Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.570
Filtrar
Más filtros

Publication year range
1.
PLoS Pathog ; 19(11): e1011627, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37956215

RESUMEN

Benznidazole is the front-line drug used to treat infections with Trypanosoma cruzi, the causative agent of Chagas disease. However, for reasons that are unknown, treatment failures are common. When we examined parasites that survived benznidazole treatment in mice using highly sensitive in vivo and ex vivo bioluminescence imaging, we found that recrudescence is not due to persistence of parasites in a specific organ or tissue that preferentially protects them from drug activity. Surviving parasites are widely distributed and located in host cells where the vast majority contained only one or two amastigotes. Therefore, infection relapse does not arise from a small number of intact large nests. Rather, persisters are either survivors of intracellular populations where co-located parasites have been killed, or amastigotes in single/low-level infected cells exist in a state where they are less susceptible to benznidazole. To better assess the nature of parasite persisters, we exposed infected mammalian cell monolayers to a benznidazole regimen that reduces the intracellular amastigote population to <1% of the pre-treatment level. Of host cells that remained infected, as with the situation in vivo, the vast majority contained only one or two surviving intracellular amastigotes. Analysis, based on non-incorporation of the thymidine analogue EdU, revealed these surviving parasites to be in a transient non-replicative state. Furthermore, treatment with benznidazole led to widespread parasite DNA damage. When the small number of parasites which survive in mice after non-curative treatment were assessed using EdU labelling, this revealed that these persisters were also initially non-replicative. A possible explanation could be that triggering of the T. cruzi DNA damage response pathway by the activity of benznidazole metabolites results in exit from the cell cycle as parasites attempt DNA repair, and that metabolic changes associated with non-proliferation act to reduce drug susceptibility. Alternatively, a small percentage of the parasite population may pre-exist in this non-replicative state prior to treatment.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Parásitos , Tripanocidas , Trypanosoma cruzi , Animales , Ratones , Trypanosoma cruzi/genética , Nitroimidazoles/farmacología , Enfermedad de Chagas/parasitología , Daño del ADN , Tripanocidas/farmacología , Tripanocidas/metabolismo , Mamíferos
2.
Antimicrob Agents Chemother ; 68(1): e0073123, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38063401

RESUMEN

The intestinal parasites Giardia lamblia and Entamoeba histolytica are major causes of morbidity and mortality associated with diarrheal diseases. Metronidazole is the most common drug used to treat giardiasis and amebiasis. Despite its efficacy, treatment failures in giardiasis occur in up to 5%-40% of cases. Potential resistance of E. histolytica to metronidazole is an increasing concern. Therefore, it is critical to search for more effective drugs to treat giardiasis and amebiasis. We identified antigiardial and antiamebic activities of the rediscovered nitroimidazole compound, fexinidazole, and its sulfone and sulfoxide metabolites. Fexinidazole is equally active against E. histolytica and G. lamblia trophozoites, and both metabolites were 3- to 18-fold more active than the parent drug. Fexinidazole and its metabolites were also active against a metronidazole-resistant strain of G. lamblia. G. lamblia and E. histolytica cell extracts exhibited decreased residual nitroreductase activity when metabolites were used as substrates, indicating nitroreductase may be central to the mechanism of action of fexinidazole. In a cell invasion model, fexinidazole and its metabolites significantly reduced the invasiveness of E. histolytica trophozoites through basement membrane matrix. A q.d. oral dose of fexinidazole and its metabolites at 10 mg/kg for 3 days reduced G. lamblia infection significantly in mice compared to control. The newly discovered antigiardial and antiamebic activities of fexinidazole, combined with its FDA-approval and inclusion in the WHO Model List of Essential Medicines for the treatment of human African trypanosomiasis, offer decreased risk and a shortened development timeline toward clinical use of fexinidazole for treatment of giardiasis or amebiasis.


Asunto(s)
Amebiasis , Entamoeba histolytica , Giardia lamblia , Giardiasis , Nitroimidazoles , Ratones , Animales , Humanos , Giardiasis/tratamiento farmacológico , Giardiasis/parasitología , Metronidazol/farmacología , Metronidazol/uso terapéutico , Nitroimidazoles/farmacología , Nitrorreductasas
3.
Antimicrob Agents Chemother ; 68(4): e0156223, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38376228

RESUMEN

The combination of bedaquiline, pretomanid, and linezolid (BPaL) has become a preferred regimen for treating multidrug- and extensively drug-resistant tuberculosis (TB). However, treatment-limiting toxicities of linezolid and reports of emerging bedaquiline and pretomanid resistance necessitate efforts to develop new short-course oral regimens. We recently found that the addition of GSK2556286 increases the bactericidal and sterilizing activity of BPa-containing regimens in a well-established BALB/c mouse model of tuberculosis. Here, we used this model to evaluate the potential of new regimens combining bedaquiline or the more potent diarylquinoline TBAJ-587 with GSK2556286 and the DprE1 inhibitor TBA-7371, all of which are currently in early-phase clinical trials. We found the combination of bedaquiline, GSK2556286, and TBA-7371 to be more active than the first-line regimen and nearly as effective as BPaL in terms of bactericidal and sterilizing activity. In addition, we found that GSK2556286 and TBA-7371 were as effective as pretomanid and the novel oxazolidinone TBI-223 when either drug pair was combined with TBAJ-587 and that the addition of GSK2556286 increased the bactericidal activity of the TBAJ-587, pretomanid, and TBI-223 combination. We conclude that GSK2556286 and TBA-7371 have the potential to replace pretomanid, an oxazolidinone, or both components, in combination with bedaquiline or TBAJ-587.


Asunto(s)
Mycobacterium tuberculosis , Nitroimidazoles , Oxazolidinonas , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Animales , Ratones , Diarilquinolinas/farmacología , Diarilquinolinas/uso terapéutico , Antituberculosos/uso terapéutico , Antituberculosos/farmacología , Linezolid/farmacología , Linezolid/uso terapéutico , Tuberculosis/tratamiento farmacológico , Nitroimidazoles/farmacología , Oxazolidinonas/farmacología , Oxazolidinonas/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
4.
Antimicrob Agents Chemother ; 68(5): e0101023, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501805

RESUMEN

A major challenge for tuberculosis (TB) drug development is to prioritize promising combination regimens from a large and growing number of possibilities. This includes demonstrating individual drug contributions to the activity of higher-order combinations. A BALB/c mouse TB infection model was used to evaluate the contributions of each drug and pairwise combination in the clinically relevant Nix-TB regimen [bedaquiline-pretomanid-linezolid (BPaL)] during the first 3 weeks of treatment at human equivalent doses. The rRNA synthesis (RS) ratio, an exploratory pharmacodynamic (PD) marker of ongoing Mycobacterium tuberculosis rRNA synthesis, together with solid culture CFU counts and liquid culture time to positivity (TTP) were used as PD markers of treatment response in lung tissue; and their time-course profiles were mathematically modeled using rate equations with pharmacologically interpretable parameters. Antimicrobial interactions were quantified using Bliss independence and Isserlis formulas. Subadditive (or antagonistic) and additive effects on bacillary load, assessed by CFU and TTP, were found for bedaquiline-pretomanid and linezolid-containing pairs, respectively. In contrast, subadditive and additive effects on rRNA synthesis were found for pretomanid-linezolid and bedaquiline-containing pairs, respectively. Additionally, accurate predictions of the response to BPaL for all three PD markers were made using only the single-drug and pairwise effects together with an assumption of negligible three-way drug interactions. The results represent an experimental and PD modeling approach aimed at reducing combinatorial complexity and improving the cost-effectiveness of in vivo systems for preclinical TB regimen development.


Asunto(s)
Antituberculosos , Diarilquinolinas , Modelos Animales de Enfermedad , Linezolid , Ratones Endogámicos BALB C , Mycobacterium tuberculosis , Animales , Antituberculosos/farmacología , Antituberculosos/farmacocinética , Antituberculosos/uso terapéutico , Linezolid/farmacología , Linezolid/farmacocinética , Diarilquinolinas/farmacología , Diarilquinolinas/farmacocinética , Ratones , Mycobacterium tuberculosis/efectos de los fármacos , Femenino , Nitroimidazoles/farmacología , Nitroimidazoles/farmacocinética , Nitroimidazoles/uso terapéutico , Quimioterapia Combinada , Pulmón/microbiología , Pulmón/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Pruebas de Sensibilidad Microbiana , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología
5.
Bioorg Med Chem ; 102: 117679, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38461555

RESUMEN

Trichomoniasis, a prevalent sexually transmitted infection (STI) caused by the protozoan Trichomonas vaginalis, has gained increased significance globally. Its relevance has grown in recent years due to its association with a heightened risk of acquiring and transmitting the human immunodeficiency virus (HIV) and other STIs. In addition, many publications have revealed a potential link between trichomoniasis and certain cancers. Metronidazole (MTZ), a nitroimidazole compound developed over 50 years ago, remains the first-choice drug for treatment. However, reports of genotoxicity and side effects underscore the necessity for new compounds to address this pressing global health concern. In this study, we synthesized ten pyrazole-nitroimidazoles 1(a-j) and 4-nitro-1-(hydroxyethyl)-1H-imidazole 2, an analog of metronidazole (MTZ), and assessed their trichomonacidal and cytotoxic effects. All compounds 1(a-j) and 2 exhibited IC50 values ≤ 20 µM and ≤ 41 µM, after 24 h and 48 h, respectively. Compounds 1d (IC50 5.3 µM), 1e (IC50 4.8 µM), and 1i (IC50 5.2 µM) exhibited potencies equivalent to MTZ (IC50 4.9 µM), the reference drug, after 24 h. Notably, compound 1i showed high anti-trichomonas activity after 24 h (IC50 5.2 µM) and 48 h (IC50 2.1 µM). Additionally, all compounds demonstrated either non-cytotoxic to HeLa cells (CC50 > 100 µM) or low cytotoxicity (CC50 between 69 and 100 µM). These findings suggest that pyrazole-nitroimidazole derivatives represent a promising heterocyclic system, serving as a potential lead for further optimization in trichomoniasis chemotherapy.


Asunto(s)
Antiprotozoarios , Nitroimidazoles , Tricomoniasis , Trichomonas vaginalis , Humanos , Nitroimidazoles/farmacología , Metronidazol/farmacología , Células HeLa , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Tricomoniasis/tratamiento farmacológico , Pirazoles/farmacología , Pirazoles/uso terapéutico
6.
J Nat Prod ; 87(4): 1067-1074, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38631020

RESUMEN

A search for anti-trypanosomal natural compounds from plants collected in El Salvador, a country particularly endemic for Chagas disease, resulted in the isolation of five lignan-type compounds (1-5) from Peperomia pseudopereskiifolia. The lignan derivatives 1, 2, and 4 are new. Their absolute configuration was determined by chemical derivatization. Compounds 1, 5, 6, and 8 exhibited anti-trypanosomal activity against the amastigote form of T. cruzi comparable to that of the existing drug benznidazole.


Asunto(s)
Lignanos , Peperomia , Tripanocidas , Trypanosoma cruzi , Lignanos/farmacología , Lignanos/química , Lignanos/aislamiento & purificación , Trypanosoma cruzi/efectos de los fármacos , El Salvador , Tripanocidas/farmacología , Tripanocidas/química , Tripanocidas/aislamiento & purificación , Estructura Molecular , Peperomia/química , Nitroimidazoles/farmacología , Nitroimidazoles/química , Enfermedad de Chagas/tratamiento farmacológico
7.
Ann Clin Microbiol Antimicrob ; 23(1): 40, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702782

RESUMEN

BACKGROUND: Pretomanid is a key component of new regimens for the treatment of drug-resistant tuberculosis (TB) which are being rolled out globally. However, there is limited information on the prevalence of pre-existing resistance to the drug. METHODS: To investigate pretomanid resistance rates in China and its underlying genetic basis, as well as to generate additional minimum inhibitory concentration (MIC) data for epidemiological cutoff (ECOFF)/breakpoint setting, we performed MIC determinations in the Mycobacterial Growth Indicator Tube™ (MGIT) system, followed by WGS analysis, on 475 Mycobacterium tuberculosis (MTB) isolated from Chinese TB patients between 2013 and 2020. RESULTS: We observed a pretomanid MIC distribution with a 99% ECOFF equal to 0.5 mg/L. Of the 15 isolates with MIC values > 0.5 mg/L, one (MIC = 1 mg/L) was identified as MTB lineage 1 (L1), a genotype previously reported to be intrinsically less susceptible to pretomanid, two were borderline resistant (MIC = 2-4 mg/L) and the remaining 12 isolates were highly resistant (MIC ≥ 16 mg/L) to the drug. Five resistant isolates did not harbor mutations in the known pretomanid resistant genes. CONCLUSIONS: Our results further support a breakpoint of 0.5 mg/L for a non-L1 MTB population, which is characteristic of China. Further, our data point to an unexpected high (14/475, 3%) pre-existing pretomanid resistance rate in the country, as well as to the existence of yet-to-be-discovered pretomanid resistance genes.


Asunto(s)
Antituberculosos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , China/epidemiología , Humanos , Antituberculosos/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Prevalencia , Nitroimidazoles/farmacología , Genotipo , Mutación , Secuenciación Completa del Genoma
8.
Exp Parasitol ; 262: 108787, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759776

RESUMEN

New affordable drugs are needed for the treatment of infection with the protozoan parasite Trypanosoma cruzi responsible for the Chagas disease (CD). Only two old drugs are currently available, nifurtimox and benznidazole (Bz) but they exhibit unwanted side effects and display a weak activity in the late chronic phase of the disease. In this context, we evaluated the activity of a series of aryl-pyrazolone derivatives against T cruzi, using both bloodstream trypomastigote and intracellular amastigote forms of the parasite. The test compounds originate from a series of anticancer agents targeting the immune checkpoint ligand PD-L1 and bear an analogy with known anti-trypanosomal pyrazolones. A first group of 6 phenyl-pyrazolones was tested, revealing the activity of a single pyridyl-pyrazolone derivative. Then a second group of 8 compounds with a common pyridyl-pyrazolone core was evaluated. The in vitro testing process led to the identification of two non-cytotoxic and highly potent molecules against the intracellular form of T. cruzi, with an activity comparable to Bz. Moreover, one compound revealed an activity largely superior to that of Bz against bloodstream trypomastigotes, while being non-cytotoxic (selectivity index >1000). Unfortunately, the compound showed little activity in vivo, most likely due to its very limited plasma stability. However, the study opens novel perspectives for the design of new anti-trypanosomal products and the mechanism of action of the compounds is discussed.


Asunto(s)
Enfermedad de Chagas , Pirazolonas , Tripanocidas , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Pirazolonas/farmacología , Pirazolonas/química , Tripanocidas/farmacología , Tripanocidas/química , Animales , Ratones , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Piridinas/farmacología , Piridinas/química , Concentración 50 Inhibidora , Nitroimidazoles/farmacología , Nitroimidazoles/química
9.
Mem Inst Oswaldo Cruz ; 119: e230223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716979

RESUMEN

BACKGROUND: Conventional microscopic counting is a widely utilised method for evaluating the trypanocidal effects of drugs on intracellular amastigotes. This is a low-cost approach, but it is time-consuming and reliant on the expertise of the microscopist. So, there is a pressing need for developing technologies to enhance the efficiency of low-cost anti-Trypanosoma cruzi drug screening. OBJECTIVES: In our laboratory, we aimed to expedite the screening of anti-T. cruzi drugs by implementing a fluorescent method that correlates emitted fluorescence from green fluorescent protein (GFP)-expressing T. cruzi (Tc-GFP) with cellular viability. METHODS: Epimastigotes (Y strain) were transfected with the pROCKGFPNeo plasmid, resulting in robust and sustained GFP expression across epimastigotes, trypomastigotes, and intracellular amastigotes. Tc-GFP epimastigotes and intracellular amastigotes were exposed to a serial dilution of benznidazole (Bz). Cell viability was assessed through a combination of microscopic counting, MTT, and fluorimetry. FINDINGS: The fluorescence data indicated an underestimation of the activity of Bz against epimastigotes (IC50 75 µM x 14 µM). Conversely, for intracellular GFP-amastigotes, both fluorimetry and microscopy yielded identical IC50 values. Factors influencing the fluorimetry approach are discussed. MAIN CONCLUSIONS: Our proposed fluorometric assessment is effective and can serve as a viable substitute for the time-consuming microscopic counting of intracellular amastigotes.


Asunto(s)
Proteínas Fluorescentes Verdes , Tripanocidas , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/genética , Proteínas Fluorescentes Verdes/genética , Tripanocidas/farmacología , Nitroimidazoles/farmacología , Pruebas de Sensibilidad Parasitaria , Animales , Concentración 50 Inhibidora , Evaluación Preclínica de Medicamentos , Supervivencia Celular/efectos de los fármacos
10.
Chem Biodivers ; 21(1): e202301276, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38175829

RESUMEN

Candidiasis is one of the most serious microbial infections in the world. One of the main virulence factors for Candida albicans is the crucial secretion of aspartic proteases (Saps). Saps are hydrolytic enzymes that play a major role in many fungal pathophysiological processes as well as in many levels of the associations between the fungus and its host. In this work, we report on the synthesis, characterization, and anti-candida agent evaluation of a family of 13 imidazolidine-based aspartate protease inhibitors. In vitro and in silico enzyme inhibition studies have confirmed these compounds' ability to inhibit fungal aspartate protease. Based on the molecular mechanistic value scores from molecular docking and MD simulations, we selected the top compounds 5b (binding energy -13.90 kcal/mol) and 5m (binding energy -12.94 kcal/mol) from among 5a-l based on the molecular mechanistic value scores from molecular docking and MD simulations for use in in vitro validations. In the results, imidazolidine derivatives showed strong aspartic protease inhibition activity. In conclusion, compounds 5b and 5m were found as potent anti-candida agents and screened for further pre-clinical and clinical validations.


Asunto(s)
Proteasas de Ácido Aspártico , Imidazolidinas , Nitroimidazoles , Simulación del Acoplamiento Molecular , Ácido Aspártico/farmacología , Inhibidores de Proteasas/farmacología , Candida albicans , Candida , Imidazoles/farmacología , Nitroimidazoles/farmacología , Imidazolidinas/farmacología
11.
Arch Pharm (Weinheim) ; 357(7): e2400059, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38627301

RESUMEN

Chagas disease is a neglected tropical parasitic disease caused by the protozoan Trypanosoma cruzi. Worldwide, an estimated 8 million people are infected with T. cruzi, causing more than 10,000 deaths per year. Currently, only two drugs, nifurtimox and benznidazole (BNZ), are approved for its treatment. However, both are ineffective during the chronic phase, show toxicity, and produce serious side effects. This work aimed to obtain and evaluate novel 2-nitroimidazole-N-acylhydrazone derivatives analogous to BNZ. The design of these compounds used the two important pharmacophoric subunits of the BNZ prototype, the 2-nitroimidazole nucleus and the benzene ring, and the bioisosterism among the amide group of BNZ and N-acylhydrazone. The 27 compounds were obtained by a three-step route in 57%-98% yields. The biological results demonstrated the potential of this new class of compounds, since eight compounds were potent and selective in the in vitro assay against T. cruzi amastigotes and trypomastigotes using a drug-susceptible strain of T. cruzi (Tulahuen) (IC50 = 4.3-6.25 µM) and proved to be highly selective with low cytotoxicity on L929 cells. The type I nitroreductase (TcNTR) assay suggests that the new compounds may act as substrates for this enzyme.


Asunto(s)
Hidrazonas , Nitroimidazoles , Pruebas de Sensibilidad Parasitaria , Tripanocidas , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Tripanocidas/farmacología , Tripanocidas/síntesis química , Tripanocidas/química , Nitroimidazoles/farmacología , Nitroimidazoles/química , Nitroimidazoles/síntesis química , Relación Estructura-Actividad , Animales , Hidrazonas/farmacología , Hidrazonas/síntesis química , Hidrazonas/química , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Ratones , Estructura Molecular , Relación Dosis-Respuesta a Droga , Humanos
12.
Drug Dev Res ; 85(1): e22126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37915124

RESUMEN

A hypoxic environment occurs predominantly in tumors. During the growth phase of a tumor, it grows until it exceeds its blood supply, leaving regions of the tumor in which the oxygen pressure is dramatically low. They are virtually absent in normal tissues, thus creating perfect conditions for selective bioreductive therapy of tumors. To this aim, a novel series of cytotoxic radiosensitizer agents were synthesized by linking the nitroimidazole scaffold with oxadiazole or triazole rings. The majority of the compounds exhibited moderate to excellent antiproliferative activities toward HCT116 cell line under normoxic and hypoxic conditions. The structure-activity relationship study revealed that compounds containing the free thiol group either in the oxadiazoles 11a,b or the triazoles 21a,b-23a,b demonstrated the strongest antiproliferative activity, which proves that the free thiol group plays a crucial role in the antiproliferative activity of our compounds under both normoxic (half-maximal inhibitory concentration [IC50 ] = 12.50-24.39 µM) and hypoxic conditions (IC50 = 4.69-11.56 µM). Radiosensitizing assay of the four most active cytotoxic compounds 11b and 21-23b assured the capability of the compounds to enhance the sensitivity of the tumor cells to the DNA damaging activity of γ-radiation (IC50 = 2.23-5.18 µM). To further investigate if the cytotoxicity of our most active compounds was due to a specific signaling pathway, the online software SwissTargetPrediction was exploited and a molecular docking study was done that proposed cyclin-dependent kinase 2 (CDK2) enzyme to be the most promising target. The CDK2 inhibitory assay assured this assumption as five out of six compounds demonstrated a comparable inhibitory activity with roscovitine, among which compound 21b showed threefold more potent inhibitory activity in comparison with the reference compound. A further biological evaluation proved compound 21b to have an apoptotic activity and cell cycle arrest activity at the G1 and S phases. During the AutoQSAR analysis, the model demonstrated excellent regression between the predicted and experimental activity with r2 = 0.86. Subsequently, we used the model to predict the activity of the test set compounds that came with r2 = 0.95.


Asunto(s)
Antineoplásicos , Antiprotozoarios , Nitroimidazoles , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad Cuantitativa , Línea Celular Tumoral , Hipoxia Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Antineoplásicos/farmacología , Citotoxinas , Nitroimidazoles/farmacología , Antiprotozoarios/farmacología , Compuestos de Sulfhidrilo , Inhibidores de Proteínas Quinasas/farmacología
13.
Emerg Infect Dis ; 29(5): 1081-1084, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081529

RESUMEN

New classes of antitubercular drugs, diarylquinolines and nitroimidazoles, have been associated with improved outcomes in the treatment of drug-resistant tuberculosis, but that success is threatened by emerging drug resistance. We report a case of bedaquiline and delamanid resistance in a 55-year-old woman in South Africa with extensively drug-resistant tuberculosis and known HIV.


Asunto(s)
Nitroimidazoles , Tuberculosis Resistente a Múltiples Medicamentos , Femenino , Humanos , Persona de Mediana Edad , Diarilquinolinas/farmacología , Diarilquinolinas/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/complicaciones , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Oxazoles/farmacología , Oxazoles/uso terapéutico
14.
Antimicrob Agents Chemother ; 67(5): e0013223, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37039666

RESUMEN

Trypanosoma cruzi naturally infects a broad range of mammalian species and frequently results in the pathology that has been most extensively characterized in human Chagas disease. Currently employed treatment regimens fail to achieve parasitological cure of T. cruzi infection in the majority of cases. In this study, we have extended our previous investigations of more effective, higher dose, intermittent administration protocols using the FDA-approved drug benznidazole (BNZ), in experimentally infected mice and in naturally infected dogs and nonhuman primates (NHP). Collectively, these studies demonstrate that twice-weekly administration of BNZ for more than 4 months at doses that are ~2.5-fold that of previously used daily dosing protocols, provided the best chance to obtain parasitological cure. Dosing less frequently or for shorter time periods was less dependable in all species. Prior treatment using an ineffective dosing regimen in NHPs did not prevent the attainment of parasitological cure with an intensified BNZ dosing protocol. Furthermore, parasites isolated after a failed BNZ treatment showed nearly identical susceptibility to BNZ as those obtained prior to treatment, confirming the low risk of induction of drug resistance with BNZ and the ability to adjust the treatment protocol when an initial regimen fails. These results provide guidance for the use of BNZ as an effective treatment for T. cruzi infection and encourage its wider use, minimally in high value dogs and at-risk NHP, but also potentially in humans, until better options are available.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Ratones , Perros , Humanos , Animales , Tripanocidas/uso terapéutico , Tripanocidas/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Nitroimidazoles/uso terapéutico , Nitroimidazoles/farmacología , Protocolos Clínicos , Primates , Mamíferos
15.
Antimicrob Agents Chemother ; 67(4): e0003523, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36920217

RESUMEN

A regimen comprised of bedaquiline (BDQ, or B), pretomanid, and linezolid (BPaL) is the first oral 6-month regimen approved by the U.S. Food and Drug Administration and recommended by the World Health Organization for the treatment of extensively drug-resistant tuberculosis. We used a well-established BALB/c mouse model of tuberculosis to evaluate the treatment-shortening potential of replacing bedaquiline with either of two new, more potent diarylquinolines, TBAJ-587 and TBAJ-876, in early clinical trials. We also evaluated the effect of replacing linezolid with a new oxazolidinone, TBI-223, exhibiting a larger safety margin with respect to mitochondrial toxicity in preclinical studies. Replacing bedaquiline with TBAJ-587 at the same 25-mg/kg dose significantly reduced the proportion of mice relapsing after 2 months of treatment, while replacing linezolid with TBI-223 at the same 100-mg/kg dose did not significantly change the proportion of mice relapsing. Replacing linezolid or TBI-223 with sutezolid in combination with TBAJ-587 and pretomanid significantly reduced the proportion of mice relapsing. In combination with pretomanid and TBI-223, TBAJ-876 at 6.25 mg/kg was equipotent to TBAJ-587 at 25 mg/kg. We conclude that replacement of bedaquiline with these more efficacious and potentially safer diarylquinolines and replacement of linezolid with potentially safer and at least as efficacious oxazolidinones in the clinically successful BPaL regimen may lead to superior regimens capable of treating both drug-susceptible and drug-resistant TB more effectively and safely.


Asunto(s)
Nitroimidazoles , Oxazolidinonas , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Animales , Ratones , Diarilquinolinas/farmacología , Diarilquinolinas/uso terapéutico , Antituberculosos/uso terapéutico , Linezolid/uso terapéutico , Tuberculosis/tratamiento farmacológico , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Oxazolidinonas/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
16.
Antimicrob Agents Chemother ; 67(4): e0000623, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37070857

RESUMEN

Mycoplasma genitalium is a sexually transmitted reproductive tract pathogen of men and women. M. genitalium infections are increasingly difficult to treat due to poor efficacy of doxycycline and acquired resistance to azithromycin and moxifloxacin. A recent clinical trial suggested that metronidazole may improve cure rates for women with pelvic inflammatory disease and reduced the detection of M. genitalium when included with standard doxycycline plus ceftriaxone treatment. As data regarding susceptibility of mycoplasmas to nitroimidazoles are lacking in the scientific literature, we determined the in vitro susceptibility of 10 M. genitalium strains to metronidazole, secnidazole, and tinidazole. MICs ranged from 1.6 to 12.5 µg/mL for metronidazole, 3.1 to 12.5 µg/mL for secnidazole, and 0.8 to 6.3 µg/mL for tinidazole. None of these agents was synergistic with doxycycline in checkerboard broth microdilution assays. Tinidazole was superior to metronidazole and secnidazole in terms of MIC and time-kill kinetics and was bactericidal (>99.9% killing) at concentrations below reported serum concentrations. Mutations associated with nitroimidazole resistance were identified by whole-genome sequencing of spontaneous resistant mutants, suggesting a mechanism for reductive activation of the nitroimidazole prodrug by a predicted NAD(P)H-dependent flavin mononucleotide (FMN) oxidoreductase. The presence of oxygen did not affect MICs of wild-type M. genitalium, but a nitroimidazole-resistant mutant was defective for growth under anaerobic conditions, suggesting that resistant mutants may have a fitness disadvantage in anaerobic genital sites. Clinical studies are needed to determine if nitroimidazoles, especially tinidazole, are effective for eradicating M. genitalium infections in men and women.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma genitalium , Nitroimidazoles , Masculino , Femenino , Humanos , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Doxiciclina/farmacología , Doxiciclina/uso terapéutico , Metronidazol/farmacología , Metronidazol/uso terapéutico , Tinidazol/farmacología , Tinidazol/uso terapéutico , Mycoplasma genitalium/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Mycoplasma/tratamiento farmacológico , Farmacorresistencia Bacteriana/genética
17.
Parasite Immunol ; 45(6): e12983, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066749

RESUMEN

Benznidazole (Bz) is the recommended drug for the treatment of Chagas disease; however, its efficacy may vary according to the sensitivity of Trypanosoma cruzi strains to the drug and host immune background. The study evaluated the immune response of peripheral blood mononuclear cells (PBMC) that were infected in vitro with the Colombian strain (Col) and treated with Bz. The co-cultures were incubated for 24 h, 5 and 10 days, where cytokine dosage was performed in the supernatant and evaluation of the cells for CD28+ and CTLA-4+ molecules in CD4+ and CD8+ lymphocytes, and CD80+ , CD86+ and HLA-DR+ in CD14+ cells. The results showed that Col induced a strong inflammatory response, with an increase in IFN-γ and TNF early in the infection (24 h), however, from 5 days of infection on, TNF production declined, and IL-10 production increased, which may be associated with a control mechanism of the exacerbated inflammatory response. The Bz treatment did not significantly alter the frequencies of the phenotypes evaluated both T cell subsets and CD14+ cells. Therefore, this study reinforces the need for typing the patient's strain to guide therapy and promote individualized treatment protocols due to the heterogeneous genetic background among T. cruzi strains.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Humanos , Leucocitos Mononucleares , Colombia , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Tripanocidas/farmacología , Tripanocidas/uso terapéutico
18.
Exp Parasitol ; 247: 108490, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36809831

RESUMEN

The discovery and development of new drugs for the treatment of Chagas disease is urgent due to the high toxicity and low cure efficacy, mainly during the chronic phase of this disease. Other chemotherapeutic approaches for Chagas disease treatment are being researched and require screening assays suitable for evaluating the effectivity of new biologically active compounds. This study aims to evaluate a functional assay using the internalization of epimastigotes forms of Trypanosoma cruzi by human peripheral blood leukocytes from healthy volunteers and analyses by flow cytometry of cytotoxicity, anti-T. cruzi activity, and immunomodulatory effect of benznidazole, ravuconazole, and posaconazole. The culture supernatant was used to measure cytokines (IL-1-ß, IL-6, INF-γ, TNF and IL-10) and chemokines (MCP-1/CCL2, CCL5/RANTES and CXCL8/IL-8). The data showed a reduction in the internalization of T. cruzi epimastigote forms treated with ravuconazole, demonstrating its potential anti-T. cruzi activity. In addition, an increased amount of IL-10 and TNF cytokines was observed in the supernatant of cultures upon the addition of the drug, mainly IL-10 in the presence of benznidazole, ravuconazole and posaconazole, and TNF in the presence of ravuconazole and posaconazole. Moreover, the results revealed a decrease in the MCP-1/CCL2 index in cultures in the presence of benznidazole, ravuconazole, and posaconazole. A decrease in the CCL5/RANTES and CXCL8/IL-8 index in cultures with BZ, when compared to the culture without drugs, was also observed. In conclusion, the innovative functional test proposed in this study may be a valuable tool as a confirmatory test for selecting promising compounds identified in prospecting programs for new drugs for Chagas disease treatment.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Humanos , Interleucina-10 , Interleucina-8 , Citometría de Flujo , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Citocinas , Tripanocidas/farmacología , Tripanocidas/uso terapéutico
19.
Exp Parasitol ; 249: 108520, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37001581

RESUMEN

Chagas Disease (CD) affects around eight million people worldwide. It is considered a neglected disease that presents few treatment options with efficacy only in the acute phase. Nanoparticles have many positive qualities for treating parasite infections and may be effectively and widely employed in clinical medicine. This research aimed to evaluate the nanoencapsulated benznidazole treatment in animals experimentally infected with Trypanosoma cruzi. To analyze the treatment efficacy, we evaluated survival during thirty days, parasitemia, genotoxicity, and heart and liver histopathology. Thirty-five female Swiss mice were organized into seven groups characterizing a dose curve: A - Negative control (uninfected animals), B - Positive control (infected animals), C - Benznidazole (BNZ) 100 mg/kg (infected animals), D - 5 mg/kg Benznidazole nanocapsules (NBNZ) (infected animals), E - 10 mg/kg Benznidazole nanocapsules (infected animals), F - 15 mg/kg Benznidazole nanocapsules (infected animals), G - 20 mg/kg Benznidazole nanocapsules (infected animals). The animals were infected with the Y strain of T. cruzi intraperitoneally. The treatment was administered for eight days by oral gavage. It was possible to observe that the treatment with the highest NBNZ dose presented efficacy similar to the standard benznidazole drug. The 20 mg/kg NBNZ dose was able to reduce parasitemia, increase survival, and drastically reduce heart and liver tissue damage compared to the 100 mg/kg BNZ dose. Moreover, it showed a lower DNA damage index than the BNZ treatment. In conclusion, the nanoencapsulation of BNZ promotes an improvement in parasite proliferation control with a five times smaller dose relative to the standard dose of free BNZ, thus demonstrating to be a potential innovative therapy for CD.


Asunto(s)
Enfermedad de Chagas , Nanocápsulas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Ratones , Animales , Femenino , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Enfermedad de Chagas/parasitología , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico
20.
Exp Parasitol ; 255: 108647, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37914151

RESUMEN

Chagas disease (CD) remains neglected and causes high morbidity and mortality. The great difficulty is the lack of effective treatment. The current drugs cause side effects and have limited therapeutic efficacy in the chronic phase. This study aims to fulfil some gaps in studies of the natural substance lychnopholide nanoencapsulated LYC-PLA-PEG-NC (LYC-NC) and free (Free-LYC): the activity in epimastigotes and amastigotes to determine its selectivity index (SI), the therapeutic efficacy in mice infected with Colombian Trypanosoma cruzi strain and insight of the mechanism of LYC-NC action on T. cruzi. The SI was obtained by calculation of the ratio between the IC50 value toward H9c2 cells divided by the IC50 value in the anti-T. cruzi test. Infected Swiss mice were treated with 2 and 12 mg/kg/day via intravenous and oral, respectively, and the therapeutic efficacy was determined. The IC50 of LYC-NC and Free-LYC for epimastigotes of T. cruzi were similar. Both were active against amastigotes in cell culture, particularly Free-LYC. The SI of LYC-NC and Free-LYC were 45.38 and 32.11, respectively. LYC-NC 2 and 12 mg/kg/day cured parasitologically, 62.5% and 80% of the animals, respectively, infected with a strain resistant to treatment. The fluorescent NC was distributed in the cardiomyocyte cytoplasm, infected or not, and interacted with the trypomastigotes. Together, these results represent advances in demonstrating LYC as a potent new therapeutic option for treating CD.


Asunto(s)
Enfermedad de Chagas , Nanocápsulas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Animales , Ratones , Nifurtimox/uso terapéutico , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Poliésteres/farmacología , Poliésteres/uso terapéutico , Tripanocidas/farmacología , Tripanocidas/uso terapéutico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda