Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Cell ; 183(3): 594-604.e14, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33125889

RESUMEN

Animals display wide-ranging evolutionary adaptations based on their ecological niche. Octopuses explore the seafloor with their flexible arms using a specialized "taste by touch" system to locally sense and respond to prey-derived chemicals and movement. How the peripherally distributed octopus nervous system mediates relatively autonomous arm behavior is unknown. Here, we report that octopus arms use a family of cephalopod-specific chemotactile receptors (CRs) to detect poorly soluble natural products, thereby defining a form of contact-dependent, aquatic chemosensation. CRs form discrete ion channel complexes that mediate the detection of diverse stimuli and transduction of specific ionic signals. Furthermore, distinct chemo- and mechanosensory cells exhibit specific receptor expression and electrical activities to support peripheral information coding and complex chemotactile behaviors. These findings demonstrate that the peripherally distributed octopus nervous system is a key site for signal processing and highlight how molecular and anatomical features synergistically evolve to suit an animal's environmental context.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Octopodiformes/fisiología , Tacto/fisiología , Acetilcolina/farmacología , Secuencia de Aminoácidos , Animales , Conducta Animal , Femenino , Células HEK293 , Humanos , Octopodiformes/anatomía & histología , Octopodiformes/genética , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Receptores Colinérgicos/metabolismo , Transducción de Señal
3.
Nature ; 546(7658): 396-400, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28617467

RESUMEN

Adhesion strategies that rely on mechanical interlocking or molecular attractions between surfaces can suffer when coming into contact with liquids. Thus far, artificial wet and dry adhesives have included hierarchical mushroom-shaped or porous structures that allow suction or capillarity, supramolecular structures comprising nanoparticles, and chemistry-based attractants that use various protein polyelectrolytes. However, it is challenging to develop adhesives that are simple to make and also perform well-and repeatedly-under both wet and dry conditions, while avoiding non-chemical contamination on the adhered surfaces. Here we present an artificial, biologically inspired, reversible wet/dry adhesion system that is based on the dome-like protuberances found in the suction cups of octopi. To mimic the architecture of these protuberances, we use a simple, solution-based, air-trap technique that involves fabricating a patterned structure as a polymeric master, and using it to produce a reversed architecture, without any sophisticated chemical syntheses or surface modifications. The micrometre-scale domes in our artificial adhesive enhance the suction stress. This octopus-inspired system exhibits strong, reversible, highly repeatable adhesion to silicon wafers, glass, and rough skin surfaces under various conditions (dry, moist, under water and under oil). To demonstrate a potential application, we also used our adhesive to transport a large silicon wafer in air and under water without any resulting surface contamination.


Asunto(s)
Adhesividad , Adhesivos/química , Materiales Biomiméticos/química , Octopodiformes/anatomía & histología , Polímeros/química , Parche Transdérmico , Humectabilidad , Animales , Biomimética , Piel , Porcinos , Agua/química
4.
Nature ; 524(7564): 220-4, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26268193

RESUMEN

Coleoid cephalopods (octopus, squid and cuttlefish) are active, resourceful predators with a rich behavioural repertoire. They have the largest nervous systems among the invertebrates and present other striking morphological innovations including camera-like eyes, prehensile arms, a highly derived early embryogenesis and a remarkably sophisticated adaptive colouration system. To investigate the molecular bases of cephalopod brain and body innovations, we sequenced the genome and multiple transcriptomes of the California two-spot octopus, Octopus bimaculoides. We found no evidence for hypothesized whole-genome duplications in the octopus lineage. The core developmental and neuronal gene repertoire of the octopus is broadly similar to that found across invertebrate bilaterians, except for massive expansions in two gene families previously thought to be uniquely enlarged in vertebrates: the protocadherins, which regulate neuronal development, and the C2H2 superfamily of zinc-finger transcription factors. Extensive messenger RNA editing generates transcript and protein diversity in genes involved in neural excitability, as previously described, as well as in genes participating in a broad range of other cellular functions. We identified hundreds of cephalopod-specific genes, many of which showed elevated expression levels in such specialized structures as the skin, the suckers and the nervous system. Finally, we found evidence for large-scale genomic rearrangements that are closely associated with transposable element expansions. Our analysis suggests that substantial expansion of a handful of gene families, along with extensive remodelling of genome linkage and repetitive content, played a critical role in the evolution of cephalopod morphological innovations, including their large and complex nervous systems.


Asunto(s)
Estructuras Animales/anatomía & histología , Estructuras Animales/metabolismo , Evolución Molecular , Genoma/genética , Sistema Nervioso/anatomía & histología , Octopodiformes/anatomía & histología , Octopodiformes/genética , Animales , Cadherinas/genética , Variaciones en el Número de Copia de ADN/genética , Elementos Transponibles de ADN/genética , Decapodiformes/genética , Genómica , Canales Iónicos/genética , Canales Iónicos/metabolismo , Sistema Nervioso/metabolismo , Octopodiformes/clasificación , Especificidad de Órganos , Filogenia , Edición de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad de la Especie , Factores de Transcripción/genética , Dedos de Zinc
5.
Vet Ophthalmol ; 24(3): 218-228, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33596337

RESUMEN

PURPOSE: Review octopus ocular anatomy and describe the histopathologic findings in three octopuses diagnosed with phakitis and retinitis. ANIMALS: Two common octopuses (Octopus vulgaris) and one giant Pacific octopus (Enteroctopus dofleini) with a history of ophthalmic disease. METHODS: A literature search was performed for the ocular anatomy section. Both eyes from all three octopuses, and two control eyes, were submitted for histopathologic evaluation. Hematoxylin and eosin stain was used for standard histopathologic evaluation; GMS stain was used to screen for fungi, gram stain for bacteria; and Fite's acid fast stain for acid fast bacteria. RESULTS: Anatomically, the anterior chamber of the octopus has direct contact with ambient water due to an opening in the dorsal aspect of a pseudocornea. The octopus lens is divided into anterior and posterior segments. The anterior half is exposed to the environment through the opening into the anterior chamber. Neither part of the lens has a lens capsule. The retina is everted, unlike the inverted vertebrate retina, and consists of just two layers. Histopathology revealed inflammatory phakitis and retinitis of varying severity in all six eyes of the study animals. No intraocular infectious organisms were recognized but one common octopus eye had clusters of coccidian parasites, identified as Aggregata sp., in extraocular tissues and blood vessels. CONCLUSION: We describe inflammatory phakitis and retinitis in two species of octopuses. The underlying cause for the severe intraocular response may be direct intraocular infection, water quality, an ocular manifestation of a systemic disease, or natural senescence.


Asunto(s)
Octopodiformes/anatomía & histología , Retinitis/veterinaria , Animales , Técnicas de Diagnóstico Oftalmológico/veterinaria , Femenino , Masculino , Retinitis/diagnóstico
6.
J Exp Biol ; 222(Pt 19)2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31527179

RESUMEN

Spontaneous nerve regeneration in cephalopod molluscs occurs in a relative short time after injury, achieving functional recovery of lost capacity. In particular, transection of the pallial nerve in the common octopus (Octopus vulgaris) determines the loss and subsequent restoration of two functions fundamental for survival, i.e. breathing and skin patterning, the latter involved in communication between animals and concealment. The phenomena occurring after lesion have been investigated in a series of previous studies, but a complete analysis of the changes taking place at the level of the axons and the effects on the animals' appearance during the whole regenerative process is still missing. Our goal was to determine the course of events following injury, from impairment to full recovery. Through imaging of the traced damaged nerves, we were able to characterize the pathways followed by fibres during regeneration and end-target re-innervation, while electrophysiology and behavioural observations highlighted the regaining of functional connections between the central brain and periphery, using the contralateral nerve in the same animal as an internal control. The final architecture of a fully regenerated pallial nerve does not exactly mirror the original structure; however, functionality returns to match the phenotype of an intact octopus with no observable impact on the behaviour of the animal. Our findings provide new important scenarios for the study of regeneration in cephalopods and highlight the octopus pallial nerve as a valuable 'model' among invertebrates.


Asunto(s)
Regeneración Nerviosa/fisiología , Tejido Nervioso/lesiones , Tejido Nervioso/fisiopatología , Octopodiformes/fisiología , Recuperación de la Función/fisiología , Animales , Axones/fisiología , Conducta Animal , Fenómenos Electrofisiológicos , Femenino , Masculino , Octopodiformes/anatomía & histología , Respiración , Piel/inervación
9.
Bioinspir Biomim ; 19(3)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38467068

RESUMEN

Bioinspired and biomimetic soft grippers are rapidly growing fields. They represent an advancement in soft robotics as they emulate the adaptability and flexibility of biological end effectors. A prominent example of a gripping mechanism found in nature is the octopus tentacle, enabling the animal to attach to rough and irregular surfaces. Inspired by the structure and morphology of the tentacles, this study introduces a novel design, fabrication, and characterization method of dielectric elastomer suction cups. To grasp objects, the developed suction cups perform out-of-plane deflections as the suction mechanism. Their attachment mechanism resembles that of their biological counterparts, as they do not require a pre-stretch over a rigid frame or any external hydraulic or pneumatic support to form and hold the dome structure of the suction cups. The realized artificial suction cups demonstrate the capability of generating a negative pressure up to 1.3 kPa in air and grasping and lifting objects with a maximum 58 g weight under an actuation voltage of 6 kV. They also have sensing capabilities to determine whether the grasping was successful without the need of lifting the objects.


Asunto(s)
Octopodiformes , Robótica , Animales , Biomimética/métodos , Elastómeros , Octopodiformes/anatomía & histología , Robótica/métodos
10.
Brain Behav Evol ; 82(1): 19-30, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23979453

RESUMEN

Cephalopods such as the octopus show the most advanced behavior among invertebrates, which they accomplish with an exceptionally flexible body plan. In this review I propose that the embodied organization approach, developed by roboticists to design efficient autonomous robots, is useful for understanding the evolution and development of the efficient adaptive interaction of animals with their environment, using the octopus as the leading example. The embodied organization approach explains adaptive behavior as emerging from the continuous dynamical and reciprocal physical and informational interactions between four elements: the controller, the mechanical and the sensory systems and the environment. In contrast to hierarchical organization, in embodied organization, self-organization processes can take part in the emergence of the adaptive properties. I first discuss how the embodiment concept explains covariation of body form, nervous system organization, and level of behavioral complexity using the Mollusca as an example. This is an ideal phylum to test such a qualitative correlation between body/brain/behavior, because they show the greatest variations of body plan within a single phylum. In some cases the covariation of nervous system and body structure seems to arise independently of close phylogenetic relationships. Next, I dwell on the octopus as an ideal model to test the embodiment concept within a single biological system. Here, the unusual body morphology of the octopus exposes the uniqueness of the four components comprising the octopus' embodiment. Considering together the results from behavioral, physiological, anatomical, and motor control research suggests that these four elements mutually influence each other. It is this mutual interactions and self-organization which have led to their unique evolution and development to create the unique and highly efficient octopus embodiment.


Asunto(s)
Evolución Biológica , Moluscos/anatomía & histología , Moluscos/fisiología , Sistema Nervioso/anatomía & histología , Octopodiformes/anatomía & histología , Octopodiformes/fisiología , Animales , Conducta Animal
11.
J Invertebr Pathol ; 114(3): 222-5, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23999242

RESUMEN

The prevalence of coccidian parasites in three Octopus tehuelchus populations from San Matías Gulf (Patagonia, Argentina) is compared. The prevalence was similar between sexes, but varied between seasons (being highest during cold months) and sites. Islote Lobos had the highest prevalence (42.7-100%) followed by San Antonio Bay (0-66%) and El Fuerte (0-24.5%). Octopuses under 27 mm of dorsal mantle length showed a low prevalence (less than 50%), which increased with size. We hypothesize that the high prevalence of parasites, which affect the three populations differentially, could account for the observed variability in life-span and growth, size-frequency distributions, reproduction and densities of O. tehuelchus populations.


Asunto(s)
Octopodiformes/parasitología , Animales , Tamaño Corporal , Femenino , Masculino , Octopodiformes/anatomía & histología , Octopodiformes/fisiología , Carga de Parásitos/veterinaria , Prevalencia , Estaciones del Año , Factores Sexuales
12.
Brain Struct Funct ; 228(5): 1283-1294, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37138199

RESUMEN

Coleoid cephalopods have a high intelligence, complex structures, and large brain. The cephalopod brain is divided into supraesophageal mass, subesophageal mass and optic lobe. Although much is known about the structural organization and connections of various lobes of octopus brain, there are few studies on the brain of cephalopod at the molecular level. In this study, we demonstrated the structure of an adult Octopus minor brain by histomorphological analyses. Through visualization of neuronal and proliferation markers, we found that adult neurogenesis occurred in the vL and posterior svL. We also obtained specific 1015 genes by transcriptome of O. minor brain and selected OLFM3, NPY, GnRH, and GDF8 genes. The expression of genes in the central brain showed the possibility of using NPY and GDF8 as molecular marker of compartmentation in the central brain. This study will provide useful information for establishing a molecular atlas of cephalopod brain.


Asunto(s)
Octopodiformes , Animales , Octopodiformes/genética , Octopodiformes/anatomía & histología , Octopodiformes/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma
13.
Proc Biol Sci ; 279(1747): 4559-67, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-23015627

RESUMEN

Vampire squid (Vampyroteuthis infernalis) are considered phylogenetic relics with cephalopod features of both octopods and squids. They lack feeding tentacles, but in addition to their eight arms, they have two retractile filaments, the exact functions of which have puzzled scientists for years. We present the results of investigations on the feeding ecology and behaviour of Vampyroteuthis, which include extensive in situ, deep-sea video recordings from MBARI's remotely operated vehicles (ROVs), laboratory feeding experiments, diet studies and morphological examinations of the retractile filaments, the arm suckers and cirri. Vampire squid were found to feed on detrital matter of various sizes, from small particles to larger marine aggregates. Ingested items included the remains of gelatinous zooplankton, discarded larvacean houses, crustacean remains, diatoms and faecal pellets. Both ROV observations and laboratory experiments led to the conclusion that vampire squid use their retractile filaments for the capture of food, supporting the hypothesis that the filaments are homologous to cephalopod arms. Vampyroteuthis' feeding behaviour is unlike any other cephalopod, and reveals a unique adaptation that allows these animals to spend most of their life at depths where oxygen concentrations are very low, but where predators are few and typical cephalopod food is scarce.


Asunto(s)
Conducta Alimentaria , Octopodiformes/fisiología , Adaptación Fisiológica , Animales , Octopodiformes/anatomía & histología , Octopodiformes/metabolismo , Oxígeno/metabolismo
14.
Curr Biol ; 32(1): 97-110.e4, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34798049

RESUMEN

Octopods are masters of camouflage and solve complex tasks, and their cognitive ability is said to approach that of some small mammals. Despite intense interest and some research progress, much of our knowledge of octopus neuroanatomy and its links to behavior and ecology comes from one coastal species, the European common octopus, Octopus vulgaris. Octopod species are found in habitats including complex coral reefs and the relatively featureless mid-water. There they encounter different selection pressures, may be nocturnal or diurnal, and are mostly solitary or partially social. How these different ecologies and behavioral differences influence the octopus central nervous system (CNS) remains largely unknown. Here we present a phylogenetically informed comparison between diurnal and nocturnal coastal and a deep-sea species using brain imaging techniques. This study shows that characteristic neuroanatomical changes are linked to their habits and habitats. Enlargement and division of the optic lobe as well as structural foldings and complexity in the underlying CNS are linked to behavioral adaptation (diurnal versus nocturnal; social versus solitary) and ecological niche (reef versus deep sea), but phylogeny may play a part also. The difference between solitary and social life is mirrored within the brain including the formation of multiple compartments (gyri) in the vertical lobe, which is likened to the vertebrate cortex. These findings continue the case for convergence between cephalopod and vertebrate brain structure and function. Notably, within the current push toward comparisons of cognitive abilities, often with unashamed anthropomorphism at their root, these findings provide a firm grounding from which to work.


Asunto(s)
Octopodiformes , Animales , Encéfalo/anatomía & histología , Cognición , Ecosistema , Mamíferos , Octopodiformes/anatomía & histología , Percepción Visual
15.
Artículo en Inglés | MEDLINE | ID: mdl-21465137

RESUMEN

Information regarding melatonin production in molluscs is very limited. In this study the presence and daily fluctuations of melatonin levels were investigated in hemolymph, retina and nervous system-related structures in the cephalopod Octopus vulgaris. Adult animals were maintained in captivity under natural photoperiod and killed at different times in a regular daily cycle. Levels of melatonin, serotonin (5-HT) and its acid metabolite (5-hydroxyindole acetic acid, 5-HIAA) in the hemolymph, retina, optic lobe, and cerebral ganglion were assayed by HPLC. Melatonin content fluctuated rhythmically in the retina and hemolymph, peaking at night. In the retina, but not in the other neural tissues, the rhythm was opposite to that of 5-HT, which displayed basal levels at night. Also, 5-HIAA levels in the retina were higher during the night, supporting that rhythmic melatonin production could be linked to diurnal changes in 5-HT degradation. The high levels of melatonin found in the retina point to it as the major source of melatonin in octopus; in addition, a large variation of melatonin content was found in the optic lobe with maximal values at night. All these data suggest that melatonin might play a role in the transduction of the light-dark cycle information for adjustment of rhythmic physiological events in cephalopods.


Asunto(s)
Ritmo Circadiano/fisiología , Melatonina/metabolismo , Octopodiformes/metabolismo , Serotonina/metabolismo , Análisis de Varianza , Animales , Conducta Animal , Cromatografía Líquida de Alta Presión/métodos , Ácido Hidroxiindolacético/metabolismo , Octopodiformes/anatomía & histología , Distribución Tisular
16.
J Exp Biol ; 214(Pt 16): 2799-807, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21795579

RESUMEN

Many aspects of octopus growth dynamics are poorly understood, particularly in relation to sub-adult or adult growth, muscle fibre dynamics and repro-somatic investment. The growth of 5 month old Octopus pallidus cultured in the laboratory was investigated under three temperature regimes over a 12 week period: seasonally increasing temperatures (14-18°C); seasonally decreasing temperatures (18-14°C); and a constant temperature mid-way between seasonal peaks (16°C). Differences in somatic growth at the whole-animal level, muscle tissue structure and rate of gonad development were investigated. Continuous exponential growth was observed, both at a group and at an individual level, and there was no detectable effect of temperature on whole-animal growth rate. Juvenile growth rate (from 1 to 156 days) was also monitored prior to the controlled experiment; exponential growth was observed, but at a significantly faster rate than in the older experimental animals, suggesting that O. pallidus exhibit a double-exponential two-phase growth pattern. There was considerable variability in size-at-age even between individuals growing under identical thermal regimes. Animals exposed to seasonally decreasing temperatures exhibited a higher rate of gonad development compared with animals exposed to increasing temperatures; however, this did not coincide with a detectable decline in somatic growth rate or mantle condition. The ongoing production of new mitochondria-poor and mitochondria-rich muscle fibres (hyperplasia) was observed, indicated by a decreased or stable mean muscle fibre diameter concurrent with an increase in whole-body size. Animals from both seasonal temperature regimes demonstrated higher rates of new mitochondria-rich fibre generation relative to those from the constant temperature regime, but this difference was not reflected in a difference in growth rate at the whole-body level. This is the first study to record ongoing hyperplasia in the muscle tissue of an octopus species, and provides further insight into the complex growth dynamics of octopus.


Asunto(s)
Modelos Animales , Octopodiformes/crecimiento & desarrollo , Estructuras Animales/anatomía & histología , Animales , Femenino , Masculino , Músculos/anatomía & histología , Octopodiformes/anatomía & histología , Temperatura
17.
J Exp Biol ; 214(Pt 22): 3727-31, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22031736

RESUMEN

Octopus arms are extremely dexterous structures. The special arrangements of the muscle fibers and nerve cord allow a rich variety of complex and fine movements under neural control. Historically, the arm structure has been investigated using traditional comparative morphological ex vivo analysis. Here, we employed ultrasound imaging, for the first time, to explore in vivo the arms of the cephalopod mollusc Octopus vulgaris. Sonographic examination (linear transducer, 18 MHz) was carried out in anesthetized animals along the three anatomical planes: transverse, sagittal and horizontal. Images of the arm were comparable to the corresponding histological sections. We were able, in a non-invasive way, to measure the dimensions of the arm and its internal structures such as muscle bundles and neural components. In addition, we evaluated echo intensity signals as an expression of the difference in the muscular organization of the tissues examined (i.e. transverse versus longitudinal muscles), finding different reflectivity based on different arrangements of fibers and their intimate relationship with other tissues. In contrast to classical preparative procedures, ultrasound imaging can provide rapid, destruction-free access to morphological data from numerous specimens, thus extending the range of techniques available for comparative studies of invertebrate morphology.


Asunto(s)
Octopodiformes/anatomía & histología , Extremidad Superior/diagnóstico por imagen , Animales , Músculos/anatomía & histología , Músculos/diagnóstico por imagen , Ultrasonografía , Extremidad Superior/anatomía & histología
18.
Nature ; 433(7026): 595-6, 2005 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-15703737

RESUMEN

Animals with rigid skeletons can rely on several mechanisms to simplify motor control--for example, they have skeletal joints that reduce the number of variables and degrees of freedom that need to be controlled. Here we show that when the octopus uses one of its long and highly flexible arms to transfer an object from one place to another, it employs a vertebrate-like strategy, temporarily reconfiguring its arm into a stiffened, articulated, quasi-jointed structure. This indicates that an articulated limb may provide an optimal solution for achieving precise, point-to-point movements.


Asunto(s)
Extremidades/fisiología , Movimiento/fisiología , Octopodiformes/fisiología , Desempeño Psicomotor/fisiología , Animales , Fenómenos Biomecánicos , Extremidades/anatomía & histología , Conducta Alimentaria/fisiología , Alimentos , Articulaciones/anatomía & histología , Articulaciones/fisiología , Octopodiformes/anatomía & histología
19.
Zoology (Jena) ; 147: 125940, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34198204

RESUMEN

Octopuses have eight radially symmetrical arms that surround the base of a bilaterally symmetrical body. These numerous appendages, which explore the environment, handle food, and defend the animal against predators, are highly susceptible to truncation or loss. Here, we used scaling relationships specific to the arms of three sympatric octopus species of the genus Octopus, to calculate the proportion of arm truncation. We then compared the frequency and proportion of arm losses between different body locations. Truncated arms were found in 59.8 % of specimens examined, with individuals bearing one to as many as seven injured arms. We found a significant left side bias for greater proportion of arm truncation for all species and sexes except in O. bimaculatus males. We also found that sister species O. bimaculatus and O. bimaculoides had a greater proportion of their anterior arms (pairs 1 and 2) truncated, while in O. rubescens, posterior arms (pairs 3 and 4) were more truncated. The mean percent of arm that was truncated was 28.1 % overall but varied between species and by sex and was highest in O. rubescens females (56 %). The arms of O. rubescens also exhibited the steepest scaling patterns, and showed a positive correlation between body size and number of truncated arms. Overall, we show that arm injuries in our sampling of three intertidal species are frequent and asymmetrical, and that when injured, octopus on average lose a considerable proportion of their arm. Through quantifying the variation in arm truncation, this study provides a new foundation to explore behavioral compensation for arm loss in cephalopods.


Asunto(s)
Extremidades/lesiones , Octopodiformes/anatomía & histología , Animales , Femenino , Masculino , Octopodiformes/clasificación , Especificidad de la Especie
20.
Elife ; 102021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34425939

RESUMEN

Cephalopods have evolved nervous systems that parallel the complexity of mammalian brains in terms of neuronal numbers and richness in behavioral output. How the cephalopod brain develops has only been described at the morphological level, and it remains unclear where the progenitor cells are located and what molecular factors drive neurogenesis. Using histological techniques, we located dividing cells, neural progenitors and postmitotic neurons in Octopus vulgaris embryos. Our results indicate that an important pool of progenitors, expressing the conserved bHLH transcription factors achaete-scute or neurogenin, is located outside the central brain cords in the lateral lips adjacent to the eyes, suggesting that newly formed neurons migrate into the cords. Lineage-tracing experiments then showed that progenitors, depending on their location in the lateral lips, generate neurons for the different lobes, similar to the squid Doryteuthis pealeii. The finding that octopus newborn neurons migrate over long distances is reminiscent of vertebrate neurogenesis and suggests it might be a fundamental strategy for large brain development.


Octopuses have evolved incredibly large and complex nervous systems that allow them to perform impressive behaviors, like plan ahead, navigate and solve puzzles. The nervous system of the common octopus (also known as Octopus vulgaris) contains over half a billion nerves cells called neurons, similar to the number found in small primates. Two thirds of these cells reside in the octopuses' arms, while the rest make-up a central brain that sits between their eyes. Very little is known about how this central brain forms in the embryo, including where the cells originate and which molecular factors drive their maturation in to adult cells. To help answer these questions, Deryckere et al. studied the brain of Octopus vulgaris at different stages of early development using various cell staining and imaging techniques. The experiments identified an important pool of dividing cells which sit in an area outside the central brain called the 'lateral lips'. In these cells, genes known to play a role in neural development in other animals are active, indicating that the cells had not reached their final, mature state. In contrast, the central brain did not seem to contain any of these immature cells at the point when it was growing the most. To investigate this further, Deryckere et al. used fluorescent markers to track the progeny of the dividing cells during development. This revealed that cells in the lateral lips take on a specific neuronal fate before migrating to their target region in the central brain. Newly matured neurons have also been shown to travel large distances in the embryos of vertebrates, suggesting that this mechanism may be a common strategy for building large, complex brains. Although the nervous system of the common octopus is comparable to mammals, they evolved from a very distant branch of the tree of life; indeed, their last common ancestor was a worm-like animal that lived about 600 million years ago. Studying the brain of the common octopus, as done here, could therefore provide new insights into how complex nervous systems, including our own, evolved over time.


Asunto(s)
Migración Animal , Encéfalo/crecimiento & desarrollo , Movimiento Celular , Células-Madre Neurales/fisiología , Neuronas/fisiología , Octopodiformes/anatomía & histología , Octopodiformes/fisiología , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Encéfalo/citología , Encéfalo/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda