Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Nature ; 631(8019): 170-178, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768632

RESUMEN

Epigenetic reprogramming resets parental epigenetic memories and differentiates primordial germ cells (PGCs) into mitotic pro-spermatogonia or oogonia. This process ensures sexually dimorphic germ cell development for totipotency1. In vitro reconstitution of epigenetic reprogramming in humans remains a fundamental challenge. Here we establish a strategy for inducing epigenetic reprogramming and differentiation of pluripotent stem-cell-derived human PGC-like cells (hPGCLCs) into mitotic pro-spermatogonia or oogonia, coupled with their extensive amplification (about >1010-fold). Bone morphogenetic protein (BMP) signalling is a key driver of these processes. BMP-driven hPGCLC differentiation involves attenuation of the MAPK (ERK) pathway and both de novo and maintenance DNA methyltransferase activities, which probably promote replication-coupled, passive DNA demethylation. hPGCLCs deficient in TET1, an active DNA demethylase abundant in human germ cells2,3, differentiate into extraembryonic cells, including amnion, with de-repression of key genes that bear bivalent promoters. These cells fail to fully activate genes vital for spermatogenesis and oogenesis, and their promoters remain methylated. Our study provides a framework for epigenetic reprogramming in humans and an important advance in human biology. Through the generation of abundant mitotic pro-spermatogonia and oogonia-like cells, our results also represent a milestone for human in vitro gametogenesis research and its potential translation into reproductive medicine.


Asunto(s)
Reprogramación Celular , Epigénesis Genética , Células Germinativas , Técnicas In Vitro , Femenino , Humanos , Masculino , Amnios/citología , Proteínas Morfogenéticas Óseas/metabolismo , Reprogramación Celular/genética , Metilación de ADN/genética , Células Germinativas/metabolismo , Células Germinativas/citología , Sistema de Señalización de MAP Quinasas , Mitosis/genética , Oxigenasas de Función Mixta/deficiencia , Oogénesis/genética , Oogonios/citología , Oogonios/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Regiones Promotoras Genéticas/genética , Espermatogénesis/genética , Espermatogonias/citología , Espermatogonias/metabolismo , Regulación del Desarrollo de la Expresión Génica
2.
Development ; 149(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34878097

RESUMEN

Gamete formation from germline stem cells (GSCs) is essential for sexual reproduction. However, the regulation of GSC differentiation is incompletely understood. Set2, which deposits H3K36me3 modifications, is required for GSC differentiation during Drosophila oogenesis. We discovered that the H3K36me3 reader Male-specific lethal 3 (Msl3) and histone acetyltransferase complex Ada2a-containing (ATAC) cooperate with Set2 to regulate GSC differentiation in female Drosophila. Msl3, acting independently of the rest of the male-specific lethal complex, promotes transcription of genes, including a germline-enriched ribosomal protein S19 paralog RpS19b. RpS19b upregulation is required for translation of RNA-binding Fox protein 1 (Rbfox1), a known meiotic cell cycle entry factor. Thus, Msl3 regulates GSC differentiation by modulating translation of a key factor that promotes transition to an oocyte fate.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Oogénesis , Oogonios/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Meiosis , Proteínas Nucleares/genética , Oogonios/citología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Factores de Transcripción/genética
3.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34495316

RESUMEN

Emerging evidence suggests that ribosome heterogeneity may have important functional consequences in the translation of specific mRNAs within different cell types and under various conditions. Ribosome heterogeneity comes in many forms, including post-translational modification of ribosome proteins (RPs), absence of specific RPs and inclusion of different RP paralogs. The Drosophila genome encodes two RpS5 paralogs: RpS5a and RpS5b. While RpS5a is ubiquitously expressed, RpS5b exhibits enriched expression in the reproductive system. Deletion of RpS5b results in female sterility marked by developmental arrest of egg chambers at stages 7-8, disruption of vitellogenesis and posterior follicle cell (PFC) hyperplasia. While transgenic rescue experiments suggest functional redundancy between RpS5a and RpS5b, molecular, biochemical and ribo-seq experiments indicate that RpS5b mutants display increased rRNA transcription and RP production, accompanied by increased protein synthesis. Loss of RpS5b results in microtubule-based defects and in mislocalization of Delta and Mindbomb1, leading to failure of Notch pathway activation in PFCs. Together, our results indicate that germ cell-specific expression of RpS5b promotes proper egg chamber development by ensuring the homeostasis of functional ribosomes.


Asunto(s)
Infertilidad/genética , Oogénesis , Oogonios/metabolismo , Folículo Ovárico/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Oogonios/citología , Folículo Ovárico/citología , Transporte de Proteínas , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Receptores Notch/metabolismo , Transducción de Señal
4.
Reproduction ; 168(1)2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38670156

RESUMEN

In brief: Oogonial stem cells in the adult ovary can generate oocytes, but they are usually quiescent. TGFB1 is key in stimulating the proliferation of OSC, thereby ensuring the sustained reproductive potential in poultry species. Abstract: Oogonial stem cells (OSCs) are a type of germ stem cell present in the adult ovary. They have the ability to self-renew through mitosis and differentiate into oocytes through meiosis. We have previously identified a population of OSCs in the chicken ovary, but the underlying mechanisms controlling their activation and proliferation were unclear. In this study, we observed that OSCs showed robust proliferation when cultured on a layer of chicken embryo fibroblasts (CEF), suggesting that CEF may secrete certain crucial factors that activate OSC proliferation. We further detected TGFB1 as a potent signaling molecule to promote OSC proliferation. Additionally, we revealed the signaling pathways that play important roles downstream of TGFB1-induced OSC proliferation. These findings provide insights into the mechanisms underlying OSC proliferation in chickens and offer a foundation for future research on in situ activation of OSC proliferation in ovary and improvement of egg-laying performance in chickens.


Asunto(s)
Proliferación Celular , Pollos , Factor de Crecimiento Transformador beta1 , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Femenino , Células Cultivadas , Embrión de Pollo , Oogonios/citología , Oogonios/metabolismo , Oogonios/fisiología , Ovario/citología , Ovario/metabolismo , Transducción de Señal , Fibroblastos/citología , Fibroblastos/metabolismo , Células Madre Germinales Adultas/citología , Células Madre Germinales Adultas/metabolismo , Células Madre Germinales Adultas/fisiología
5.
PLoS Genet ; 16(1): e1008529, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31917788

RESUMEN

Exposure to diethylhexyl phthalate (DEHP), the most abundant plasticizer used in the production of polyvinyl-containing plastics, has been associated to adverse reproductive health outcomes in both males and females. While the effects of DEHP on reproductive health have been widely investigated, the molecular mechanisms by which exposure to environmentally-relevant levels of DEHP and its metabolites impact the female germline in the context of a multicellular organism have remained elusive. Using the Caenorhabditis elegans germline as a model for studying reprotoxicity, we show that exposure to environmentally-relevant levels of DEHP and its metabolites results in increased meiotic double-strand breaks (DSBs), altered DSB repair progression, activation of p53/CEP-1-dependent germ cell apoptosis, defects in chromosome remodeling at late prophase I, aberrant chromosome morphology in diakinesis oocytes, increased chromosome non-disjunction and defects during early embryogenesis. Exposure to DEHP results in a subset of nuclei held in a DSB permissive state in mid to late pachytene that exhibit defects in crossover (CO) designation/formation. In addition, these nuclei show reduced Polo-like kinase-1/2 (PLK-1/2)-dependent phosphorylation of SYP-4, a synaptonemal complex (SC) protein. Moreover, DEHP exposure leads to germline-specific change in the expression of prmt-5, which encodes for an arginine methyltransferase, and both increased SC length and altered CO designation levels on the X chromosome. Taken together, our data suggest a model by which impairment of a PLK-1/2-dependent negative feedback loop set in place to shut down meiotic DSBs, together with alterations in chromosome structure, contribute to the formation of an excess number of DSBs and altered CO designation levels, leading to genomic instability.


Asunto(s)
Intercambio Genético , Roturas del ADN de Doble Cadena , Dietilhexil Ftalato/toxicidad , Oogénesis , Oogonios/efectos de los fármacos , Plastificantes/toxicidad , Animales , Apoptosis , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Inestabilidad Genómica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oogonios/citología , Oogonios/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
PLoS Genet ; 16(11): e1009067, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33206637

RESUMEN

Mammalian oogonia proliferate without completing cytokinesis, forming cysts. Within these, oocytes differentiate and initiate meiosis, promoting double-strand break (DSBs) formation, which are repaired by homologous recombination (HR) causing the pairing and synapsis of the homologs. Errors in these processes activate checkpoint mechanisms, leading to apoptosis. At the end of prophase I, in contrast with what is observed in spermatocytes, oocytes accumulate unrepaired DSBs. Simultaneously to the cyst breakdown, there is a massive oocyte death, which has been proposed to be necessary to enable the individualization of the oocytes to form follicles. Based upon all the above-mentioned information, we hypothesize that the apparently inefficient HR occurring in the oocytes may be a requirement to first eliminate most of the oocytes and enable cyst breakdown and follicle formation. To test this idea, we compared perinatal ovaries from control and mutant mice for the effector kinase of the DNA Damage Response (DDR), CHK2. We found that CHK2 is required to eliminate ~50% of the fetal oocyte population. Nevertheless, the number of oocytes and follicles found in Chk2-mutant ovaries three days after birth was equivalent to that of the controls. These data revealed the existence of another mechanism capable of eliminating oocytes. In vitro inhibition of CHK1 rescued the oocyte number in Chk2-/- mice, implying that CHK1 regulates postnatal oocyte death. Moreover, we found that CHK1 and CHK2 functions are required for the timely breakdown of the cyst and to form follicles. Thus, we uncovered a novel CHK1 function in regulating the oocyte population in mice. Based upon these data, we propose that the CHK1- and CHK2-dependent DDR controls the number of oocytes and is required to properly break down oocyte cysts and form follicles in mammals.


Asunto(s)
Daño del ADN/genética , Oogonios/metabolismo , Folículo Ovárico/metabolismo , Animales , Apoptosis/fisiología , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Quistes/metabolismo , Daño del ADN/fisiología , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Femenino , Meiosis/fisiología , Profase Meiótica I/fisiología , Ratones , Ratones Endogámicos C57BL , Oocitos/metabolismo , Oocitos/fisiología , Oogonios/fisiología , Folículo Ovárico/fisiología , Ovario/metabolismo , Progesterona/metabolismo
7.
J Fish Biol ; 102(1): 44-52, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36196905

RESUMEN

Although oogonial proliferation continues in mature females in most teleosts, its dynamics and the transformation of oogonia to early meiotic oocytes during the reproductive cycle have received little attention. In the present study, early oogenesis was examined throughout the reproductive cycle in two Clupeiform fishes, the Mediterranean sardine, Sardina pilchardus, and the European anchovy, Engraulis encrasicolus. Observations using confocal laser scanning microscopy (CLSM) provided extensive information on markers of oogonial proliferation (mitotic divisions, oogonia nests) and meiotic prophase I divisions of oocyte nests (leptotene, zygotene, pachytene, diplotene) in ovaries of different reproductive phases. In sardine, oogonial proliferation persisted throughout the entire reproductive cycle, whereas in anchovy, it was more pronounced prior to (developing ovaries) and after (resting ovaries) the spawning period. Anchovy exhibited a higher rate of meiotic activity in developing ovaries, whereas sardine exhibited a higher rate in resting ovaries. The observed differences between the two species can potentially be attributed to different seasonal patterns of energy allocation to reproduction and the synchronization between feeding and the spawning season.


Asunto(s)
Meiosis , Oogonios , Femenino , Animales , Oocitos , Oogénesis , Reproducción , Peces , Proliferación Celular
8.
Biochem Biophys Res Commun ; 535: 6-11, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33340766

RESUMEN

No effective cryopreservation technique exists for fish eggs and embryos; thus, the cryopreservation of germ cells (spermatogonia or oogonia) and subsequent generation of eggs and sperm would be an alternative solution for the long-term preservation of piscine genetic resources. Nevertheless, in our previous study using rainbow trout, we showed that recipients transplanted with XY spermatogonia or XX oogonia produced unnatural sex-biased F1 offspring. To overcome these obstacles, we transplanted immature germ cells (XX oogonia or XY spermatogonia; frozen for 33 days) into the body cavities of triploid hatchlings, and the transplanted germ cells possessed a high capacity for differentiating into eggs and sperm in the ovaries and testes of recipients. Approximately 30% of triploid recipients receiving frozen germ cells generated normal salmon that displayed the donor-derived black body color phenotype, although all triploid salmon not receiving transplants were functionally sterile. Furthermore, F1 offspring obtained from insemination of the oogonia-derived eggs and spermatogonia-derived sperm show a normal sex ratio of 1:1 (female:male). Thus, this method presented a critical technique for practical conservation projects for other teleost fish species and masu salmon.


Asunto(s)
Criopreservación/métodos , Oncorhynchus/crecimiento & desarrollo , Oogonios/citología , Oogonios/trasplante , Óvulo/citología , Espermatogonias/citología , Espermatogonias/trasplante , Espermatozoides/citología , Envejecimiento , Animales , Diferenciación Celular , Conservación de los Recursos Naturales/métodos , Femenino , Células Germinativas , Masculino , Oncorhynchus/embriología , Oogonios/metabolismo , Óvulo/metabolismo , Razón de Masculinidad , Espermatogonias/metabolismo , Espermatozoides/metabolismo , Triploidía
9.
Hum Reprod ; 36(11): 2992-3002, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34568940

RESUMEN

STUDY QUESTION: How are germ cell numbers and initiation of folliculogenesis affected in fetal Turner syndrome (TS) ovaries? SUMMARY ANSWER: Germ cell development was severely affected already in early second trimester pregnancies, including accelerated oogonia loss and impaired initiation of primordial follicle formation in TS ovaries, while the phenotype in TS mosaic ovaries was less severe. WHAT IS KNOWN ALREADY: Females with TS are characterized by premature ovarian insufficiency (POI). This phenotype is proposed to be a consequence of germ cell loss during development, but the timing and mechanisms behind this are not characterized in detail. Only few studies have evaluated germ cell development in fetal TS and TS mosaic ovaries, and with a sparse number of specimens included per study. STUDY DESIGN, SIZE, DURATION: This study included a total of 102 formalin-fixed and paraffin-embedded fetal ovarian tissue specimens. Specimens included were from fetuses with 45,X (N = 42 aged gestational week (GW) 12-20, except one GW 40 sample), 45,X/46,XX (N = 7, aged GW 12-20), and from controls (N = 53, aged GW 12-42) from a biobank (ethics approval # H-2-2014-103). PARTICIPANTS/MATERIALS, SETTING, METHODS: The number of OCT4 positive germ cells/mm2, follicles (primordial and primary)/mm2 and cPARP positive cells/mm2 were quantified in fetal ovarian tissue from TS, TS mosaic and controls following morphological and immunohistochemical analysis. MAIN RESULTS AND THE ROLE OF CHANCE: After adjusting for gestational age, the number of OCT4+ oogonia was significantly higher in control ovaries (N = 53) versus 45,X ovaries (N = 40, P < 0.001), as well as in control ovaries versus 45,X/46,XX mosaic ovaries (N = 7, P < 0.043). Accordingly, the numbers of follicles were significantly higher in control ovaries versus 45,X and 45,X/46,XX ovaries from GW 16-20 with a median range of 154 (N = 11) versus 0 (N = 24) versus 3 (N = 5) (P < 0.001 and P < 0.015, respectively). The number of follicles was also significantly higher in 45,X/46,XX mosaic ovaries from GW 16-20 compared with 45,X ovaries (P < 0.005). Additionally, the numbers of apoptotic cells determined as cPARP+ cells/mm2 were significantly higher in ovaries 45,X (n = 39) versus controls (n = 15, P = 0.001) from GW 12-20 after adjusting for GW. LIMITATIONS, REASONS FOR CAUTION: The analysis of OCT4+ cells/mm2, cPARP+ cells/mm2 and follicles (primordial and primary)/mm2 should be considered semi-quantitative as it was not possible to use quantification by stereology. The heterogeneous distribution of follicles in the ovarian cortex warrants a cautious interpretation of the exact quantitative numbers reported. Moreover, only one 45,X specimen and no 45,X/46,XX specimens aged above GW 20 were available for this study, which unfortunately made it impossible to assess whether the ovarian folliculogenesis was delayed or absent in the TS and TS mosaic specimens. WIDER IMPLICATIONS OF THE FINDINGS: This human study provides insights about the timing of accelerated fetal germ cell loss in TS. Knowledge about the biological mechanism of POI in girls with TS is clinically useful when counseling patients about expected ovarian function and fertility preservation strategies. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC). TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Oogonios , Síndrome de Turner , Anciano , Femenino , Desarrollo Fetal , Humanos , Masculino , Folículo Ovárico , Ovario , Embarazo , Síndrome de Turner/genética
10.
FASEB J ; 34(9): 12634-12645, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32716582

RESUMEN

Meiosis initiation is a crucial step for the production of haploid gametes, which occurs from anterior to posterior in fetal ovaries. The asynchrony of the transition from mitosis to meiosis results in heterogeneity in the female germ cell populations, which limits the studies of meiosis initiation and progression at a higher resolution level. To dissect the process of meiosis initiation, we investigated the transcriptional profiles of 19 363 single germ cells collected from E12.5, E14.5, and E16.5 mouse fetal ovaries. Clustering analysis identified seven groups and defined dozens of corresponding transcription factors, providing a global view of cellular differentiation from primordial germ cells toward meiocytes. Furthermore, we explored the dynamics of gene expression within the developmental trajectory with special focus on the critical state of meiosis. We found that meiosis initiation occurs as early as E12.5 and the cluster of oogonia_4 is the critical state between mitosis and meiosis. Our data provide key insights into the transcriptome features of peri-meiotic female germ cells, which offers new information not only on meiosis initiation and progression but also on screening pathogenic mutations in meiosis-associated diseases.


Asunto(s)
Meiosis , Oogénesis , Oogonios/citología , Ovario/citología , Transcriptoma , Animales , Diferenciación Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Mitosis , Análisis de Secuencia de ARN , Análisis de la Célula Individual
11.
PLoS Genet ; 13(5): e1006790, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28542174

RESUMEN

Germline stem cells in the Drosophila ovary are maintained by a somatic niche. The niche is structurally and functionally complex and contains four cell types, the escort, cap, and terminal filament cells and the newly identified transition cell. We find that the large Maf transcription factor Traffic jam (Tj) is essential for determining niche cell fates and architecture, enabling each niche in the ovary to support a normal complement of 2-3 germline stem cells. In particular, we focused on the question of how cap cells form. Cap cells express Tj and are considered the key component of a mature germline stem cell niche. We conclude that Tj controls the specification of cap cells, as the complete loss of Tj function caused the development of additional terminal filament cells at the expense of cap cells, and terminal filament cells developed cap cell characteristics when induced to express Tj. Further, we propose that Tj controls the morphogenetic behavior of cap cells as they adopted the shape and spatial organization of terminal filament cells but otherwise appeared to retain their fate when Tj expression was only partially reduced. Our data indicate that Tj contributes to the establishment of germline stem cells by promoting the cap cell fate, and controls the stem cell-carrying capacity of the niche by regulating niche architecture. Analysis of the interactions between Tj and the Notch (N) pathway indicates that Tj and N have distinct functions in the cap cell specification program. We propose that formation of cap cells depends on the combined activities of Tj and the N pathway, with Tj promoting the cap cell fate by blocking the terminal filament cell fate, and N supporting cap cells by preventing the escort cell fate and/or controlling the number of cap cell precursors.


Asunto(s)
Proteínas de Drosophila/genética , Factores de Transcripción Maf de Gran Tamaño/genética , Ovario/citología , Proteínas Proto-Oncogénicas/genética , Nicho de Células Madre , Animales , Drosophila/citología , Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Oogonios/citología , Oogonios/metabolismo , Ovario/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo
12.
Cryobiology ; 87: 78-85, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30716303

RESUMEN

Several experiments were conducted in order to develop an optimal protocol for slow-rate freezing (-1 °C/min) and short-term storage (-80 or 4 °C) of common carp ovarian tissue fragments with an emphasis on oogonial stem cells (OSCs). Dimethyl sulfoxide (Me2SO) with concentration of 1.5 M was identified as the best cryoprotectant in comparison to propylene glycol and methanol. When comparing supplementation of sugars (glucose, trehalose, sucrose) in different concentrations (0.1, 0.3, 0.5 M), glucose and trehalose in 0.3 M were identified as optimal. Short-term storage options for ovarian tissue pieces at -80 °C and 4 °C were tested as alternatives to cryopreservation and storage in liquid nitrogen. The presence of OSCs was confirmed by immunocytochemistry and viability after storage was determined by the trypan blue exclusion test. This study identified the optimal protocol for OSC cryopreservation using slow rate freezing resulting in ∼65% viability. The frozen/thawed OSCs were labelled by PKH-26 and transplanted into goldfish recipients. The success of the transplantation was confirmed by presence of fluorescent cells in the recipient gonad and later on by RT-PCR with carp dnd1 specific primers. The results of this study can facilitate long-term preservation of common carp germplasm which can be recovered in a surrogate recipient through interspecific germ cell transplantation.


Asunto(s)
Criopreservación/métodos , Crioprotectores/farmacología , Oogonios/fisiología , Células Madre Oogoniales/fisiología , Animales , Carpas , Supervivencia Celular/efectos de los fármacos , Dimetilsulfóxido/farmacología , Femenino , Congelación , Metanol/farmacología , Oogonios/citología , Ovario/citología , Propilenglicol/farmacología , Sacarosa/farmacología , Trehalosa/farmacología
13.
PLoS Genet ; 12(9): e1006281, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27622269

RESUMEN

Drosophila melanogaster Piwi functions within the germline stem cells (GSCs) and the somatic niche to regulate GSC self-renewal and differentiation. How Piwi influences GSCs is largely unknown. We uncovered a genetic interaction between Piwi and c-Fos in the somatic niche that influences GSCs. c-Fos is a proto-oncogene that influences many cell and developmental processes. In wild-type ovarian cells, c-Fos is post-transcriptionally repressed by Piwi, which destabilized the c-Fos mRNA by promoting the processing of its 3' untranslated region (UTR) into Piwi-interacting RNAs (piRNAs). The c-Fos 3' UTR was sufficient to trigger Piwi-dependent destabilization of a GFP reporter. Piwi represses c-Fos in the somatic niche to regulate GSC maintenance and differentiation and in the somatic follicle cells to affect somatic cell disorganization, tissue dysmorphogenesis, oocyte maturation arrest, and infertility.


Asunto(s)
Proteínas Argonautas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Oogonios/metabolismo , Ovario/crecimiento & desarrollo , Proteínas Proto-Oncogénicas c-fos/genética , Regiones no Traducidas 3' , Animales , Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Femenino , Oogénesis , Oogonios/citología , Ovario/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Nicho de Células Madre
14.
Biol Reprod ; 99(1): 75-86, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29590307

RESUMEN

This review focuses on those mouse mutations that cause an effect on the morphology, viability, and/or behavior of primordial germ cells (PGCs) and gonocytes at specific steps of their fetal development up to the start of spermatogenesis, a few days after birth. To restrict the area covered, mice with mutations that cause abnormal hormone levels or mutations of genes not expressed in germ cells that secondarily cause spermatogenic problems are not discussed. To make our literature search as comprehensive as possible, Pubmed was searched for "(primordial germ cells OR prospermatogonia OR prespermatogonia OR gonocytes OR spermatogonia or meiosis or spermiogenesis or spermatogenesis) AND mouse AND (knockout or mutant or transgenic)." This search started at 2003 as mutants created earlier were already retrieved for a previous review. The resulting citations were then further selected for complete or partial arrests at the level of PGCs and/or gonocytes. Fifty-nine protein coding genes and two miRNA coding genes were found that arrest the development of PGCs and gonocytes at specific steps providing a better insight into the regulation of the development of these cells. As to be expected, often problems in fetal germ cell development have an effect on the fertility of the mice at adulthood.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Mutación , Oogénesis/genética , Oogonios/citología , Espermatogénesis/genética , Espermatogonias/citología , Animales , Masculino , Ratones
15.
Biol Reprod ; 98(4): 532-542, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29329412

RESUMEN

Following proliferation of oogonia in mammals, great numbers of germ cells are discarded, primarily by apoptosis, while the remainder form primordial follicles (the ovarian reserve) that determine fertility and reproductive lifespan. More massive, rapid, and essentially total loss of oocytes, however, occurs when the transcription factor Lhx8 is ablated-though the cause and mechanism of germ cell loss from the Lhx8-/- ovaries has been unknown. We found that Lhx8-/- ovaries maintain the same number of germ cells throughout embryonic development; rapid decrease in the pool of oocytes starts shortly before birth. The loss results from activation of autophagy, which becomes overwhelming within the first postnatal week, with extracellular matrix proteins filling the space previously occupied by follicles to produce a fibrotic ovary. Associated with this process, as early as a few days before birth, Lhx8-/- oocytes failed to repair DNA damage-which normally occurs when meiosis is initiated during embryonic development; and DNA damage repair genes were downregulated throughout the oocyte short lifespan. Based on gene expression analyses and morphological changes, we propose a model in which lineage-restricted failure of DNA repair triggers germ cell autophagy, causing premature depletion of the ovarian reserve in Lhx8-/- mice.


Asunto(s)
Autofagia/fisiología , Daño del ADN/fisiología , Proteínas con Homeodominio LIM/metabolismo , Oocitos/metabolismo , Factores de Transcripción/metabolismo , Animales , Apoptosis/fisiología , Femenino , Proteínas con Homeodominio LIM/genética , Meiosis , Ratones , Ratones Noqueados , Oogénesis/fisiología , Oogonios/metabolismo , Reserva Ovárica/fisiología , Factores de Transcripción/genética
16.
Chromosoma ; 125(1): 151-62, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26232174

RESUMEN

The MRE11 complex (MRE11, RAD50, and NBS1) is a central component of the DNA damage response, governing both double-strand break repair and DNA damage response signaling. To determine the functions of the MRE11 complex in the development and maintenance of oocytes, we analyzed ovarian phenotypes of mice harboring the hypomorphic Mre11 (ATLD1) allele. Mre11 (ATLD1/ATLD1) females exhibited premature oocyte elimination attributable to defects in homologous chromosome pairing and double-strand break repair during meiotic prophase. Other aspects of meiotic progression, including attachment of telomeres to the nuclear envelope and recruitment of RAD21L, a component of the meiotic cohesin complex to the synaptonemal complex, were normal. Unlike Dmc1 (-/-) and Trp13 (Gt/Gt) mice which exhibit comparable defects in double-strand break repair and oocyte depletion by 5 days post-partum, we found that oocyte attrition occurred by 12 weeks in Mre11 (ATLD1/ATLD1) . Disruption of the oocyte checkpoint pathway governed by Chk2 gene further enhanced the survival of Mre11 (ATLD1/ATLD1) follicles. Together our data suggest that the MRE11 complex influences the elimination of oocytes with unrepaired meiotic double-strand breaks post-natally, in addition to its previously described role in double-strand break repair and homologous synapsis during female meiosis.


Asunto(s)
Emparejamiento Cromosómico , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/fisiología , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Meiosis , Oocitos/metabolismo , Oogonios/metabolismo , Animales , ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Proteína Homóloga de MRE11 , Ratones , Ratones Transgénicos , Oogénesis , Oogonios/fisiología
17.
Hum Reprod ; 32(3): 631-642, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28073973

RESUMEN

STUDY QUESTION: How can pre-meiotic germ cells persist in the human foetal ovary? SUMMARY ANSWER: Numerous oogonia escaping meiotic entry were retrieved throughout human ovarian development simultaneously with the expression of signalling pathways preventing meiosis, typically described in the rodent embryonic testis. WHAT IS KNOWN ALREADY: The transition from mitosis to meiosis is a key event in female germ cells that remains poorly documented in research on the human ovary. Previous reports described a strikingly asynchronous differentiation in the human female germ line during development, with the persistence of oogonia among oocytes and follicles during the second and third trimesters. The possible mechanisms allowing some cells to escape meiosis remain elusive. STUDY DESIGN SIZE, DURATION: In order to document the extent of this phenomenon, we detailed the expression profile of germ cell differentiation markers using 73 ovaries ranging from 6.4 to 35 weeks post-fertilization. PARTICIPANTS/MATERIALS SETTING, METHODS: Pre-meiotic markers were detected by immunohistochemistry or qRT-PCR. The expression of the main meiosis-preventing factors identified in mice was analysed, and their functionality assessed using organ cultures. MAIN RESULTS AND THE ROLE OF CHANCE: Oogonia stained for AP2γ could be traced from the first trimester until the end of the third trimester. Female germ cell differentiation is organized both in time and space in a centripetal manner in the foetal human ovary. Unexpectedly, some features usually ascribed to rodent pre-spermatogonia could be observed in human foetal ovaries, such as NANOS2 expression and quiescence in some germ cells. The two main somatic signals known to inhibit meiosis in the mouse embryonic testis, CYP26B1 and FGF9, were detected in the human ovary and act simultaneously to repress STRA8 and meiosis in human foetal female germ cells. LARGE SCALE DATA: N/A. LIMITATIONS REASON FOR CAUTION: Our conclusions relied partly on in vitro experiments. Germ cells were not systematically identified with immunostaining and some may have thus escaped analysis. WIDER IMPLICATIONS OF THE FINDINGS: We found evidence that a robust repression of meiotic entry is taking place in the human foetal ovary, possibly explaining the exceptional long-lasting presence of pre-meiotic germ cells until late gestational age. This result calls for a redefinition of the markers known as classical male markers, which may in fact characterize mammalian developing gonads irrespectively of their sex. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the Université Paris Diderot-Paris 7 and Université Paris-Sud, CEA, INSERM, and Agence de la Biomédecine. The authors declare no conflict of interest.


Asunto(s)
Células Germinales Embrionarias/metabolismo , Meiosis/fisiología , Ovario/embriología , Testículo/embriología , Animales , Proliferación Celular/fisiología , Femenino , Humanos , Masculino , Ratones , Oogonios/citología , Oogonios/metabolismo , Ovario/metabolismo , Transducción de Señal/fisiología , Espermatogonias/citología , Espermatogonias/metabolismo , Testículo/metabolismo
18.
J Theor Biol ; 414: 128-136, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-27916703

RESUMEN

Regarding to critical roles of oogenesis in formation of ova or unfertilized eggs from the oogonia by mitotic division and subsequent differentiation, the identification of oogenesis-related proteins is of great interest. However, the experimental determination of proteins involved in oogenesis is expensive, time consuming and labor-intensive. Therefore, a new powerful discriminating model is indispensable for classifying oogenesis/non-oogenesis-related proteins with high accuracy and precision. Hereby, for the first time we developed a support vector machine based oogenesis protein prediction method which differentiates oogenesis from non-oogenesis proteins. By means of informative protein physicochemical properties and in addition parameter optimization scheme, our method yields a robust and consistent performance. Our model achieved 87.68% and 84.82% prediction accuracy by five-fold cross validation test for datasets with 90% and 50% identity, respectively. The prediction model was also assessed using the independent dataset and yielded 91.62% and 85.38% prediction accuracy for datasets with 90% and 50% identity, respectively, which further demonstrates the effectiveness of our method. Moreover, by applying 10 different feature weighting methods, the more important protein features for oogenesis/non-oogenesis-related proteins discrimination, including serine and glycine frequency, quasi-sequence-order, pseudo-amino acid composition, distribution and conjoint triad, were determined. The success rates revealed that our model can be considered as a new encouraging and strong model for predicting proteins involved in oogenesis with appropriate performance. To enhance the value of the practical applications of the proposed method, we developed a standalone software for predicting oogenesis candidate proteins called OOgenesis_Pred. This software is the first predictor ever established for identifying oogenesis proteins. We also showed the capability of OOgenesis_Pred by making oogenesis-related proteins prediction for some of the oogenesis candidate proteins. It is anticipated that OOgenesis_Pred will become a powerful tool for future proteomic studies related to oogenesis.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas del Huevo , Meiosis/fisiología , Oogénesis/fisiología , Oogonios/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas del Huevo/genética , Proteínas del Huevo/metabolismo , Femenino , Humanos , Valor Predictivo de las Pruebas , Análisis de Secuencia de Proteína
19.
Cryobiology ; 76: 125-128, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28302378

RESUMEN

A growing number of fish species are endangered due to human activities. A short- or long-time preservation of gametes could conserve genetic resources of threatened fish species. The aim of this study was to evaluate a hypothermic condition for short-term preservation of spermatogonia and oogonia cells isolated from immature transgenic rainbow trout, Oncorhynchus mykiss, and to determine the maximum time point for further transplantation. Viability rate of germ cells was investigated after isolation and during storage at 4 °C up to 24 h. Dulbecco's modification of Eagle's medium supplemented with Hepes fetal bovine serum and l-glutamine was used as hypothermic storage media. The results showed that while viability decreased following 24 h storage, the remaining viable cells did not vary morphologically as well as GFP intensity retained similar to those observed in freshly isolated cells. The hypothermal storage study indicated that culture medium is suitable for preserving germ cells in the short periods of time. Simplicity, easily available culture media and low cost provide new insight into hypothermic conditions for preserving and transporting of germ cells for next applied and basic studies.


Asunto(s)
Oncorhynchus mykiss , Oogonios , Espermatogonias , Conservación de Tejido/métodos , Animales , Animales Modificados Genéticamente , Frío , Medios de Cultivo , Femenino , Glutamina , Masculino , Suero
20.
Microsc Microanal ; 23(3): 668-678, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28486998

RESUMEN

Cytological responses in different organs of sentinel organisms have proven to be useful tools for characterizing the health status of those organisms and assessing the impact of environmental contaminants. Our study shows that nickel (II) accumulated in both germ cells (oogonia and developing oocytes) and somatic cells (muscle cells, follicle cells) in the Astacus leptodactylus ovary. Muscle cells from ovarian wall show disorganization and the disruption of cytoplasmic microtubules and pyknosis of the cell nucleus. Follicle cells, both those that surround the developing oocytes and also those that are not associated with the oocytes contained within the cytoplasm vacuoles of different sizes, degenerated mitochondria, myelin bodies, disorganized microtubules, and pyknotic nuclei. The most evident pathological phenomenon was the alteration and disorganization of the basal matrix, which separates the ovarian interstitium from ovarian follicles compartment. Exposure to nickel induces cytoplasmic vacuolation in oogonia and developing oocytes, structural alteration of the developing yolk granules and condensation of the nucleoli. Ultrastructural autometallography has shown grains of silver-enhanced nickel inside the cytoplasm of the muscle cells with altered morphology, including the cytoplasm, nucleus, and basal matrix of the follicle cells, and in intracisternal granules and developing yolk granules of the oocytes.


Asunto(s)
Astacoidea/efectos de los fármacos , Técnicas Citológicas/métodos , Electroforesis/métodos , Níquel/toxicidad , Ovario/efectos de los fármacos , Ovario/diagnóstico por imagen , Ovario/ultraestructura , Coloración y Etiquetado/métodos , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/ultraestructura , Citoplasma/efectos de los fármacos , Citoplasma/ultraestructura , Femenino , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Células Musculares/efectos de los fármacos , Células Musculares/ultraestructura , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/ultraestructura , Oocitos/efectos de los fármacos , Oocitos/ultraestructura , Oogonios/efectos de los fármacos , Oogonios/ultraestructura , Folículo Ovárico/diagnóstico por imagen , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/ultraestructura , Vacuolas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda