Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 3.992
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Cell ; 160(3): 516-27, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25635459

RESUMEN

Optimally orchestrating complex behavioral states, such as the pursuit and consumption of food, is critical for an organism's survival. The lateral hypothalamus (LH) is a neuroanatomical region essential for appetitive and consummatory behaviors, but whether individual neurons within the LH differentially contribute to these interconnected processes is unknown. Here, we show that selective optogenetic stimulation of a molecularly defined subset of LH GABAergic (Vgat-expressing) neurons enhances both appetitive and consummatory behaviors, whereas genetic ablation of these neurons reduced these phenotypes. Furthermore, this targeted LH subpopulation is distinct from cells containing the feeding-related neuropeptides, melanin-concentrating hormone (MCH), and orexin (Orx). Employing in vivo calcium imaging in freely behaving mice to record activity dynamics from hundreds of cells, we identified individual LH GABAergic neurons that preferentially encode aspects of either appetitive or consummatory behaviors, but rarely both. These tightly regulated, yet highly intertwined, behavioral processes are thus dissociable at the cellular level.


Asunto(s)
Conducta Apetitiva , Conducta Consumatoria , Hipotálamo/fisiología , Animales , Hormonas Hipotalámicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melaninas/metabolismo , Ratones , Motivación , Neuronas/metabolismo , Neuropéptidos/metabolismo , Orexinas , Hormonas Hipofisarias/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
2.
Nature ; 621(7978): 381-388, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648849

RESUMEN

Only recently have more specific circuit-probing techniques become available to inform previous reports implicating the rodent hippocampus in orexigenic appetitive processing1-4. This function has been reported to be mediated at least in part by lateral hypothalamic inputs, including those involving orexigenic lateral hypothalamic neuropeptides, such as melanin-concentrating hormone5,6. This circuit, however, remains elusive in humans. Here we combine tractography, intracranial electrophysiology, cortico-subcortical evoked potentials, and brain-clearing 3D histology to identify an orexigenic circuit involving the lateral hypothalamus and converging in a hippocampal subregion. We found that low-frequency power is modulated by sweet-fat food cues, and this modulation was specific to the dorsolateral hippocampus. Structural and functional analyses of this circuit in a human cohort exhibiting dysregulated eating behaviour revealed connectivity that was inversely related to body mass index. Collectively, this multimodal approach describes an orexigenic subnetwork within the human hippocampus implicated in obesity and related eating disorders.


Asunto(s)
Hipocampo , Vías Nerviosas , Orexinas , Humanos , Índice de Masa Corporal , Estudios de Cohortes , Señales (Psicología) , Electrofisiología , Potenciales Evocados/fisiología , Trastornos de Alimentación y de la Ingestión de Alimentos/metabolismo , Conducta Alimentaria , Alimentos , Hipocampo/anatomía & histología , Hipocampo/citología , Hipocampo/metabolismo , Obesidad/metabolismo , Orexinas/metabolismo
3.
Annu Rev Pharmacol Toxicol ; 64: 359-386, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37708433

RESUMEN

Sleep is essential for human well-being, yet the quality and quantity of sleep reduce as age advances. Older persons (>65 years old) are more at risk of disorders accompanied and/or exacerbated by poor sleep. Furthermore, evidence supports a bidirectional relationship between disrupted sleep and Alzheimer's disease (AD) or related dementias. Orexin/hypocretin neuropeptides stabilize wakefulness, and several orexin receptor antagonists (ORAs) are approved for the treatment of insomnia in adults. Dysregulation of the orexin system occurs in aging and AD, positioning ORAs as advantageous for these populations. Indeed, several clinical studies indicate that ORAs are efficacious hypnotics in older persons and dementia patients and, as in adults, are generally well tolerated. ORAs are likely to be more effective when administered early in sleep/wake dysregulation to reestablish good sleep/wake-related behaviors and reduce the accumulation of dementia-associated proteinopathic substrates. Improving sleep in aging and dementia represents a tremendous opportunity to benefit patients, caregivers, and health systems.


Asunto(s)
Enfermedad de Alzheimer , Antagonistas de los Receptores de Orexina , Humanos , Anciano , Anciano de 80 o más Años , Orexinas/farmacología , Antagonistas de los Receptores de Orexina/farmacología , Antagonistas de los Receptores de Orexina/uso terapéutico , Receptores de Orexina , Sueño/fisiología , Enfermedad de Alzheimer/tratamiento farmacológico
4.
Immunity ; 49(5): 796-798, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30462995

RESUMEN

Researchers have previously hypothesized autoimmune origins for narcolepsy on the basis of its strong genetic association with an MHC class II allele. In a recent issue of Nature, Latorre et al. (2018) discovered that narcolepsy patients had autoreactive T cells specific to the neuronal antigen hypocretin, providing more evidence of the potential immune origin of the disease.


Asunto(s)
Narcolepsia , Neuropéptidos , Autoantígenos , Humanos , Neuronas , Orexinas , Linfocitos T
5.
Proc Natl Acad Sci U S A ; 121(16): e2316150121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38593074

RESUMEN

For nearly a century, evidence has accumulated indicating that the lateral hypothalamus (LH) contains neurons essential to sustain wakefulness. While lesion or inactivation of LH neurons produces a profound increase in sleep, stimulation of inhibitory LH neurons promotes wakefulness. To date, the primary wake-promoting cells that have been identified in the LH are the hypocretin/orexin (Hcrt) neurons, yet these neurons have little impact on total sleep or wake duration across the 24-h period. Recently, we and others have identified other LH populations that increase wakefulness. In the present study, we conducted microendoscopic calcium imaging in the LH concomitant with EEG and locomotor activity (LMA) recordings and found that a subset of LH neurons that express Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) are preferentially active during wakefulness. Chemogenetic activation of these neurons induced sustained wakefulness and greatly increased LMA even in the absence of Hcrt signaling. Few LH CaMKIIα-expressing neurons are hypocretinergic or histaminergic while a small but significant proportion are GABAergic. Ablation of LH inhibitory neurons followed by activation of the remaining LH CaMKIIα neurons induced similar levels of wakefulness but blunted the LMA increase. Ablated animals showed no significant changes in sleep architecture but both spontaneous LMA and high theta (8 to 10 Hz) power during wakefulness were reduced. Together, these findings indicate the existence of two subpopulations of LH CaMKIIα neurons: an inhibitory population that promotes locomotion without affecting sleep architecture and an excitatory population that promotes prolonged wakefulness even in the absence of Hcrt signaling.


Asunto(s)
Área Hipotalámica Lateral , Vigilia , Animales , Vigilia/fisiología , Área Hipotalámica Lateral/fisiología , Orexinas/metabolismo , Sueño/fisiología , Neuronas/metabolismo , Transducción de Señal
6.
N Engl J Med ; 389(4): 309-321, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37494485

RESUMEN

BACKGROUND: Narcolepsy type 1 is caused by severe loss or lack of brain orexin neuropeptides. METHODS: We conducted a phase 2, randomized, placebo-controlled trial of TAK-994, an oral orexin receptor 2-selective agonist, in patients with narcolepsy type 1. Patients with confirmed narcolepsy type 1 according to clinical criteria were randomly assigned to receive twice-daily oral TAK-994 (30 mg, 90 mg, or 180 mg) or placebo. The primary end point was the mean change from baseline to week 8 in average sleep latency (the time it takes to fall asleep) on the Maintenance of Wakefulness Test (range, 0 to 40 minutes; normal ability to stay awake, ≥20 minutes). Secondary end points included the change in the Epworth Sleepiness Scale (ESS) score (range, 0 to 24, with higher scores indicating greater daytime sleepiness; normal, <10) and the weekly cataplexy rate. RESULTS: Of the 73 patients, 17 received TAK-994 at a dose of 30 mg twice daily, 20 received 90 mg twice daily, 19 received 180 mg twice daily, and 17 received placebo. The phase 2 trial and an extension trial were terminated early owing to hepatic adverse events. Primary end-point data were available for 41 patients (56%); the main reason for missing data was early trial termination. Least-squares mean changes to week 8 in average sleep latency on the MWT were 23.9 minutes in the 30-mg group, 27.4 minutes in the 90-mg group, 32.6 minutes in the 180-mg group, and -2.5 minutes in the placebo group (difference vs. placebo, 26.4 minutes in the 30-mg group, 29.9 minutes in the 90-mg group, and 35.0 minutes the 180-mg group; P<0.001 for all comparisons). Least-squares mean changes to week 8 in the ESS score were -12.2 in the 30-mg group, -13.5 in the 90-mg group, -15.1 in the 180-mg group, and -2.1 in the placebo group (difference vs. placebo, -10.1 in the 30-mg group, -11.4 in the 90-mg group, and -13.0 in the 180-mg group). Weekly incidences of cataplexy at week 8 were 0.27 in the 30-mg group, 1.14 in the 90-mg group, 0.88 in the 180-mg group, and 5.83 in the placebo group (rate ratio vs. placebo, 0.05 in the 30-mg group, 0.20 in the 90-mg group, and 0.15 in the 180-mg group). A total of 44 of 56 patients (79%) receiving TAK-994 had adverse events, most commonly urinary urgency or frequency. Clinically important elevations in liver-enzyme levels occurred in 5 patients, and drug-induced liver injury meeting Hy's law criteria occurred in 3 patients. CONCLUSIONS: In a phase 2 trial involving patients with narcolepsy type 1, an orexin receptor 2 agonist resulted in greater improvements on measures of sleepiness and cataplexy than placebo over a period of 8 weeks but was associated with hepatotoxic effects. (Funded by Takeda Development Center Americas; TAK-994-1501 and TAK-994-1504 ClinicalTrials.gov numbers, NCT04096560 and NCT04820842.).


Asunto(s)
Narcolepsia , Receptores de Orexina , Orexinas , Humanos , Cataplejía/complicaciones , Cataplejía/tratamiento farmacológico , Cataplejía/epidemiología , Método Doble Ciego , Narcolepsia/tratamiento farmacológico , Narcolepsia/complicaciones , Narcolepsia/epidemiología , Receptores de Orexina/agonistas , Receptores de Orexina/uso terapéutico , Somnolencia/efectos de los fármacos , Resultado del Tratamiento , Orexinas/análisis , Orexinas/deficiencia , Orexinas/farmacología , Química Encefálica/efectos de los fármacos , Administración Oral , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología
7.
Proc Natl Acad Sci U S A ; 120(41): e2301951120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37796986

RESUMEN

Narcolepsy is a sleep disorder caused by deficiency of orexin signaling. However, the neural mechanisms by which deficient orexin signaling causes the abnormal rapid eye movement (REM) sleep characteristics of narcolepsy, such as cataplexy and frequent transitions to REM states, are not fully understood. Here, we determined the activity dynamics of orexin neurons during sleep that suppress the abnormal REM sleep architecture of narcolepsy. Orexin neurons were highly active during wakefulness, showed intermittent synchronous activity during non-REM (NREM) sleep, were quiescent prior to the transition from NREM to REM sleep, and a small subpopulation of these cells was active during REM sleep. Orexin neurons that lacked orexin peptides were less active during REM sleep and were mostly silent during cataplexy. Optogenetic inhibition of orexin neurons established that the activity dynamics of these cells during NREM sleep regulate NREM-REM sleep transitions. Inhibition of orexin neurons during REM sleep increased subsequent REM sleep in "orexin intact" mice and subsequent cataplexy in mice lacking orexin peptides, indicating that the activity of a subpopulation of orexin neurons during the preceding REM sleep suppresses subsequent REM sleep and cataplexy. Thus, these results identify how deficient orexin signaling during sleep results in the abnormal REM sleep architecture characteristic of narcolepsy.


Asunto(s)
Cataplejía , Narcolepsia , Orexinas , Animales , Ratones , Orexinas/deficiencia , Orexinas/genética , Sueño , Sueño REM/fisiología , Vigilia/fisiología
8.
Proc Natl Acad Sci U S A ; 120(20): e2220353120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155875

RESUMEN

Early-life stress has long-term impacts on the structure and function of the anterior cingulate cortex (ACC), and raises the risk of adult neuropsychiatric disorders including social dysfunction. The underlying neural mechanisms, however, are still uncertain. Here, we show that, in female mice, maternal separation (MS) during the first three postnatal weeks results in social impairment accompanied with hypoactivity in pyramidal neurons (PNs) of the ACC. Activation of ACC PNs ameliorates MS-induced social impairment. Neuropeptide Hcrt, which encodes hypocretin (orexin), is the top down-regulated gene in the ACC of MS females. Activating ACC orexin terminals enhances the activity of ACC PNs and rescues the diminished sociability observed in MS females via an orexin receptor 2 (OxR2)-dependent mechanism. Our results suggest orexin signaling in the ACC is critical in mediating early-life stress-induced social impairment in females.


Asunto(s)
Neuropéptidos , Estrés Psicológico , Animales , Femenino , Ratones , Giro del Cíngulo , Privación Materna , Neuropéptidos/metabolismo , Receptores de Orexina/genética , Orexinas/genética , Orexinas/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(19): e2220911120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126681

RESUMEN

Narcolepsy with cataplexy is a sleep disorder caused by deficiency in the hypothalamic neuropeptide hypocretin/orexin (HCRT), unanimously believed to result from autoimmune destruction of hypocretin-producing neurons. HCRT deficiency can also occur in secondary forms of narcolepsy and be only temporary, suggesting it can occur without irreversible neuronal loss. The recent discovery that narcolepsy patients also show loss of hypothalamic (corticotropin-releasing hormone) CRH-producing neurons suggests that other mechanisms than cell-specific autoimmune attack, are involved. Here, we identify the HCRT cell-colocalized neuropeptide QRFP as the best marker of HCRT neurons. We show that if HCRT neurons are ablated in mice, in addition to Hcrt, Qrfp transcript is also lost in the lateral hypothalamus, while in mice where only the Hcrt gene is inactivated Qrfp is unchanged. Similarly, postmortem hypothalamic tissues of narcolepsy patients show preserved QRFP expression, suggesting the neurons are present but fail to actively produce HCRT. We show that the promoter of the HCRT gene of patients exhibits hypermethylation at a methylation-sensitive and evolutionary-conserved PAX5:ETS1 transcription factor-binding site, suggesting the gene is subject to transcriptional silencing. We show also that in addition to HCRT, CRH and Dynorphin (PDYN) gene promoters, exhibit hypermethylation in the hypothalamus of patients. Altogether, we propose that HCRT, PDYN, and CRH are epigenetically silenced by a hypothalamic assault (inflammation) in narcolepsy patients, without concurrent cell death. Since methylation is reversible, our findings open the prospect of reversing or curing narcolepsy.


Asunto(s)
Cataplejía , Narcolepsia , Neuropéptidos , Ratones , Animales , Orexinas/metabolismo , Cataplejía/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuropéptidos/metabolismo , Narcolepsia/genética , Hipotálamo/metabolismo , Epigénesis Genética , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo
10.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38789262

RESUMEN

We previously showed that orexin neurons are activated by hypoxia and facilitate the peripheral chemoreflex (PCR)-mediated hypoxic ventilatory response (HVR), mostly by promoting the respiratory frequency response. Orexin neurons project to the nucleus of the solitary tract (nTS) and the paraventricular nucleus of the hypothalamus (PVN). The PVN contributes significantly to the PCR and contains nTS-projecting corticotropin-releasing hormone (CRH) neurons. We hypothesized that in male rats, orexin neurons contribute to the PCR by activating nTS-projecting CRH neurons. We used neuronal tract tracing and immunohistochemistry (IHC) to quantify the degree that hypoxia activates PVN-projecting orexin neurons. We coupled this with orexin receptor (OxR) blockade with suvorexant (Suvo, 20 mg/kg, i.p.) to assess the degree that orexin facilitates the hypoxia-induced activation of CRH neurons in the PVN, including those projecting to the nTS. In separate groups of rats, we measured the PCR following systemic orexin 1 receptor (Ox1R) blockade (SB-334867; 1 mg/kg) and specific Ox1R knockdown in PVN. OxR blockade with Suvo reduced the number of nTS and PVN neurons activated by hypoxia, including those CRH neurons projecting to nTS. Hypoxia increased the number of activated PVN-projecting orexin neurons but had no effect on the number of activated nTS-projecting orexin neurons. Global Ox1R blockade and partial Ox1R knockdown in the PVN significantly reduced the PCR. Ox1R knockdown also reduced the number of activated PVN neurons and the number of activated tyrosine hydroxylase neurons in the nTS. Our findings suggest orexin facilitates the PCR via nTS-projecting CRH neurons expressing Ox1R.


Asunto(s)
Hormona Liberadora de Corticotropina , Neuronas , Antagonistas de los Receptores de Orexina , Receptores de Orexina , Orexinas , Ratas Sprague-Dawley , Núcleo Solitario , Animales , Masculino , Hormona Liberadora de Corticotropina/metabolismo , Orexinas/metabolismo , Ratas , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/efectos de los fármacos , Núcleo Solitario/metabolismo , Núcleo Solitario/fisiología , Núcleo Solitario/efectos de los fármacos , Antagonistas de los Receptores de Orexina/farmacología , Receptores de Orexina/metabolismo , Hipoxia/metabolismo , Triazoles/farmacología , Azepinas/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/fisiología
11.
Nat Methods ; 19(2): 231-241, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35145320

RESUMEN

Orexins (also called hypocretins) are hypothalamic neuropeptides that carry out essential functions in the central nervous system; however, little is known about their release and range of action in vivo owing to the limited resolution of current detection technologies. Here we developed a genetically encoded orexin sensor (OxLight1) based on the engineering of circularly permutated green fluorescent protein into the human type-2 orexin receptor. In mice OxLight1 detects optogenetically evoked release of endogenous orexins in vivo with high sensitivity. Photometry recordings of OxLight1 in mice show rapid orexin release associated with spontaneous running behavior, acute stress and sleep-to-wake transitions in different brain areas. Moreover, two-photon imaging of OxLight1 reveals orexin release in layer 2/3 of the mouse somatosensory cortex during emergence from anesthesia. Thus, OxLight1 enables sensitive and direct optical detection of orexin neuropeptides with high spatiotemporal resolution in living animals.


Asunto(s)
Encéfalo/metabolismo , Imagen Molecular/métodos , Receptores de Orexina/genética , Orexinas/análisis , Proteínas Recombinantes/metabolismo , Animales , Conducta Animal , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Receptores de Orexina/metabolismo , Orexinas/genética , Orexinas/farmacología , Fotones , Proteínas Recombinantes/genética , Reproducibilidad de los Resultados , Sueño/fisiología
12.
Mol Psychiatry ; 29(2): 327-341, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38123729

RESUMEN

Hypocretin/Orexin (HCRT/OX) and dopamine (DA) are both key effectors of salience processing, reward and stress-related behaviors and motivational states, yet their respective roles and interactions are poorly delineated. We inactivated HCRT-to-DA connectivity by genetic disruption of Hypocretin receptor-1 (Hcrtr1), Hypocretin receptor-2 (Hcrtr2), or both receptors (Hcrtr1&2) in DA neurons and analyzed the consequences on vigilance states, brain oscillations and cognitive performance in freely behaving mice. Unexpectedly, loss of Hcrtr2, but not Hcrtr1 or Hcrtr1&2, induced a dramatic increase in theta (7-11 Hz) electroencephalographic (EEG) activity in both wakefulness and rapid-eye-movement sleep (REMS). DAHcrtr2-deficient mice spent more time in an active (or theta activity-enriched) substate of wakefulness, and exhibited prolonged REMS. Additionally, both wake and REMS displayed enhanced theta-gamma phase-amplitude coupling. The baseline waking EEG of DAHcrtr2-deficient mice exhibited diminished infra-theta, but increased theta power, two hallmarks of EEG hyperarousal, that were however uncoupled from locomotor activity. Upon exposure to novel, either rewarding or stress-inducing environments, DAHcrtr2-deficient mice featured more pronounced waking theta and fast-gamma (52-80 Hz) EEG activity surges compared to littermate controls, further suggesting increased alertness. Cognitive performance was evaluated in an operant conditioning paradigm, which revealed that DAHcrtr2-ablated mice manifest faster task acquisition and higher choice accuracy under increasingly demanding task contingencies. However, the mice concurrently displayed maladaptive patterns of reward-seeking, with behavioral indices of enhanced impulsivity and compulsivity. None of the EEG changes observed in DAHcrtr2-deficient mice were seen in DAHcrtr1-ablated mice, which tended to show opposite EEG phenotypes. Our findings establish a clear genetically-defined link between monosynaptic HCRT-to-DA neurotransmission and theta oscillations, with a differential and novel role of HCRTR2 in theta-gamma cross-frequency coupling, attentional processes, and executive functions, relevant to disorders including narcolepsy, attention-deficit/hyperactivity disorder, and Parkinson's disease.


Asunto(s)
Cognición , Neuronas Dopaminérgicas , Electroencefalografía , Receptores de Orexina , Vigilia , Animales , Ratones , Neuronas Dopaminérgicas/fisiología , Neuronas Dopaminérgicas/metabolismo , Cognición/fisiología , Receptores de Orexina/metabolismo , Receptores de Orexina/fisiología , Vigilia/fisiología , Masculino , Electroencefalografía/métodos , Nivel de Alerta/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Orexinas/metabolismo , Orexinas/fisiología , Sueño REM/fisiología , Transducción de Señal/fisiología , Ritmo Teta/fisiología , Recompensa , Dopamina/metabolismo
13.
Nature ; 566(7744): 383-387, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30760925

RESUMEN

Sleep is integral to life1. Although insufficient or disrupted sleep increases the risk of multiple pathological conditions, including cardiovascular disease2, we know little about the cellular and molecular mechanisms by which sleep maintains cardiovascular health. Here we report that sleep regulates haematopoiesis and protects against atherosclerosis in mice. We show that mice subjected to sleep fragmentation produce more Ly-6Chigh monocytes, develop larger atherosclerotic lesions and produce less hypocretin-a stimulatory and wake-promoting neuropeptide-in the lateral hypothalamus. Hypocretin controls myelopoiesis by restricting the production of CSF1 by hypocretin-receptor-expressing pre-neutrophils in the bone marrow. Whereas hypocretin-null and haematopoietic hypocretin-receptor-null mice develop monocytosis and accelerated atherosclerosis, sleep-fragmented mice with either haematopoietic CSF1 deficiency or hypocretin supplementation have reduced numbers of circulating monocytes and smaller atherosclerotic lesions. Together, these results identify a neuro-immune axis that links sleep to haematopoiesis and atherosclerosis.


Asunto(s)
Aterosclerosis/prevención & control , Hematopoyesis/fisiología , Sueño/fisiología , Animales , Antígenos Ly/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/patología , Células de la Médula Ósea/metabolismo , Femenino , Hematopoyesis/efectos de los fármacos , Área Hipotalámica Lateral/metabolismo , Factor Estimulante de Colonias de Macrófagos/biosíntesis , Factor Estimulante de Colonias de Macrófagos/deficiencia , Factor Estimulante de Colonias de Macrófagos/metabolismo , Masculino , Ratones , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Mielopoyesis/efectos de los fármacos , Neutrófilos/metabolismo , Receptores de Orexina/deficiencia , Receptores de Orexina/metabolismo , Orexinas/biosíntesis , Orexinas/deficiencia , Orexinas/metabolismo , Orexinas/farmacología , Sueño/efectos de los fármacos , Privación de Sueño/metabolismo , Privación de Sueño/fisiopatología , Privación de Sueño/prevención & control
14.
Cell Mol Life Sci ; 81(1): 288, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970689

RESUMEN

Orexinergic neurons are critically involved in regulating arousal, wakefulness, and appetite. Their dysfunction has been associated with sleeping disorders, and non-peptide drugs are currently being developed to treat insomnia and narcolepsy. Yet, no light-regulated agents are available to reversibly control their activity. To meet this need, a photoswitchable peptide analogue of the endogenous neuroexcitatory peptide orexin-B was designed, synthesized, and tested in vitro and in vivo. This compound - photorexin - is the first photo-reversible ligand reported for orexin receptors. It allows dynamic control of activity in vitro (including almost the same efficacy as orexin-B, high nanomolar potency, and subtype selectivity to human OX2 receptors) and in vivo in zebrafish larvae by direct application in water. Photorexin induces dose- and light-dependent changes in locomotion and a reduction in the successive induction reflex that is associated with sleep behavior. Molecular dynamics calculations indicate that trans and cis photorexin adopt similar bent conformations and that the only discriminant between their structures and activities is the positioning of the N-terminus. This, in the case of the more active trans isomer, points towards the OX2 N-terminus and extra-cellular loop 2, a region of the receptor known to be involved in ligand binding and recognition consistent with a "message-address" system. Thus, our approach could be extended to several important families of endogenous peptides, such as endothelins, nociceptin, and dynorphins among others, that bind to their cognate receptors through a similar mechanism: a "message" domain involved in receptor activation and signal transduction, and an "address" sequence for receptor occupation and improved binding affinity.


Asunto(s)
Luz , Receptores de Orexina , Orexinas , Pez Cebra , Receptores de Orexina/metabolismo , Receptores de Orexina/química , Animales , Orexinas/metabolismo , Humanos , Locomoción/efectos de los fármacos , Simulación de Dinámica Molecular , Larva/metabolismo , Larva/efectos de los fármacos , Células HEK293 , Ligandos
15.
Mol Cell Neurosci ; 129: 103934, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701995

RESUMEN

Parkinson's Disease (PD) patients experience sleeping disorders in addition to the disease-defining symptomology of movement dysfunctions. The prevalence of PD is sex-based and presence of sleeping disorders in PD also shows sex bias with a stronger phenotype in males. In addition to loss of dopamine-containing neurons in the striatum, arousal-related, orexin-containing neurons in the lateral hypothalamus (LH) are lost in PD, which could contribute to state-related disorders. As orexin has been shown to be involved in sleeping disorders and to have neuroprotective effects, we asked whether orexin could protect sleep-related LH neurons from damage putatively from the protein α-synuclein (α-syn), which is found at high levels in the PD brain and that we have shown is associated with putatively excitotoxic rises in intracellular calcium in brainstem sleep-controlling nuclei, especially in males. Accordingly, we monitored intracellular calcium transients induced by α-syn and whether concurrent exposure to orexin affected those transients in LH cells of the mouse brain slice using calcium imaging. Further, we used an assay of cell death to determine whether LH cell viability was influenced when α-syn and orexin were co-applied when compared to exposure to α-syn alone. We found that excitatory calcium events induced by α-syn were reduced in amplitude and frequency when orexin was co-applied, and when data were evaluated by sex, this effect was found to be greater in females. In addition, α-syn exposure was associated with cell death that was higher in males, and interestingly, reduced cell death was noted when orexin was present, which did not show a sex bias. We interpret our findings to indicate that orexin is protective to α-syn-mediated damage to hypothalamic neurons, and the actions of orexin on α-syn-induced cellular effects differ between sexes, which could underlie sex-based differences in sleeping disorders in PD.


Asunto(s)
Calcio , Muerte Celular , Área Hipotalámica Lateral , Neuronas , Orexinas , alfa-Sinucleína , Animales , Orexinas/metabolismo , Orexinas/farmacología , Masculino , Ratones , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Femenino , Área Hipotalámica Lateral/metabolismo , Área Hipotalámica Lateral/efectos de los fármacos , alfa-Sinucleína/metabolismo , Muerte Celular/efectos de los fármacos , Calcio/metabolismo , Ratones Endogámicos C57BL , Caracteres Sexuales
16.
Proc Natl Acad Sci U S A ; 119(16): e2113518119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412900

RESUMEN

Fear is essential for survival, but excessive anxiety behavior is debilitating. Anxiety disorders affecting millions of people are a global health problem, where new therapies and targets are much needed. Deep brain stimulation (DBS) is established as a therapy in several neurological disorders, but is underexplored in anxiety disorders. The lateral hypothalamus (LH) has been recently revealed as an origin of anxiogenic brain signals, suggesting a target for anxiety treatment. Here, we develop and validate a DBS strategy for modulating anxiety-like symptoms by targeting the LH. We identify a DBS waveform that rapidly inhibits anxiety-implicated LH neural activity and suppresses innate and learned anxiety behaviors in a variety of mouse models. Importantly, we show that the LH DBS displays high temporal and behavioral selectivity: Its affective impact is fast and reversible, with no evidence of side effects such as impaired movement, memory loss, or epileptic seizures. These data suggest that acute hypothalamic DBS could be a useful strategy for managing treatment-resistant anxiety disorders.


Asunto(s)
Trastornos de Ansiedad , Estimulación Encefálica Profunda , Área Hipotalámica Lateral , Animales , Trastornos de Ansiedad/terapia , Estimulación Encefálica Profunda/métodos , Ratones , Orexinas/antagonistas & inhibidores , Orexinas/fisiología
17.
Proc Natl Acad Sci U S A ; 119(17): e2112225119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35452310

RESUMEN

Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep­wake regulation.


Asunto(s)
MicroARNs , Neuropéptidos , Animales , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , MicroARNs/genética , Neuropéptidos/metabolismo , Orexinas/genética , Orexinas/metabolismo , Sueño/genética , Vigilia/genética , Pez Cebra/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(32): e2205797119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914171

RESUMEN

Narcolepsy type 1 (NT1), a disorder caused by hypocretin/orexin (HCRT) cell loss, is associated with human leukocyte antigen (HLA)-DQ0602 (98%) and T cell receptor (TCR) polymorphisms. Increased CD4+ T cell reactivity to HCRT, especially DQ0602-presented amidated C-terminal HCRT (HCRTNH2), has been reported, and homology with pHA273-287 flu antigens from pandemic 2009 H1N1, an established trigger of the disease, suggests molecular mimicry. In this work, we extended DQ0602 tetramer and dextramer data to 77 cases and 44 controls, replicating our prior finding and testing 709 TCRs in Jurkat 76 T cells for functional activation. We found that fewer TCRs isolated with HCRTNH2 (∼11%) versus pHA273-287 or NP17-31 antigens (∼50%) were activated by their ligand. Single-cell characterization did not reveal phenotype differences in influenza versus HCRTNH2-reactive T cells, and analysis of TCR CDR3αß sequences showed TCR clustering by responses to antigens but no cross-peptide class reactivity. Our results do not support the existence of molecular mimicry between HCRT and pHA273-287 or NP17-31.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Narcolepsia , Orexinas , Receptores de Antígenos de Linfocitos T , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana , Narcolepsia/inmunología , Narcolepsia/fisiopatología , Orexinas/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Virales/inmunología
19.
Proc Natl Acad Sci U S A ; 119(35): e2207531119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994639

RESUMEN

Narcolepsy type 1 (NT1) is a sleep disorder caused by a loss of orexinergic neurons. Narcolepsy type 2 (NT2) is heterogeneous; affected individuals typically have normal orexin levels. Following evaluation in mice, the effects of the orexin 2 receptor (OX2R)-selective agonist danavorexton were evaluated in single- and multiple-rising-dose studies in healthy adults, and in individuals with NT1 and NT2. In orexin/ataxin-3 narcolepsy mice, danavorexton reduced sleep/wakefulness fragmentation and cataplexy-like episodes during the active phase. In humans, danavorexton administered intravenously was well tolerated and was associated with marked improvements in sleep latency in both NT1 and NT2. In individuals with NT1, danavorexton dose-dependently increased sleep latency in the Maintenance of Wakefulness Test, up to the ceiling effect of 40 min, in both the single- and multiple-rising-dose studies. These findings indicate that OX2Rs remain functional despite long-term orexin loss in NT1. OX2R-selective agonists are a promising treatment for both NT1 and NT2.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Narcolepsia , Receptores de Orexina , Adulto , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Cataplejía/tratamiento farmacológico , Cataplejía/genética , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Ratones , Narcolepsia/tratamiento farmacológico , Narcolepsia/genética , Neuronas/metabolismo , Receptores de Orexina/agonistas , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Receptores de Orexina/uso terapéutico , Orexinas/genética , Orexinas/metabolismo , Fenotipo , Vigilia/efectos de los fármacos , Vigilia/genética
20.
J Neurosci ; 43(22): 4075-4092, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37117013

RESUMEN

To understand how sleep-wakefulness cycles are regulated, it is essential to disentangle structural and functional relationships between the preoptic area (POA) and lateral hypothalamic area (LHA), since these regions play important yet opposing roles in the sleep-wakefulness regulation. GABA- and galanin (GAL)-producing neurons in the ventrolateral preoptic nucleus (VLPO) of the POA (VLPOGABA and VLPOGAL neurons) are responsible for the maintenance of sleep, while the LHA contains orexin-producing neurons (orexin neurons) that are crucial for maintenance of wakefulness. Through the use of rabies virus-mediated neural tracing combined with in situ hybridization (ISH) in male and female orexin-iCre mice, we revealed that the vesicular GABA transporter (Vgat, Slc32a1)- and galanin (Gal)-expressing neurons in the VLPO directly synapse with orexin neurons in the LHA. A majority (56.3 ± 8.1%) of all VLPO input neurons connecting to orexin neurons were double-positive for Vgat and Gal Using projection-specific rabies virus-mediated tracing in male and female Vgat-ires-Cre and Gal-Cre mice, we discovered that VLPOGABA and VLPOGAL neurons that send projections to the LHA received innervations from similarly distributed input neurons in many brain regions, with the POA and LHA being among the main upstream areas. Additionally, we found that acute optogenetic excitation of axons of VLPOGABA neurons, but not VLPOGAL neurons, in the LHA of male Vgat-ires-Cre mice induced wakefulness. This study deciphers the connectivity between the VLPO and LHA, provides a large-scale map of upstream neuronal populations of VLPO→LHA neurons, and reveals a previously uncovered function of the VLPOGABA→LHA pathway in the regulation of sleep and wakefulness.SIGNIFICANCE STATEMENT We identified neurons in the ventrolateral preoptic nucleus (VLPO) that are positive for vesicular GABA transporter (Vgat) and/or galanin (Gal) and serve as presynaptic partners of orexin-producing neurons in the lateral hypothalamic area (LHA). We depicted monosynaptic input neurons of GABA- and galanin-producing neurons in the VLPO that send projections to the LHA throughout the entire brain. Their input neurons largely overlap, suggesting that they comprise a common neuronal population. However, acute excitatory optogenetic manipulation of the VLPOGABA→LHA pathway, but not the VLPOGAL→LHA pathway, evoked wakefulness. This study shows the connectivity of major components of the sleep/wake circuitry in the hypothalamus and unveils a previously unrecognized function of the VLPOGABA→LHA pathway in sleep-wakefulness regulation. Furthermore, we suggest the existence of subpopulations of VLPOGABA neurons that innervate LHA.


Asunto(s)
Área Hipotalámica Lateral , Área Preóptica , Ratones , Masculino , Femenino , Animales , Área Preóptica/fisiología , Área Hipotalámica Lateral/fisiología , Orexinas/metabolismo , Galanina/metabolismo , Neuronas/fisiología , Vigilia/fisiología , Sueño/fisiología , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda