Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Cell ; 187(11): 2801-2816.e17, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657601

RESUMEN

The niche is typically considered as a pre-established structure sustaining stem cells. Therefore, the regulation of its formation remains largely unexplored. Whether distinct molecular mechanisms control the establishment versus maintenance of a stem cell niche is unknown. To address this, we compared perinatal and adult bone marrow mesenchymal stromal cells (MSCs), a key component of the hematopoietic stem cell (HSC) niche. MSCs exhibited enrichment in genes mediating m6A mRNA methylation at the perinatal stage and downregulated the expression of Mettl3, the m6A methyltransferase, shortly after birth. Deletion of Mettl3 from developing MSCs but not osteoblasts led to excessive osteogenic differentiation and a severe HSC niche formation defect, which was significantly rescued by deletion of Klf2, an m6A target. In contrast, deletion of Mettl3 from MSCs postnatally did not affect HSC niche. Stem cell niche generation and maintenance thus depend on divergent molecular mechanisms, which may be exploited for regenerative medicine.


Asunto(s)
Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Metiltransferasas , Ratones Endogámicos C57BL , Nicho de Células Madre , Animales , Ratones , Adenosina/metabolismo , Adenosina/análogos & derivados , Diferenciación Celular , Epigénesis Genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Factores de Transcripción de Tipo Kruppel , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Metiltransferasas/metabolismo , Metiltransferasas/genética , Osteoblastos/metabolismo , Osteoblastos/citología , Osteogénesis , ARN Mensajero/metabolismo , ARN Mensajero/genética , Transcriptoma/genética , Humanos
2.
Cell ; 187(12): 3120-3140.e29, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714197

RESUMEN

Non-hematopoietic cells are essential contributors to hematopoiesis. However, heterogeneity and spatial organization of these cells in human bone marrow remain largely uncharacterized. We used single-cell RNA sequencing (scRNA-seq) to profile 29,325 non-hematopoietic cells and discovered nine transcriptionally distinct subtypes. We simultaneously profiled 53,417 hematopoietic cells and predicted their interactions with non-hematopoietic subsets. We employed co-detection by indexing (CODEX) to spatially profile over 1.2 million cells. We integrated scRNA-seq and CODEX data to link predicted cellular signaling with spatial proximity. Our analysis revealed a hyperoxygenated arterio-endosteal neighborhood for early myelopoiesis, and an adipocytic localization for early hematopoietic stem and progenitor cells (HSPCs). We used our CODEX atlas to annotate new images and uncovered mesenchymal stromal cell (MSC) expansion and spatial neighborhoods co-enriched for leukemic blasts and MSCs in acute myeloid leukemia (AML) patient samples. This spatially resolved, multiomic atlas of human bone marrow provides a reference for investigation of cellular interactions that drive hematopoiesis.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Proteómica , Análisis de la Célula Individual , Transcriptoma , Humanos , Análisis de la Célula Individual/métodos , Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Proteómica/métodos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Hematopoyesis , Nicho de Células Madre , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología
3.
Nature ; 631(8021): 627-634, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987592

RESUMEN

Fibroblasts are present throughout the body and function to maintain tissue homeostasis. Recent studies have identified diverse fibroblast subsets in healthy and injured tissues1,2, but the origins and functional roles of injury-induced fibroblast lineages remain unclear. Here we show that lung-specialized alveolar fibroblasts take on multiple molecular states with distinct roles in facilitating responses to fibrotic lung injury. We generate a genetic tool that uniquely targets alveolar fibroblasts to demonstrate their role in providing niches for alveolar stem cells in homeostasis and show that loss of this niche leads to exaggerated responses to acute lung injury. Lineage tracing identifies alveolar fibroblasts as the dominant origin for multiple emergent fibroblast subsets sequentially driven by inflammatory and pro-fibrotic signals after injury. We identify similar, but not completely identical, fibroblast lineages in human pulmonary fibrosis. TGFß negatively regulates an inflammatory fibroblast subset that emerges early after injury and stimulates the differentiation into fibrotic fibroblasts to elicit intra-alveolar fibrosis. Blocking the induction of fibrotic fibroblasts in the alveolar fibroblast lineage abrogates fibrosis but exacerbates lung inflammation. These results demonstrate the multifaceted roles of the alveolar fibroblast lineage in maintaining normal alveolar homeostasis and orchestrating sequential responses to lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Linaje de la Célula , Fibroblastos , Neumonía , Alveolos Pulmonares , Fibrosis Pulmonar , Animales , Femenino , Humanos , Masculino , Ratones , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/metabolismo , Diferenciación Celular , Fibroblastos/patología , Fibroblastos/metabolismo , Homeostasis , Neumonía/patología , Neumonía/metabolismo , Alveolos Pulmonares/patología , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Nicho de Células Madre , Células Madre/metabolismo , Células Madre/citología , Células Madre/patología , Factor de Crecimiento Transformador beta/metabolismo
4.
EMBO J ; 43(8): 1570-1590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499787

RESUMEN

Ten-eleven translocation (TET) proteins are dioxygenases that convert 5-methylcytosine (5mC) into 5-hydroxylmethylcytosine (5hmC) in DNA and RNA. However, their involvement in adult stem cell regulation remains unclear. Here, we identify a novel enzymatic activity-independent function of Tet in the Drosophila germline stem cell (GSC) niche. Tet activates the expression of Dpp, the fly homologue of BMP, in the ovary stem cell niche, thereby controlling GSC self-renewal. Depletion of Tet disrupts Dpp production, leading to premature GSC loss. Strikingly, both wild-type and enzyme-dead mutant Tet proteins rescue defective BMP signaling and GSC loss when expressed in the niche. Mechanistically, Tet interacts directly with Bap55 and Stat92E, facilitating recruitment of the Polybromo Brahma associated protein (PBAP) complex to the dpp enhancer and activating Dpp expression. Furthermore, human TET3 can effectively substitute for Drosophila Tet in the niche to support BMP signaling and GSC self-renewal. Our findings highlight a conserved novel catalytic activity-independent role of Tet as a scaffold protein in supporting niche signaling for adult stem cell self-renewal.


Asunto(s)
Dioxigenasas , Proteínas de Drosophila , Drosophila melanogaster , Animales , Femenino , Humanos , Diferenciación Celular/genética , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Nicho de Células Madre/fisiología , Células Madre/metabolismo , Dioxigenasas/metabolismo
5.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38832825

RESUMEN

Germ stem cells in Drosophila reside within a specialized stem cell niche, but the effects of stress on these stem cell populations have been elusive. In a new study, Roach and Lenhart show that repeated mating stress induces reversible changes in the germ stem cell niche. To know more about their work, we spoke to first author, Tiffany Roach, and corresponding author, Kari Lenhart, Principal Investigator at Drexel University in Philadelphia, USA.


Asunto(s)
Células Germinativas , Animales , Historia del Siglo XXI , Células Germinativas/citología , Historia del Siglo XX , Nicho de Células Madre/fisiología , Drosophila , Humanos , Biología Evolutiva/historia , Células Madre/citología
6.
Development ; 151(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456551

RESUMEN

Adhesion between stem cells and their niche provides stable anchorage and signaling cues to sustain properties such as quiescence. Skeletal muscle stem cells (MuSCs) adhere to an adjacent myofiber via cadherin-catenin complexes. Previous studies on N- and M-cadherin in MuSCs revealed that although N-cadherin is required for quiescence, they are collectively dispensable for MuSC niche localization and regenerative activity. Although additional cadherins are expressed at low levels, these findings raise the possibility that cadherins are unnecessary for MuSC anchorage to the niche. To address this question, we conditionally removed from MuSCs ß- and γ-catenin, and, separately, αE- and αT-catenin, factors that are essential for cadherin-dependent adhesion. Catenin-deficient MuSCs break quiescence similarly to N-/M-cadherin-deficient MuSCs, but exit the niche and are depleted. Combined in vivo, ex vivo and single cell RNA-sequencing approaches reveal that MuSC attrition occurs via precocious differentiation, re-entry to the niche and fusion to myofibers. These findings indicate that cadherin-catenin-dependent adhesion is required for anchorage of MuSCs to their niche and for preservation of the stem cell compartment. Furthermore, separable cadherin-regulated functions govern niche localization, quiescence and MuSC maintenance.


Asunto(s)
Cadherinas , Nicho de Células Madre , Nicho de Células Madre/genética , Cadherinas/genética , Cadherinas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Transducción de Señal , Cateninas/genética , Cateninas/metabolismo , Músculo Esquelético/metabolismo , Adhesión Celular/genética
7.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38832826

RESUMEN

Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased Ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females, but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.


Asunto(s)
Citocinesis , Drosophila melanogaster , Ecdisona , Células Germinativas , Testículo , Animales , Masculino , Ecdisona/metabolismo , Testículo/metabolismo , Femenino , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo , Células Germinativas/citología , Nicho de Células Madre , Células Madre/metabolismo , Células Madre/citología , Diferenciación Celular , Transducción de Señal , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
8.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38860486

RESUMEN

Cerebellar granule neuron progenitors (GNPs) originate from the upper rhombic lip (URL), a germinative niche in which developmental defects produce human diseases. T-cell factor (TCF) responsiveness and Notch dependence are hallmarks of self-renewal in neural stem cells. TCF activity, together with transcripts encoding proneural gene repressors hairy and enhancer of split (Hes/Hey), are detected in the URL; however, their functions and regulatory modes are undeciphered. Here, we established amphibian as a pertinent model for studying vertebrate URL development. The amphibian long-lived URL is TCF active, whereas the external granular layer (EGL) is non-proliferative and expresses hes4 and hes5 genes. Using functional and transcriptomic approaches, we show that TCF activity is necessary for URL emergence and maintenance. We establish that the transcription factor Barhl1 controls GNP exit from the URL, acting partly through direct TCF inhibition. Identification of Barhl1 target genes suggests that, besides TCF, Barhl1 inhibits transcription of hes5 genes independently of Notch signaling. Observations in amniotes suggest a conserved role for Barhl in maintenance of the URL and/or EGL via co-regulation of TCF, Hes and Hey genes.


Asunto(s)
Cerebelo , Células-Madre Neurales , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Cerebelo/citología , Cerebelo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Neuronas/citología , Receptores Notch/metabolismo , Receptores Notch/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Rombencéfalo/metabolismo , Rombencéfalo/citología , Nicho de Células Madre , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética
9.
PLoS Biol ; 22(3): e3002515, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38512963

RESUMEN

The signaling environment, or niche, often governs the initial difference in behavior of an adult stem cell and a derivative that initiates a path towards differentiation. The transition between an instructive stem cell niche and differentiation niche must generally have single-cell resolution, suggesting that multiple mechanisms might be necessary to sharpen the transition. Here, we examined the Drosophila ovary and found that Cap cells, which are key constituents of the germline stem cell (GSC) niche, express a conserved microRNA (miR-124). Surprisingly, loss of miR-124 activity in Cap cells leads to a defect in differentiation of GSC derivatives. We present evidence that the direct functional target of miR-124 in Cap cells is the epidermal growth factor receptor (EGFR) and that failure to limit EGFR expression leads to the ectopic expression of a key anti-differentiation BMP signal in neighboring somatic escort cells (ECs), which constitute a differentiation niche. We further found that Notch signaling connects EFGR activity in Cap cells to BMP expression in ECs. We deduce that the stem cell niche communicates with the differentiation niche through a mechanism that begins with the selective expression of a specific microRNA and culminates in the suppression of the major anti-differentiation signal in neighboring cells, with the functionally important overall role of sharpening the spatial distinction between self-renewal and differentiation environments.


Asunto(s)
Proteínas de Drosophila , MicroARNs , Animales , Femenino , Drosophila/genética , Drosophila/metabolismo , Ovario/metabolismo , Proteínas de Drosophila/metabolismo , Nicho de Células Madre/genética , Diferenciación Celular/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Madre/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Comunicación , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo
10.
Blood ; 144(1): 21-34, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579285

RESUMEN

ABSTRACT: Hematopoietic stem cells (HSCs) are instrumental for organismal survival because they are responsible for lifelong production of mature blood lineages in homeostasis and response to external stress. To fulfill their function, HSCs rely on reciprocal interactions with specialized tissue microenvironments, termed HSC niches. From embryonic development to advanced aging, HSCs transition through several hematopoietic organs in which they are supported by distinct extrinsic cues. Here, we describe recent discoveries on how HSC niches collectively adapt to ensure robust hematopoietic function during biological aging and after exposure to acute stress. We also discuss the latest strategies leveraging niche-derived signals to revert aging-associated phenotypes and enhance hematopoietic recovery after myeloablation.


Asunto(s)
Células Madre Hematopoyéticas , Nicho de Células Madre , Estrés Fisiológico , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Animales , Humanos , Nicho de Células Madre/fisiología , Adaptación Fisiológica , Médula Ósea/patología , Médula Ósea/metabolismo , Médula Ósea/fisiología , Envejecimiento/fisiología , Hematopoyesis/fisiología
11.
Bioessays ; 46(4): e2300142, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38488673

RESUMEN

Recent research highlights that inflammatory signaling pathways such as pattern recognition receptor (PRR) signaling and inflammatory cytokine signaling play an important role in both on-demand hematopoiesis as well as steady-state hematopoiesis. Knockout studies have demonstrated the necessity of several distinct pathways in these processes, but often lack information about the contribution of specific cell types to the phenotypes in question. Transplantation studies have increased the resolution to the level of specific cell types by testing the necessity of inflammatory pathways specifically in donor hematopoietic stem and progenitor cells (HSPCs) or in recipient niche cells. Here, we argue that for an integrated understanding of how these processes occur in vivo and to inform the development of therapies that modulate hematopoietic responses, we need studies that knockout inflammatory signaling receptors in a cell-specific manner and compare the phenotypes caused by knockout in individual niche cells versus HSPCs.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Hematopoyesis/fisiología , Transducción de Señal , Diferenciación Celular , Nicho de Células Madre
12.
J Cell Sci ; 136(24)2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38149870

RESUMEN

Skeletal muscle stem cells (MuSCs, also called satellite cells) are the source of the robust regenerative capability of this tissue. The hallmark property of MuSCs at homeostasis is quiescence, a reversible state of cell cycle arrest required for long-term preservation of the stem cell population. MuSCs reside between an individual myofiber and an enwrapping basal lamina, defining the immediate MuSC niche. Additional cell types outside the basal lamina, in the interstitial space, also contribute to niche function. Quiescence is actively maintained by multiple niche-derived signals, including adhesion molecules presented from the myofiber surface and basal lamina, as well as soluble signaling factors produced by myofibers and interstitial cell types. In this Cell Science at a Glance article and accompanying poster, we present the most recent information on how niche signals promote MuSC quiescence and provide perspectives for further research.


Asunto(s)
Músculo Esquelético , Células Satélite del Músculo Esquelético , Nicho de Células Madre , Fibras Musculares Esqueléticas , División Celular , Células Madre/metabolismo
13.
Int Immunol ; 36(7): 339-352, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38430523

RESUMEN

Bone marrow is a dynamic organ composed of stem cells that constantly receive signals from stromal cells and other hematopoietic cells in the niches of the bone marrow to maintain hematopoiesis and generate immune cells. Perturbation of the bone marrow microenvironment by infection and inflammation affects hematopoiesis and may affect immune cell development. Little is known about the effect of malaria on the bone marrow stromal cells that govern the hematopoietic stem cell (HSC) niche. In this study, we demonstrate that the mesenchymal stromal CXCL12-abundant reticular (CAR) cell population is reduced during acute malaria infection. The reduction of CXCL12 and interleukin-7 signals in the bone marrow impairs the lymphopoietic niche, leading to the depletion of common lymphoid progenitors, B cell progenitors, and mature B cells, including plasma cells in the bone marrow. We found that interferon-γ (IFNγ) is responsible for the upregulation of Sca1 on CAR cells, yet the decline in CAR cell and B cell populations in the bone marrow is IFNγ-independent. In contrast to the decline in B cell populations, HSCs and multipotent progenitors increased with the expansion of myelopoiesis and erythropoiesis, indicating a bias in the differentiation of multipotent progenitors during malaria infection. These findings suggest that malaria may affect host immunity by modulating the bone marrow niche.


Asunto(s)
Linfocitos B , Médula Ósea , Quimiocina CXCL12 , Malaria , Ratones Endogámicos C57BL , Animales , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/inmunología , Ratones , Malaria/inmunología , Malaria/parasitología , Linfocitos B/inmunología , Médula Ósea/inmunología , Médula Ósea/parasitología , Nicho de Células Madre/inmunología , Interferón gamma/metabolismo , Interferón gamma/inmunología , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo
14.
Exp Cell Res ; 439(1): 114092, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38754617

RESUMEN

Asymmetric stem cell divisions play instrumental roles in the maintenance, growth and differentiation of organs. Failure of asymmetric stem cell divisions may result in an array of developmental disorders, including cancer. It is well established that the gene, inscuteable, acts as the upstream component of asymmetric cell divisions. In Drosophila larval midgut, a founder adult midgut precursor (AMP) experiences an asymmetric division to instruct its first daughter to become a peripheral cell that serves as a niche where the AMP and its future daughters can remain undifferentiated. The present study demonstrates that inscuteable expressing stem cells require Rab11, a conserved small Ras-like GTPase, for proper proliferation and differentiation. As insc-GAL4 mediated Rab11RNAi in Drosophila larval and adult midguts show the disruption of the niche microenvironment of adult midgut precursors as well as elevated DPP signalling at the larval stage, which is associated with aberrant over-proliferation and early differentiation of larval AMPs and adult intestinal stem cells. The observed connections between Rab11, larval AMP proliferation, niche establishment, and DPP signalling highlight the potential for Rab11 to serve as a key regulatory factor in maintaining tissue homeostasis and balanced cellular growth.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila , Larva , Transducción de Señal , Proteínas de Unión al GTP rab , Animales , Diferenciación Celular/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/genética , Proliferación Celular , Células Madre/metabolismo , Células Madre/citología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Nicho de Células Madre
15.
Am J Respir Cell Mol Biol ; 71(2): 229-241, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38635761

RESUMEN

Aging poses a global public health challenge, which is linked to the rise of age-related lung diseases. The precise understanding of the molecular and genetic changes in the aging lung that elevate the risk of acute and chronic lung diseases remains incomplete. Alveolar type II (AT2) cells are stem cells that maintain epithelial homeostasis and repair the lung after injury. AT2 progenitor function decreases with aging. The maintenance of AT2 function requires niche support from other cell types, but little has been done to characterize alveolar alterations with aging in the AT2 niche. To systematically profile the genetic changes associated with age, we present a single-cell transcriptional atlas comprising nearly half a million cells from the healthy lungs of human subjects spanning various ages, sexes, and smoking statuses. Most annotated cell lineages in aged lungs exhibit dysregulated genetic programs. Specifically, the aged AT2 cells demonstrate loss of epithelial identities, heightened inflammaging characterized by increased expression of AP-1 (Activator Protein-1) transcription factor and chemokine genes, and significantly increased cellular senescence. Furthermore, the aged mesenchymal cells display a remarkable decrease in collagen and elastin transcription and a loss of support to epithelial cell stemness. The decline of the AT2 niche is further exacerbated by a dysregulated genetic program in macrophages and dysregulated communications between AT2 and macrophages in aged human lungs. These findings highlight the dysregulations observed in both AT2 stem cells and their supportive niche cells, potentially contributing to the increased susceptibility of aged populations to lung diseases.


Asunto(s)
Envejecimiento , Células Epiteliales Alveolares , Pulmón , Nicho de Células Madre , Transcriptoma , Humanos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Envejecimiento/genética , Pulmón/metabolismo , Pulmón/patología , Transcriptoma/genética , Anciano , Persona de Mediana Edad , Masculino , Senescencia Celular/genética , Perfilación de la Expresión Génica , Femenino , Adulto , Células Madre/metabolismo
16.
Am J Physiol Cell Physiol ; 327(2): C372-C378, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38912739

RESUMEN

Heparan sulfate proteoglycans are a family of glycoproteins that modulate cell signaling by binding growth factors and changing their bioavailability. Syndecans are a specific family of transmembrane heparan sulfate proteoglycans that regulate cell adhesion, migration, and signaling. In this review, we will summarize emerging evidence for the functions of syndecans in the normal and malignant blood systems and their microenvironments. More specifically, we detail the known functions of syndecans within normal hematopoietic stem cells. Furthermore, we discuss the functions of syndecans in hematological malignancies, including myeloid malignancies, lymphomas, and bleeding disorders. As normal and malignant hematopoietic cells require cues from their microenvironments to function, we also summarize the roles of syndecans in cells of the stromal, endothelial, and osteolineage compartments. Syndecan biology is a rapidly evolving field; a comprehensive understanding of these molecules and their place in the hematopoietic system promises to improve our grasp on disease processes and better predict the efficacies of growth factor-targeting therapies.


Asunto(s)
Células Madre Hematopoyéticas , Nicho de Células Madre , Sindecanos , Humanos , Células Madre Hematopoyéticas/metabolismo , Animales , Sindecanos/metabolismo , Sindecanos/genética , Transducción de Señal , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patología , Hematopoyesis/fisiología
17.
J Cell Physiol ; 239(8): e31325, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38860372

RESUMEN

Precise regulation of stem cell quiescence is essential for tissue development and homeostasis. Therefore, its aberrant regulation is intimately correlated with various human diseases. However, the detailed mechanisms of stem cell quiescence and its specific role in the pathogenesis of various diseases remain to be determined. Recent studies have revealed that the intrinsic and microenvironmental factors are the potential candidates responsible for the orderly switch between the dormant and activated states of stem cells. In addition, defects in signaling pathways related to internal and external factors of stem cells might contribute to the initiation and development of diseases by altering the dormancy of stem cells. In this review, we focus on the mechanisms underlying stem cell quiescence, especially the involvement of intrinsic and microenvironmental factors. In addition, we discuss the relationship between the anomalies of stem cell quiescence and related diseases, hopefully providing therapeutic insights for developing novel treatments.


Asunto(s)
Transducción de Señal , Nicho de Células Madre , Células Madre , Humanos , Células Madre/metabolismo , Animales , Proliferación Celular , Diferenciación Celular/fisiología
18.
J Cell Physiol ; 239(5): e31249, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501376

RESUMEN

The hippocampal dentate gyrus, responds to diverse pathological stimuli through neurogenesis. This phenomenon, observed following brain injury or neurodegeneration, is postulated to contribute to neuronal repair and functional recovery, thereby presenting an avenue for endogenous neuronal restoration. This study investigated the extent of regenerative response in hippocampal neurogenesis by leveraging the well-established kainic acid-induced status epilepticus model in vivo. In our study, we observed the activation and proliferation of neuronal progenitors or neural stem cell (NSC) and their subsequent migration to the injury sites following the seizure. At the injury sites, new neurons (Tuj1+BrdU+ and NeuN+BrdU+) have been generated indicating regenerative and reparative roles of the progenitor cells. We further detected whether this transient neurogenic burst, which might be a response towards an attempt to repair the brain, is associated with persistent long-term exhaustion of the dentate progenitor cells and impairment of adult neurogenesis marked by downregulation of Ki67, HoPX, and Sox2 with BrdU+ cell in the later part of life. Our studies suggest that the adult brain has the constitutive endogenous regenerative potential for brain repair to restore the damaged neurons, meanwhile, in the long term, it accelerates the depletion of the finite NSC pool in the hippocampal neurogenic niche by changing its proliferative and neurogenic capacity. A thorough understanding of the impact of modulating adult neurogenesis will eventually be required to design novel therapeutics to stimulate or assist brain repair while simultaneously preventing the adverse effects of early robust neurogenesis on the proliferative potential of endogenous neuronal progenitors.


Asunto(s)
Hipocampo , Células-Madre Neurales , Neurogénesis , Animales , Células-Madre Neurales/metabolismo , Hipocampo/patología , Hipocampo/metabolismo , Proliferación Celular , Masculino , Nicho de Células Madre , Giro Dentado/patología , Giro Dentado/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Ácido Kaínico/toxicidad , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Estado Epiléptico/metabolismo , Regeneración Nerviosa , Modelos Animales de Enfermedad , Ratones , Movimiento Celular
19.
Glia ; 72(7): 1273-1289, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38515286

RESUMEN

Tamoxifen-inducible systems are widely used in research to control Cre-mediated gene deletion in genetically modified animals. Beyond Cre activation, tamoxifen also exerts off-target effects, whose consequences are still poorly addressed. Here, we investigated the impact of tamoxifen on lipopolysaccharide (LPS)-induced neuroinflammatory responses, focusing on the neurogenic activity in the adult mouse dentate gyrus. We demonstrated that a four-day LPS treatment led to an increase in microglia, astrocytes and radial glial cells with concomitant reduction of newborn neurons. These effects were counteracted by a two-day tamoxifen pre-treatment. Through selective microglia depletion, we elucidated that both LPS and tamoxifen influenced astrogliogenesis via microglia mediated mechanisms, while the effects on neurogenesis persisted even in a microglia-depleted environment. Notably, changes in radial glial cells resulted from a combination of microglia-dependent and -independent mechanisms. Overall, our data reveal that tamoxifen treatment per se does not alter the balance between adult neurogenesis and astrogliogenesis but does modulate cellular responses to inflammatory stimuli exerting a protective role within the adult hippocampal neurogenic niche.


Asunto(s)
Hipocampo , Microglía , Neurogénesis , Tamoxifeno , Animales , Tamoxifeno/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Hipocampo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Ratones , Ratones Endogámicos C57BL , Lipopolisacáridos/farmacología , Enfermedades Neuroinflamatorias , Masculino , Ratones Transgénicos , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/fisiología
20.
Small ; 20(32): e2311456, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38497893

RESUMEN

Tissue engineering scaffolds can mediate the maneuverability of neural stem cell (NSC) niche to influence NSC behavior, such as cell self-renewal, proliferation, and differentiation direction, showing the promising application in spinal cord injury (SCI) repair. Here, dual-network porous collagen fibers (PCFS) are developed as neurogenesis scaffolds by employing biomimetic plasma ammonia oxidase catalysis and conventional amidation cross-linking. Following optimizing the mechanical parameters of PCFS, the well-matched Young's modulus and physiological dynamic adaptability of PCFS (4.0 wt%) have been identified as a neurogenetic exciter after SCI. Remarkably, porous topographies and curving wall-like protrusions are generated on the surface of PCFS by simple and non-toxic CO2 bubble-water replacement. As expected, PCFS with porous and matched mechanical properties can considerably activate the cadherin receptor of NSCs and induce a series of serine-threonine kinase/yes-associated protein mechanotransduction signal pathways, encouraging cellular orientation, neuron differentiation, and adhesion. In SCI rats, implanted PCFS with matched mechanical properties further integrated into the injured spinal cords, inhibited the inflammatory progression and decreased glial and fibrous scar formation. Wall-like protrusions of PCFS drive multiple neuron subtypes formation and even functional neural circuits, suggesting a viable therapeutic strategy for nerve regeneration and functional recovery after SCI.


Asunto(s)
Colágeno , Mecanotransducción Celular , Células-Madre Neurales , Proteínas Proto-Oncogénicas c-akt , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/terapia , Animales , Porosidad , Células-Madre Neurales/metabolismo , Colágeno/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Nicho de Células Madre , Biomimética , Diferenciación Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Andamios del Tejido/química , Materiales Biomiméticos/química , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda