Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 439
Filtrar
1.
Nature ; 585(7824): 298-302, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32669707

RESUMEN

Proteins are manufactured by ribosomes-macromolecular complexes of protein and RNA molecules that are assembled within major nuclear compartments called nucleoli1,2. Existing models suggest that RNA polymerases I and III (Pol I and Pol III) are the only enzymes that directly mediate the expression of the ribosomal RNA (rRNA) components of ribosomes. Here we show, however, that RNA polymerase II (Pol II) inside human nucleoli operates near genes encoding rRNAs to drive their expression. Pol II, assisted by the neurodegeneration-associated enzyme senataxin, generates a shield comprising triplex nucleic acid structures known as R-loops at intergenic spacers flanking nucleolar rRNA genes. The shield prevents Pol I from producing sense intergenic noncoding RNAs (sincRNAs) that can disrupt nucleolar organization and rRNA expression. These disruptive sincRNAs can be unleashed by Pol II inhibition, senataxin loss, Ewing sarcoma or locus-associated R-loop repression through an experimental system involving the proteins RNaseH1, eGFP and dCas9 (which we refer to as 'red laser'). We reveal a nucleolar Pol-II-dependent mechanism that drives ribosome biogenesis, identify disease-associated disruption of nucleoli by noncoding RNAs, and establish locus-targeted R-loop modulation. Our findings revise theories of labour division between the major RNA polymerases, and identify nucleolar Pol II as a major factor in protein synthesis and nuclear organization, with potential implications for health and disease.


Asunto(s)
Nucléolo Celular/enzimología , Nucléolo Celular/genética , ADN Ribosómico/genética , ARN Polimerasa II/metabolismo , ARN no Traducido/biosíntesis , ARN no Traducido/genética , Ribosomas/metabolismo , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular Tumoral , Nucléolo Celular/fisiología , ADN Helicasas/metabolismo , ADN Intergénico/genética , Humanos , Enzimas Multifuncionales/metabolismo , Biosíntesis de Proteínas , Estructuras R-Loop , ARN Helicasas/metabolismo , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa I/metabolismo , Ribonucleasa H/metabolismo , Ribosomas/química , Ribosomas/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología
2.
Genes Dev ; 31(8): 719-720, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28512234

RESUMEN

SUMO homeostasis is important for many cellular processes. In the current issue of Genes & Development, Liang and colleagues (pp. 802-815) demonstrate how a desumoylation enzyme is targeted to the nucleolus for removing SUMO from specific substrates and how curtailing sumoylation levels can regulate transcription in this nuclear compartment.


Asunto(s)
Regulación de la Expresión Génica , Homeostasis/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Animales , Nucléolo Celular/enzimología , ADN Ribosómico/metabolismo , Endopeptidasas/metabolismo , Humanos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nucleic Acids Res ; 49(6): 3185-3203, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33693809

RESUMEN

Protein methylation occurs primarily on lysine and arginine, but also on some other residues, such as histidine. METTL18 is the last uncharacterized member of a group of human methyltransferases (MTases) that mainly exert lysine methylation, and here we set out to elucidate its function. We found METTL18 to be a nuclear protein that contains a functional nuclear localization signal and accumulates in nucleoli. Recombinant METTL18 methylated a single protein in nuclear extracts and in isolated ribosomes from METTL18 knockout (KO) cells, identified as 60S ribosomal protein L3 (RPL3). We also performed an RPL3 interactomics screen and identified METTL18 as the most significantly enriched MTase. We found that His-245 in RPL3 carries a 3-methylhistidine (3MH; τ-methylhistidine) modification, which was absent in METTL18 KO cells. In addition, both recombinant and endogenous METTL18 were found to be automethylated at His-154, thus further corroborating METTL18 as a histidine-specific MTase. Finally, METTL18 KO cells displayed altered pre-rRNA processing, decreased polysome formation and codon-specific changes in mRNA translation, indicating that METTL18-mediated methylation of RPL3 is important for optimal ribosome biogenesis and function. In conclusion, we have here established METTL18 as the second human histidine-specific protein MTase, and demonstrated its functional relevance.


Asunto(s)
Biosíntesis de Proteínas , Proteína Metiltransferasas/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Secuencias de Aminoácidos , Nucléolo Celular/enzimología , Células HEK293 , Células HeLa , Histidina/metabolismo , Humanos , Señales de Localización Nuclear , Proteína Metiltransferasas/química , Procesamiento Postranscripcional del ARN , Proteína Ribosomal L3 , Ribosomas/metabolismo
4.
Cancer Sci ; 112(2): 619-628, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33164285

RESUMEN

Overexpression of the ubiquitous protein kinase, CK2α, has been reported in various human cancers. Here, we demonstrate that nuclear and nucleolar CK2α localization in invasive ductal carcinomas of the breast is a reliable predictor of poor prognosis. Cellular localization of CK2α in nuclei and nucleoli was analyzed immunohistochemically using surgical tissue blocks from 112 patients, who had undergone surgery without neoadjuvant chemotherapy. Clinical data collection and median follow-up period were for more than 5 y. In total, 93.8% of patients demonstrated elevated CK2α expression in nuclei and 36.6% of them displayed elevated expression predominantly in nucleoli. Clinicopathological malignancy was strongly correlated with elevated nuclear and nucleolar CK2α expression. Recurrence-free survival was significantly worse (P = .0002) in patients with positive nucleolar CK2α staining. The 5-y survival rate decreased to a roughly 50% in nucleolar CK2α-positive patients of triple-negative (P = .0069) and p Stage 3 (P = .0073) groups. In contrast, no patients relapsed or died in the triple-negative group who exhibited a lack of nucleolar CK2α staining. Evaluation of nucleolar CK2α staining showed a high secondary index with a hazard ratio of 6.629 (P = .001), following lymph node metastasis with a hazard ratio of 14.30 (P = .0008). Multivariate analysis demonstrated that nucleolar CK2α is an independent factor for recurrence-free survival. Therefore, we propose that histochemical evaluation of nucleolar CK2α-positive staining may be a new and robust prognostic indicator for patients who need further treatment. Functional consequences of nucleolar CK2 dysfunction may be a starting point to facilitate development of novel treatments for invasive breast carcinoma.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Quinasa de la Caseína II/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/enzimología , Carcinoma Ductal de Mama/enzimología , Nucléolo Celular/enzimología , Núcleo Celular/enzimología , Femenino , Humanos , Células MCF-7 , Persona de Mediana Edad , Pronóstico
5.
Cell Microbiol ; 22(10): e13246, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32720355

RESUMEN

Intracellular bacterial pathogens harbour genes, the closest homologues of which are found in eukaryotes. Regulator of chromosome condensation 1 (RCC1) repeat proteins are phylogenetically widespread and implicated in protein-protein interactions, such as the activation of the small GTPase Ran by its cognate guanine nucleotide exchange factor, RCC1. Legionella pneumophila and Coxiella burnetii, the causative agents of Legionnaires' disease and Q fever, respectively, harbour RCC1 repeat coding genes. Legionella pneumophila secretes the RCC1 repeat 'effector' proteins LegG1, PpgA and PieG into eukaryotic host cells, where they promote the activation of the pleiotropic small GTPase Ran, microtubule stabilisation, pathogen vacuole motility and intracellular bacterial growth as well as host cell migration. The RCC1 repeat effectors localise to the pathogen vacuole or the host plasma membrane and target distinct components of the Ran GTPase cycle, including Ran modulators and the small GTPase itself. Coxiella burnetii translocates the RCC1 repeat effector NopA into host cells, where the protein localises to nucleoli. NopA binds to Ran GTPase and promotes the nuclear accumulation of Ran(GTP), thus pertubing the import of the transcription factor NF-κB and innate immune signalling. Hence, divergent evolution of bacterial RCC1 repeat effectors defines the range of Ran GTPase cycle targets and likely allows fine-tuning of Ran GTPase activation by the pathogens at different cellular sites.


Asunto(s)
Evolución Biológica , Coxiella burnetii/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Legionella pneumophila/metabolismo , Proteína de Unión al GTP ran/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Nucléolo Celular/enzimología , Coxiella burnetii/genética , Coxiella burnetii/patogenicidad , Activación Enzimática , Genes Bacterianos , Interacciones Huésped-Patógeno , Humanos , Legionella/genética , Legionella/metabolismo , Legionella/patogenicidad , Legionella pneumophila/genética , Enfermedad de los Legionarios/microbiología , Transporte de Proteínas , Fiebre Q/microbiología , Vacuolas/metabolismo , Vacuolas/microbiología
6.
Nucleic Acids Res ; 46(12): 6304-6317, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29618122

RESUMEN

Among the proteins predicted to be a part of the DExD box RNA helicase family, the functions of DDX49 are unknown. Here, we characterize the enzymatic activities and functions of DDX49 by comparing its properties with the well-studied RNA helicase, DDX39B. We find that DDX49 exhibits a robust ATPase and RNA helicase activity, significantly higher than that of DDX39B. DDX49 is required for the efficient export of poly (A)+ RNA from nucleus in a splicing-independent manner. Furthermore, DDX49 is a resident protein of nucleolus and regulates the steady state levels of pre-ribosomal RNA by regulating its transcription and stability. These dual functions of regulating mRNA export and pre-ribosomal RNA levels enable DDX49 to modulate global translation. Phenotypically, DDX49 promotes proliferation and colony forming potential of cells. Strikingly, DDX49 is significantly elevated in diverse cancer types suggesting that the increased abundance of DDX49 has a role in oncogenic transformation of cells. Taken together, this study shows the physiological role of DDX49 in regulating distinct steps of mRNA and pre-ribosomal RNA metabolism and hence translation and potential pathological role of its dysregulation, especially in cancers.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Biosíntesis de Proteínas , ARN Helicasas/metabolismo , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , Adenosina Trifosfato/metabolismo , Carcinogénesis , Línea Celular , Nucléolo Celular/enzimología , Nucléolo Celular/genética , Proliferación Celular , ARN Helicasas DEAD-box/genética , Humanos , Precursores del ARN/biosíntesis , Estabilidad del ARN , Transporte de ARN
7.
Genes Dev ; 26(9): 945-57, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22549957

RESUMEN

Eukaryotes have hundreds of nearly identical 45S ribosomal RNA (rRNA) genes, each encoding the 18S, 5.8S, and 25S catalytic rRNAs. Because cellular demands for ribosomes and protein synthesis vary during development, the number of active rRNA genes is subject to dosage control. In genetic hybrids, one manifestation of dosage control is nucleolar dominance, an epigenetic phenomenon in which the rRNA genes of one progenitor are repressed. For instance, in Arabidopsis suecica, the allotetraploid hybrid of Arabidopsis thaliana and Arabidopsis arenosa, the A. thaliana-derived rRNA genes are selectively silenced. An analogous phenomenon occurs in nonhybrid A. thaliana, in which specific classes of rRNA gene variants are inactivated. An RNA-mediated knockdown screen identified SUVR4 {SUPPRESSOR OF VARIEGATION 3-9 [SU(VAR)3-9]-RELATED 4} as a histone H3 Lys 9 (H3K9) methyltransferase required for nucleolar dominance in A. suecica. H3K9 methyltransferases are also required for variant-specific silencing in A. thaliana, but SUVH5 [SU(VAR)3-9 HOMOLOG 5] and SUVH6, rather than SUVR4, are the key activities in this genomic context. Mutations disrupting the H3K27 methyltransferases ATXR5 or ATXR6 affect which rRNA gene variants are expressed or silenced, and in atxr5 atxr6 double mutants, dominance relationships among variants are reversed relative to wild type. Interestingly, these changes in gene expression are accompanied by changes in the relative abundance of the rRNA gene variants at the DNA level, including overreplication of the normally silenced class and decreased abundance of the normally dominant class. Collectively, our results indicate that histone methylation can affect both the doses of different variants and their differential silencing through the choice mechanisms that achieve dosage control.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Genes de ARNr , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Arabidopsis/genética , Nucléolo Celular/enzimología , Metilación de ADN , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo
8.
Semin Cell Dev Biol ; 63: 154-166, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27867042

RESUMEN

Neurodegeneration is a salient feature of chronic refractory brain disorders like Alzheimer's, Parkinson's, Huntington's, amyotropic lateral sclerosis and acute conditions like cerebral ischemia/reperfusion etc. The pathological protein aggregates, mitochondrial mutations or ischemic insults typifying these disease conditions collude with and intensify existing oxidative stress and attendant mitochondrial dysfunction. Interlocking these mechanisms is poly(ADP-ribose) polymerase (PARP-1) hyperactivation that invokes a distinct form of neuronal cell death viz., 'parthanatos'. PARP-1, a typical 'moonlighting protein' by virtue of its ability to poly(ADP-ribosyl)ate a plethora of cellular proteins exerts diverse functions that impinge significantly on cellular processes. In addition, its interactions with various nuclear proteins like transcription factors and chromatin modifiers elicit varied transcriptional outcomes that wield pathological cellular responses. Further, emerging leitmotifs like mitochondrial and nucleolar PARPs and the novel aspects of gene expression regulation by PARP-1 and poly(ADP-ribosyl)ation can provide a holistic view of PARP-1's influence on cell vitality. In this review, we discuss the pathological underpinnings of PARP-1, with a special emphasis on mitochondrial dysfunction and cell death subroutines, in the realm of neurodegeneration. This would provide a deeper insight into the functions of PARP-1 in neurodegenerative conditions that would enable the development of more effective therapeutic strategies.


Asunto(s)
Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/patología , Neuronas/enzimología , Neuronas/patología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Nucléolo Celular/enzimología , Humanos , Mitocondrias/metabolismo , Mapas de Interacción de Proteínas
9.
Mol Cell ; 43(4): 624-37, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21855801

RESUMEN

The RNA exosome is a conserved degradation machinery, which obtains full activity only when associated with cofactors. The most prominent activator of the yeast nuclear exosome is the RNA helicase Mtr4p, acting in the context of the Trf4p/Air2p/Mtr4p polyadenylation (TRAMP) complex. The existence of a similar activator(s) in humans remains elusive. By establishing an interaction network of the human nuclear exosome, we identify the trimeric Nuclear Exosome Targeting (NEXT) complex, containing hMTR4, the Zn-knuckle protein ZCCHC8, and the putative RNA binding protein RBM7. ZCCHC8 and RBM7 are excluded from nucleoli, and consistently NEXT is specifically required for the exosomal degradation of promoter upstream transcripts (PROMPTs). We also detect putative homolog TRAMP subunits hTRF4-2 (Trf4p) and ZCCHC7 (Air2p) in hRRP6 and hMTR4 precipitates. However, at least ZCCHC7 function is restricted to nucleoli. Our results suggest that human nuclear exosome degradation pathways comprise modules of spatially organized cofactors that diverge from the yeast model.


Asunto(s)
Proteínas Portadoras/fisiología , Modelos Biológicos , Proteínas Nucleares/fisiología , ARN Helicasas/fisiología , Proteínas de Unión al ARN/fisiología , Ribonucleasas/metabolismo , Proteínas Portadoras/análisis , Proteínas Portadoras/metabolismo , Nucléolo Celular/enzimología , Nucléolo Celular/metabolismo , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/metabolismo , ADN Polimerasa Dirigida por ADN/análisis , ADN Polimerasa Dirigida por ADN/metabolismo , Exorribonucleasas/análisis , Exorribonucleasas/metabolismo , Exorribonucleasas/fisiología , Complejo Multienzimático de Ribonucleasas del Exosoma , Humanos , Proteínas Nucleares/análisis , Proteínas Nucleares/metabolismo , ARN Helicasas/análisis , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/análisis , Factores de Transcripción/metabolismo
10.
Nucleic Acids Res ; 45(18): 10672-10692, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-28977560

RESUMEN

An R-loop is a DNA:RNA hybrid formed during transcription when a DNA duplex is invaded by a nascent RNA transcript. R-loops accumulate in nucleoli during RNA polymerase I (RNAP I) transcription. Here, we report that mammalian RNase H1 enriches in nucleoli and co-localizes with R-loops in cultured human cells. Co-migration of RNase H1 and R-loops from nucleoli to perinucleolar ring structures was observed upon inhibition of RNAP I transcription. Treatment with camptothecin which transiently stabilized nucleolar R-loops recruited RNase H1 to the nucleoli. It has been reported that the absence of Topoisomerase and RNase H activity in Escherichia coli or Saccharomyces cerevisiae caused R-loop accumulation along rDNA. We found that the distribution of RNase H1 and Top1 along rDNA coincided at sites where R-loops accumulated in mammalian cells. Loss of either RNase H1 or Top1 caused R-loop accumulation, and the accumulation of R-loops was exacerbated when both proteins were depleted. Importantly, we observed that protein levels of Top1 were negatively correlated with the abundance of RNase H1. We conclude that Top1 and RNase H1 are partially functionally redundant in mammalian cells to suppress RNAP I transcription-associate R-loops.


Asunto(s)
Nucléolo Celular/genética , ADN Ribosómico/química , ARN Polimerasa I/metabolismo , Ribonucleasa H/análisis , Transcripción Genética , Animales , Camptotecina/farmacología , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/enzimología , Daño del ADN , ADN-Topoisomerasas de Tipo I/análisis , ADN Ribosómico/metabolismo , Células HEK293 , Células HeLa , Humanos , Ratones Noqueados , Dominios Proteicos , ARN/química , ARN Polimerasa I/análisis , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Transcripción Genética/efectos de los fármacos
11.
PLoS Genet ; 12(2): e1005844, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26848586

RESUMEN

Plants have evolved a considerable number of intrinsic tolerance strategies to acclimate to ambient temperature increase. However, their molecular mechanisms remain largely obscure. Here we report a DEAD-box RNA helicase, TOGR1 (Thermotolerant Growth Required1), prerequisite for rice growth themotolerance. Regulated by both temperature and the circadian clock, its expression is tightly coupled to daily temperature fluctuations and its helicase activities directly promoted by temperature increase. Located in the nucleolus and associated with the small subunit (SSU) pre-rRNA processome, TOGR1 maintains a normal rRNA homeostasis at high temperature. Natural variation in its transcript level is positively correlated with plant height and its overexpression significantly improves rice growth under hot conditions. Our findings reveal a novel molecular mechanism of RNA helicase as a key chaperone for rRNA homeostasis required for rice thermotolerant growth and provide a potential strategy to breed heat-tolerant crops by modulating the expression of TOGR1 and its orthologs.


Asunto(s)
Adaptación Fisiológica , Nucléolo Celular/enzimología , ARN Helicasas DEAD-box/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Precursores del ARN/metabolismo , Temperatura , Proliferación Celular , Ritmo Circadiano/genética , Mutación/genética , Oryza/citología , Oryza/enzimología , Desarrollo de la Planta , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN/genética , Subunidades Ribosómicas Pequeñas/metabolismo
12.
Cell Biol Int ; 42(11): 1463-1466, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30080298

RESUMEN

Fibrillarin is an essential nucleolar protein that catalyzes the 2'-O-methylation of ribosomal RNAs. Recently, experimental data have begun to accumulate that suggest that fibrillarin can influence various cellular processes, development of pathological processes, and even aging. The exact mechanism by which fibrillarin can influence these processes has not been found, but some experimental data indicate that up- or downregulation of fibrillarin can modify the ribosome structure and, thus, causе an alteration in relative efficiency with which various mRNAs are translated. Here, we discuss recent studies on the potential roles of fibrillarin in the regulation of cell proliferation, cancer progression, and aging.


Asunto(s)
Envejecimiento/metabolismo , Nucléolo Celular/enzimología , Proteínas Cromosómicas no Histona/metabolismo , Metiltransferasas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Proliferación Celular , Humanos
13.
J Cell Biochem ; 118(2): 407-419, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27428351

RESUMEN

Human topoisomerase I is partitioned between the nucleolus and the nucleoplasm in the interphase cells. Under unstressed conditions it is concentrated in the first compartment but nucleolar concentration of the full length protein is lost after inactivation of relaxation activity. Due to the above, subnuclear localization of topoisomerase I is linked with DNA relaxation activity of topoisomerase I. Looking for other factors responsible for subnuclear distribution of topoisomerase I, we studied here localization of the fluorescently tagged fragments and point mutants of topoisomerase I in HeLa cells. We found that two regions of topoisomerase I, the N-terminal and the linker domains, were critical for subnuclear localization of the enzyme. The linker domain and the distal region of the N-terminal domain directed topoisomerase I to the nucleolus, whereas the remaining region of the N-terminal domain was responsible for the nucleoplasmic localization. The effects exhibited by the regions which contributed to nuclear distribution of topoisomerase I were independent of DNA relaxation activity. Localization mutations in both domains complemented one another giving the wild-type phenotype for the double mutant. These results suggest a two-stage model of regulation of partitioning of topoisomerase I between the nucleolus and the nucleoplasm. The first stage is a net of interactions provided by the N-terminal and the linker domains. The other stage, accessible only if the first net is balanced, is driven by DNA relaxation activity. J. Cell. Biochem. 118: 407-419, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Nucléolo Celular/enzimología , ADN-Topoisomerasas de Tipo I/metabolismo , Nucléolo Celular/genética , ADN-Topoisomerasas de Tipo I/genética , Células HeLa , Humanos , Microscopía Fluorescente , Proteínas Recombinantes de Fusión
14.
Mol Cell ; 33(1): 117-23, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19150433

RESUMEN

For a cancer cell to resist treatment with drugs that trap topoisomerases covalently on the DNA, the topoisomerase must be removed. In this study, we provide evidence that the Schizosaccharomyces pombe Rad32(Mre11) nuclease activity is involved in the removal of both Top2 from 5' DNA ends as well as Top1 from 3' ends in vivo. A ctp1(CtIP) deletion is defective for Top2 removal but overproficient for Top1 removal, suggesting that Ctp1(CtIP) plays distinct roles in removing topoisomerases from 5' and 3' DNA ends. Analysis of separation of function mutants suggests that MRN-dependent topoisomerase removal contributes significantly to resistance against topoisomerase-trapping drugs. This study has important implications for our understanding of the role of the MRN complex and CtIP in resistance of cells to a clinically important group of anticancer drugs.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Camptotecina/farmacología , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/enzimología , Nucléolo Celular/efectos de la radiación , Etopósido/análogos & derivados , Etopósido/farmacología , Rayos gamma , Metilmetanosulfonato/farmacología , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica/efectos de los fármacos , Schizosaccharomyces/citología , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/efectos de la radiación
15.
Nucleic Acids Res ; 43(10): 4975-89, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25916852

RESUMEN

Nucleoli are not only organelles that produce ribosomal subunits. They are also overarching sensors of different stress conditions and they control specific nucleolar stress pathways leading to stabilization of p53. During DNA replication, ATR and its activator TopBP1 initiate DNA damage response upon DNA damage and replication stress. We found that a basal level of TopBP1 protein associates with ribosomal DNA repeat. When upregulated, TopBP1 concentrates at the ribosomal chromatin and initiates segregation of nucleolar components--the hallmark of nucleolar stress response. TopBP1-induced nucleolar segregation is coupled to shut-down of ribosomal RNA transcription in an ATR-dependent manner. Nucleolar segregation induced by TopBP1 leads to a moderate elevation of p53 protein levels and to localization of activated p53 to nucleolar caps containing TopBP1, UBF and RNA polymerase I. Our findings demonstrate that TopBP1 and ATR are able to inhibit the synthesis of rRNA and to activate nucleolar stress pathway; yet the p53-mediated cell cycle arrest is thwarted in cells expressing high levels of TopBP1. We suggest that inhibition of rRNA transcription by different stress regulators is a general mechanism for cells to initiate nucleolar stress pathway.


Asunto(s)
Proteínas Portadoras/metabolismo , Nucléolo Celular/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , ARN Ribosómico/biosíntesis , Transcripción Genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/química , Puntos de Control del Ciclo Celular , Línea Celular , Nucléolo Celular/enzimología , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestructura , ADN Ribosómico/química , Proteínas de Unión al ADN/química , Humanos , Proteínas Nucleares/química , Estructura Terciaria de Proteína , ARN Ribosómico/genética , Secuencias Repetitivas de Ácidos Nucleicos
16.
Nucleic Acids Res ; 42(3): 1628-43, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24234436

RESUMEN

The remodeling of chromatin in the nucleolus is important for the control of ribosomal DNA (rDNA) transcription and ribosome biogenesis. Herein, we found that upstream binding factor (UBF) interacts with ESET, a histone H3K9 methyltransferase and is trimethylated at Lys (K) 232/254 by ESET. UBF trimethylation leads to nucleolar chromatin condensation and decreased rDNA transcriptional activity. UBF mutations at K232/254A and K232/254R restored rDNA transcriptional activity in response to ESET. Both ESET-ΔSET mutant and knockdown of ESET by short hairpin RNA reduced trimethylation of UBF and resulted in the restoration of rDNA transcription. Atomic force microscopy confirmed that UBF trimethylated by ESET modulates the plasticity of nucleolar chromatin. We further demonstrated that UBF trimethylation at K232/254 by ESET deregulates rDNA transcription in a cell model of Huntington's disease. Together, our findings show that a novel epigenetic modification of UBF is linked to impaired rDNA transcription and nucleolar chromatin remodeling, which may play key roles in the pathogenesis of neurodegeneration.


Asunto(s)
Nucléolo Celular/enzimología , Nucléolo Celular/genética , ADN Ribosómico/metabolismo , Heterocromatina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Transcripción Genética , Animales , Línea Celular , Humanos , Enfermedad de Huntington/enzimología , Metilación , Ratones , Mutación , Proteínas del Complejo de Iniciación de Transcripción Pol1/química , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética
17.
Nucleic Acids Res ; 42(14): 9005-20, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25034690

RESUMEN

DNA topoisomerase II (topo II) changes DNA topology by cleavage/re-ligation cycle(s) and thus contributes to various nuclear DNA transactions. It is largely unknown how the enzyme is controlled in a nuclear context. Several studies have suggested that its C-terminal domain (CTD), which is dispensable for basal relaxation activity, has some regulatory influence. In this work, we examined the impact of nuclear localization on regulation of activity in nuclei. Specifically, human cells were transfected with wild-type and mutant topo IIß tagged with EGFP. Activity attenuation experiments and nuclear localization data reveal that the endogenous activity of topo IIß is correlated with its subnuclear distribution. The enzyme shuttles between an active form in the nucleoplasm and a quiescent form in the nucleolus in a dynamic equilibrium. Mechanistically, the process involves a tethering event with RNA. Isolated RNA inhibits the catalytic activity of topo IIß in vitro through the interaction with a specific 50-residue region of the CTD (termed the CRD). Taken together, these results suggest that both the subnuclear distribution and activity regulation of topo IIß are mediated by the interplay between cellular RNA and the CRD.


Asunto(s)
Núcleo Celular/enzimología , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN/metabolismo , Animales , Biocatálisis , Línea Celular , Nucléolo Celular/enzimología , ADN-Topoisomerasas de Tipo II/química , ADN Superhelicoidal/metabolismo , Proteínas de Unión al ADN/química , Humanos , Interfase , Ratones , Estructura Terciaria de Proteína , Ratas
18.
J Cell Sci ; 126(Pt 2): 437-44, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23203802

RESUMEN

Fundamental to the life and destiny of every cell is the regulation of protein synthesis through ribosome biogenesis, which begins in the nucleolus with the production of ribosomal RNA (rRNA). Nucleolar organization is a highly dynamic and tightly regulated process; the structural factors that direct nucleolar assembly and disassembly are just as important in controlling rRNA synthesis as are the catalytic activities that synthesize rRNA. Here, we report that a signaling enzyme, inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5K) is also a structural component in the nucleolus. We demonstrate that IP5K has functionally significant interactions with three proteins that regulate rRNA synthesis: protein kinase CK2, TCOF1 and upstream-binding-factor (UBF). Through molecular modeling and mutagenic studies, we identified an Arg-Lys-Lys tripeptide located on the surface of IP5K that mediates its association with UBF. Nucleolar IP5K spatial dynamics were sensitive to experimental procedures (serum starvation or addition of actinomycin D) that inhibited rRNA production. We show that IP5K makes stoichiometrically sensitive contributions to the architecture of the nucleoli in intact cells, thereby influencing the degree of rRNA synthesis. Our study adds significantly to the biological significance of IP5K; previously, it was the kinase activity of this protein that had attracted attention. Our demonstration that IP5K 'moonlights' as a molecular scaffold offers an unexpected new example of how the biological sophistication of higher organisms can arise from gene products acquiring multiple functions, rather than by an increase in gene number.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , ARN Ribosómico/biosíntesis , Secuencia de Aminoácidos , Línea Celular Tumoral , Nucléolo Celular/enzimología , Nucléolo Celular/metabolismo , Células HeLa , Humanos , Inositol/genética , Inositol/metabolismo , Células MCF-7 , Microscopía Fluorescente , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
19.
Nucleic Acids Res ; 41(8): 4709-23, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23482395

RESUMEN

Defects in ribosome biogenesis trigger stress response pathways, which perturb cell proliferation and differentiation in several genetic diseases. In Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia, mutations in ribosomal protein genes often interfere with the processing of the internal transcribed spacer 1 (ITS1), the mechanism of which remains elusive in human cells. Using loss-of-function experiments and extensive RNA analysis, we have defined the precise position of the endonucleolytic cleavage E in the ITS1, which generates the 18S-E intermediate, the last precursor to the 18S rRNA. Unexpectedly, this cleavage is followed by 3'-5' exonucleolytic trimming of the 18S-E precursor during nuclear export of the pre-40S particle, which sets a new mechanism for 18S rRNA formation clearly different from that established in yeast. In addition, cleavage at site E is also followed by 5'-3' exonucleolytic trimming of the ITS1 by exonuclease XRN2. Perturbation of this step on knockdown of the large subunit ribosomal protein RPL26, which was recently associated to DBA, reveals the putative role of a highly conserved cis-acting sequence in ITS1 processing. These data cast new light on the original mechanism of ITS1 elimination in human cells and provide a mechanistic framework to further study the interplay of DBA-linked ribosomal proteins in this process.


Asunto(s)
Nucléolo Celular/enzimología , Citoplasma/enzimología , Procesamiento Postranscripcional del ARN , ARN Ribosómico 18S/metabolismo , Secuencia de Bases , Secuencia Conservada , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Células HeLa , Humanos , Precursores del ARN/metabolismo , ARN Ribosómico 18S/biosíntesis , ARN Ribosómico 18S/química , Proteínas Ribosómicas/metabolismo
20.
PLoS Genet ; 8(1): e1002442, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22242017

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1), a nuclear protein, utilizes NAD to synthesize poly(AD-Pribose) (pADPr), resulting in both automodification and the modification of acceptor proteins. Substantial amounts of PARP1 and pADPr (up to 50%) are localized to the nucleolus, a subnuclear organelle known as a region for ribosome biogenesis and maturation. At present, the functional significance of PARP1 protein inside the nucleolus remains unclear. Using PARP1 mutants, we investigated the function of PARP1, pADPr, and PARP1-interacting proteins in the maintenance of nucleolus structure and functions. Our analysis shows that disruption of PARP1 enzymatic activity caused nucleolar disintegration and aberrant localization of nucleolar-specific proteins. Additionally, PARP1 mutants have increased accumulation of rRNA intermediates and a decrease in ribosome levels. Together, our data suggests that PARP1 enzymatic activity is required for targeting nucleolar proteins to the proximity of precursor rRNA; hence, PARP1 controls precursor rRNA processing, post-transcriptional modification, and pre-ribosome assembly. Based on these findings, we propose a model that explains how PARP1 activity impacts nucleolar functions and, consequently, ribosomal biogenesis.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , ARN Ribosómico/genética , Ribosomas/metabolismo , Animales , Animales Modificados Genéticamente , Nucléolo Celular/enzimología , Nucléolo Celular/ultraestructura , Regulación de la Expresión Génica , Hibridación Fluorescente in Situ , Mutación , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Interferencia de ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Ribosomas/genética , Ribosomas/ultraestructura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda