Celular , Matriz Extracelular/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas de Unión al Calcio/metabolismo , Neovascularización Fisiológica/fisiología
13.
FASEB J ; 38(19): e70082, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39344592

RESUMEN

Nasal obstruction leads to a hypoxia condition throughout the entire body. In this study, the unilateral nasal obstruction (UNO) mouse model was established by blocking the left nostril of mice. The aim of this study was to investigate the effects of UNO-induced hypoxia on mandibular condyle in juvenile (3-week-old), adolescent (6-week-old) and adult (12-week-old) male C57BL/6J mice from the perspective of H-type angiogenesis coupling osteogenesis. Firstly, UNO exerted a significant inhibitory effect on weight gain in mice of all ages. However, only in adolescent mice did UNO have an obvious detrimental effect on femoral bone mass accrual. Subsequently, micro-computed tomography (CT) analysis of mandibular condylar bone mass revealed that UNO significantly retarded condylar head volume gain but increased condylar head trabecular number (Tb.N) in juvenile and adolescent mice. Furthermore, UNO promoted the ratio of proliferative layer to cartilage layer in condylar cartilage and facilitated the chondrocyte-to-osteoblast transformation in juvenile and adolescent mice. Moreover, although UNO enhanced the positive expression of hypoxia-inducible factor (HIF)-1α in the condylar subchondral bone of mice in all ages, an increase in H-type vessels and Osterix+ cells was only detected in juvenile and adolescent mice. In summary, on the one hand, in terms of condylar morphology, UNO has a negative effect on condylar growth, hindering the increase in condylar head volume in juvenile and adolescent mice. However, on the other hand, in terms of condylar microstructure, UNO has a positive effect on condylar osteogenesis, promoting the increase of condylar Tb.N, chondrocyte-to-osteoblast transformation, HIF-1α expression, H-type angiogenesis and Osterix+ cells in juvenile and adolescent mice. Although the changes in condylar morphology and microstructure caused by UNO have not yet been fully elucidated, these findings improve our current understanding of the effects of UNO on condylar bone homeostasis.


Asunto(s)
Cóndilo Mandibular , Ratones Endogámicos C57BL , Obstrucción Nasal , Osteogénesis , Animales , Cóndilo Mandibular/patología , Cóndilo Mandibular/metabolismo , Ratones , Masculino , Osteogénesis/fisiología , Obstrucción Nasal/fisiopatología , Obstrucción Nasal/patología , Obstrucción Nasal/metabolismo , Neovascularización Fisiológica/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Microtomografía por Rayos X , Condrocitos/metabolismo , Condrocitos/patología , Osteoblastos/metabolismo , Angiogénesis
14.
PLoS Comput Biol ; 20(7): e1012281, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39038038

RESUMEN

Capillary plexus cultivation is crucial in tissue engineering and regenerative medicine. Theoretical simulations have been conducted to supplement the expensive experimental works. However, the mechanisms connecting mechanical and chemical stimuli remained undefined, and the functions of the different VEGF forms in the culture environment were still unclear. In this paper, we developed a hybrid model for simulating short-term in vitro capillary incubations. We used the Cellular Potts model to predict individual cell migration, morphology change, and continuum mechanics to quantify biogel deformation and VEGF transport dynamics. By bridging the mechanical regulation and chemical stimulation in the model, the results showed good agreement between the predicted network topology and experiments, in which elongated cells connected, forming the network cords and round cells gathered, creating cobblestone-like aggregates. The results revealed that the capillary-like networks could develop in high integrity only when the mechanical and chemical couplings worked adequately, with the cell morphology and haptotaxis driven by the soluble and bound forms of VEGF, respectively, functioning simultaneously.


Asunto(s)
Capilares , Simulación por Computador , Factor A de Crecimiento Endotelial Vascular , Factor A de Crecimiento Endotelial Vascular/metabolismo , Capilares/metabolismo , Humanos , Movimiento Celular/fisiología , Modelos Biológicos , Biología Computacional , Neovascularización Fisiológica/fisiología , Ingeniería de Tejidos/métodos
15.
Annu Rev Cell Dev Biol ; 27: 563-84, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21756109

RESUMEN

The formation of the vascular network is an intricate and complex process that is an obligate requirement during vertebrate development. The cardiovascular system is the first organ to develop and reach a functional state, which underscores the crucial role of the vasculature in the developing embryo. The development of the vasculature into highly branched conduits needs to occur in numerous sites and in precise patterns to supply oxygen and nutrients to the rapidly expanding tissue of the embryo. This process is mediated by the coordinated response of vascular endothelial and mural cells to the heterogeneous angiogenic cues provided by tissues and organs, whereas aberrant regulation and coordination of angiogenic signals during development result in lethality, impaired organ development, or disease states. This article reviews the essential signaling pathways required for establishment of the vertebrate vasculature with a major focus on a key regulatory factor, vascular endothelial growth factor (VEGF). We also discuss current knowledge of physiological angiogenic processes as well as their disruptions in pathological processes, particularly tumorigenesis.


Asunto(s)
Sistema Cardiovascular , Neovascularización Patológica/fisiopatología , Neovascularización Fisiológica/fisiología , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Huesos/irrigación sanguínea , Huesos/fisiología , Sistema Cardiovascular/anatomía & histología , Sistema Cardiovascular/crecimiento & desarrollo , Sistema Cardiovascular/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Isoformas de Proteínas/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Reproducción , Cicatrización de Heridas
16.
Proc Natl Acad Sci U S A ; 119(30): e2203743119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35867836

RESUMEN

Angiogenesis is essential for growth of new blood vessels, remodeling existing vessels, and repair of damaged vessels, and these require reorganization of endothelial cell-cell junctions through a partial endothelial-mesenchymal transition. Homozygous disruption of the gene encoding the protein kinase WNK1 results in lethality in mice near embryonic day (E) 12 due to impaired angiogenesis. This angiogenesis defect can be rescued by endothelial-specific expression of an activated form of the WNK1 substrate kinase OSR1. We show that inhibition of WNK1 kinase activity not only prevents sprouting of endothelial cells from aortic slices but also vessel extension in inhibitor-treated embryos ex vivo. Mutations affecting TGF-ß signaling also result in abnormal vascular development beginning by E10 and, ultimately, embryonic lethality. Previously, we demonstrated cross-talk of WNK1 with TGF-ß-regulated SMAD signaling, and OSR1 was identified as a component of the TGF-ß interactome. However, molecular events jointly regulated by TGF-ß and WNK1/OSR1 have not been delineated. Here, we show that inhibition of WNK1 promotes TGF-ß-dependent degradation of the tyrosine kinase receptor AXL, which is involved in TGF-ß-mediated cell migration and angiogenesis. We also show that interaction between OSR1 and occludin, a protein associated with endothelial tight junctions, is an essential step to enable tight junction turnover. Furthermore, we show that these phenomena are WNK1 dependent, and sensitive to TGF-ß. These findings demonstrate intimate connections between WNK1/OSR1 and multiple TGF-ß-sensitive molecules controlling angiogenesis and suggest that WNK1 may modulate many TGF-ß-regulated functions.


Asunto(s)
Células Endoteliales , Uniones Intercelulares , Neovascularización Fisiológica , Factor de Crecimiento Transformador beta , Proteína Quinasa Deficiente en Lisina WNK 1 , Animales , Células Endoteliales/metabolismo , Uniones Intercelulares/metabolismo , Ratones , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Proteolisis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Tirosina Quinasa del Receptor Axl
17.
BMC Biol ; 22(1): 91, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654271

RESUMEN

BACKGROUND: Elephant seals exhibit extreme hypoxemic tolerance derived from repetitive hypoxia/reoxygenation episodes they experience during diving bouts. Real-time assessment of the molecular changes underlying protection against hypoxic injury in seals remains restricted by their at-sea inaccessibility. Hence, we developed a proliferative arterial endothelial cell culture model from elephant seals and used RNA-seq, functional assays, and confocal microscopy to assess the molecular response to prolonged hypoxia. RESULTS: Seal and human endothelial cells exposed to 1% O2 for up to 6 h respond differently to acute and prolonged hypoxia. Seal cells decouple stabilization of the hypoxia-sensitive transcriptional regulator HIF-1α from angiogenic signaling. Rapid upregulation of genes involved in glutathione (GSH) metabolism supports the maintenance of GSH pools, and intracellular succinate increases in seal but not human cells. High maximal and spare respiratory capacity in seal cells after hypoxia exposure occurs in concert with increasing mitochondrial branch length and independent from major changes in extracellular acidification rate, suggesting that seal cells recover oxidative metabolism without significant glycolytic dependency after hypoxia exposure. CONCLUSIONS: We found that the glutathione antioxidant system is upregulated in seal endothelial cells during hypoxia, while this system remains static in comparable human cells. Furthermore, we found that in contrast to human cells, hypoxia exposure rapidly activates HIF-1 in seal cells, but this response is decoupled from the canonical angiogenesis pathway. These results highlight the unique mechanisms that confer extraordinary tolerance to limited oxygen availability in a champion diving mammal.


Asunto(s)
Antioxidantes , Células Endoteliales , Phocidae , Transducción de Señal , Regulación hacia Arriba , Animales , Phocidae/fisiología , Phocidae/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Antioxidantes/metabolismo , Humanos , Hipoxia/metabolismo , Hipoxia de la Célula , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/fisiología , Células Cultivadas , Glutatión/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética
18.
Development ; 148(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34383884

RESUMEN

Organ morphogenesis is driven by a wealth of tightly orchestrated cellular behaviors, which ensure proper organ assembly and function. Many of these cell activities involve cell-cell interactions and remodeling of the F-actin cytoskeleton. Here, we analyze the requirement for Rasip1 (Ras-interacting protein 1), an endothelial-specific regulator of junctional dynamics, during blood vessel formation. Phenotype analysis of rasip1 mutants in zebrafish embryos reveals distinct functions of Rasip1 during sprouting angiogenesis, anastomosis and lumen formation. During angiogenic sprouting, loss of Rasip1 causes cell pairing defects due to a destabilization of tricellular junctions, indicating that stable tricellular junctions are essential to maintain multicellular organization within the sprout. During anastomosis, Rasip1 is required to establish a stable apical membrane compartment; rasip1 mutants display ectopic, reticulated junctions and the apical compartment is frequently collapsed. Loss of Ccm1 and Heg1 function mimics the junctional defects of rasip1 mutants. Furthermore, downregulation of ccm1 and heg1 leads to a delocalization of Rasip1 at cell junctions, indicating that junctional tethering of Rasip1 is required for its function in junction formation and stabilization during sprouting angiogenesis.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neovascularización Fisiológica/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Comunicación Celular/fisiología , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Uniones Intercelulares/metabolismo , Uniones Intercelulares/fisiología , Proteínas de la Membrana/metabolismo , Morfogénesis/fisiología , Pez Cebra/fisiología
19.
Development ; 148(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33960384

RESUMEN

Angiogenesis in the developing mammalian retina requires patterning cues from astrocytes. Developmental disorders of retinal vasculature, such as retinopathy of prematurity (ROP), involve arrest or mispatterning of angiogenesis. Whether these vascular pathologies involve astrocyte dysfunction remains untested. Here, we demonstrate that the major risk factor for ROP - transient neonatal exposure to excess oxygen - disrupts formation of the angiogenic astrocyte template. Exposing newborn mice to elevated oxygen (75%) suppressed astrocyte proliferation, whereas return to room air (21% oxygen) at postnatal day 4 triggered extensive proliferation, massively increasing astrocyte numbers and disturbing their spatial patterning prior to the arrival of developing vasculature. Proliferation required astrocytic HIF2α and was also stimulated by direct hypoxia (10% oxygen), suggesting that astrocyte oxygen sensing regulates the number of astrocytes produced during development. Along with astrocyte defects, return to room air also caused vascular defects reminiscent of ROP. Strikingly, these vascular phenotypes were more severe in animals that had larger numbers of excess astrocytes. Together, our findings suggest that fluctuations in environmental oxygen dysregulate molecular pathways controlling astrocyte proliferation, thereby generating excess astrocytes that interfere with retinal angiogenesis.


Asunto(s)
Astrocitos/metabolismo , Proliferación Celular/fisiología , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/fisiología , Oxígeno/metabolismo , Retina/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Hipoxia/metabolismo , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Oxígeno/farmacología , Retina/anomalías , Retina/metabolismo , Retina/patología , Vasos Retinianos/metabolismo , Retinopatía de la Prematuridad
20.
Dev Growth Differ ; 66(6): 357-368, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39072708

RESUMEN

In recent decades, developmental biologists have come to view vascular development as a series of progressive transitions. Mesoderm differentiates into endothelial cells; arteries, veins and lymphatic endothelial cells are specified from early endothelial cells; and vascular networks diversify and invade developing tissues and organs. Our understanding of this elaborate developmental process has benefitted from detailed studies using the zebrafish as a model system. Here, we review a number of key developmental transitions that occur in zebrafish during the formation of the blood and lymphatic vessel networks.


Asunto(s)
Células Endoteliales , Pez Cebra , Animales , Pez Cebra/embriología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Vasos Linfáticos/embriología , Vasos Linfáticos/metabolismo , Vasos Linfáticos/citología , Vasos Sanguíneos/citología , Vasos Sanguíneos/embriología , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/crecimiento & desarrollo , Neovascularización Fisiológica/fisiología , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda