Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 608(7923): 626-631, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896743

RESUMEN

Emissions of the critical ozone-depleting and greenhouse gas nitrous oxide (N2O) from soils and industrial processes have increased considerably over the last decades1-3. As the final step of bacterial denitrification, N2O is reduced to chemically inert N2 (refs. 1,4) in a reaction that is catalysed by the copper-dependent nitrous oxide reductase (N2OR) (ref. 5). The assembly of its unique [4Cu:2S] active site cluster CuZ requires both the ATP-binding-cassette (ABC) complex NosDFY and the membrane-anchored copper chaperone NosL (refs. 4,6). Here we report cryo-electron microscopy structures of Pseudomonas stutzeri NosDFY and its complexes with NosL and N2OR, respectively. We find that the periplasmic NosD protein contains a binding site for a Cu+ ion and interacts specifically with NosL in its nucleotide-free state, whereas its binding to N2OR requires a conformational change that is triggered by ATP binding. Mutually exclusive structures of NosDFY in complex with NosL and with N2OR reveal a sequential metal-trafficking and assembly pathway for a highly complex copper site. Within this pathway, NosDFY acts as a mechanical energy transducer rather than as a transporter. It links ATP hydrolysis in the cytoplasm to a conformational transition of the NosD subunit in the periplasm, which is required for NosDFY to switch its interaction partner so that copper ions are handed over from the chaperone NosL to the enzyme N2OR.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Óxido Nitroso , Oxidorreductasas , Pseudomonas stutzeri , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Cobre/química , Cobre/metabolismo , Citoplasma/enzimología , Chaperonas Moleculares/metabolismo , Óxido Nitroso/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Oxidorreductasas/ultraestructura , Periplasma/enzimología , Unión Proteica , Conformación Proteica , Pseudomonas stutzeri/citología , Pseudomonas stutzeri/enzimología
2.
J Biol Chem ; 296: 100432, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33610550

RESUMEN

Nonribosomal peptide synthetases (NRPSs) are multimodular enzymes that produce a wide range of bioactive peptides, such as siderophores, toxins, and antibacterial and insecticidal agents. NRPSs are dynamic proteins characterized by extensive interdomain communications as a consequence of their assembly-line mode of synthesis. Hence, crystal structures of multidomain fragments of NRPSs have aided in elucidating crucial interdomain interactions that occur during different steps of the NRPS catalytic cycle. One crucial yet unexplored interaction is that between the reductase (R) domain and the peptide carrier protein (PCP) domain. R domains are members of the short-chain dehydrogenase/reductase family and function as termination domains that catalyze the reductive release of the final peptide product from the terminal PCP domain of the NRPS. Here, we report the crystal structure of an archaeal NRPS PCP-R didomain construct. This is the first NRPS R domain structure to be determined together with the upstream PCP domain and is also the first structure of an archaeal NRPS to be reported. The structure reveals that a novel helix-turn-helix motif, found in NRPS R domains but not in other short-chain dehydrogenase/reductase family members, plays a major role in the interface between the PCP and R domains. The information derived from the described PCP-R interface will aid in gaining further mechanistic insights into the peptide termination reaction catalyzed by the R domain and may have implications in engineering NRPSs to synthesize novel peptide products.


Asunto(s)
Péptido Sintasas/metabolismo , Péptido Sintasas/ultraestructura , Archaea/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Portadoras/metabolismo , Dominio Catalítico/genética , Regulación de la Expresión Génica Arqueal/genética , Modelos Moleculares , Oxidorreductasas/metabolismo , Oxidorreductasas/ultraestructura , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos/genética , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos/fisiología , Péptido Sintasas/química , Péptido Sintasas/fisiología , Péptidos/química , Dominios Proteicos/fisiología , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/fisiología
3.
Nat Chem Biol ; 16(4): 415-422, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32042199

RESUMEN

In biotin biosynthesis, the conversion of pimeloyl intermediates to biotin is catalyzed by a universal set of four enzymes: BioF, BioA, BioD and BioB. We found that the gene homologous to bioA, the product of which is involved in the conversion of 8-amino-7-oxononanoate (AON) to 7,8-diaminononanoate (DAN), is missing in the genome of the cyanobacterium Synechocystis sp. PCC 6803. We provide structural and biochemical evidence showing that a novel dehydrogenase, BioU, is involved in biotin biosynthesis and functionally replaces BioA. This enzyme catalyzes three reactions: formation of covalent linkage with AON to yield a BioU-DAN conjugate at the ε-amino group of Lys124 of BioU using NAD(P)H, carboxylation of the conjugate to form BioU-DAN-carbamic acid, and release of DAN-carbamic acid using NAD(P)+. In this biosynthetic pathway, BioU is a suicide enzyme that loses the Lys124 amino group after a single round of reaction.


Asunto(s)
Biotina/biosíntesis , Oxidorreductasas/ultraestructura , Synechocystis/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Aminoácidos Diaminos/química , Aminoácidos Diaminos/metabolismo , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Biotina/metabolismo , Catálisis , Clonación Molecular , Cianobacterias/genética , Cianobacterias/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Genes Bacterianos , Oxidorreductasas/metabolismo , Synechocystis/genética , Transaminasas/metabolismo
4.
J Biol Chem ; 295(3): 771-782, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31822504

RESUMEN

Phytochromobilin (PΦB) is a red/far-red light sensory pigment in plant phytochrome. PΦB synthase is a ferredoxin-dependent bilin reductase (FDBR) that catalyzes the site-specific reduction of bilins, which are sensory and photosynthesis pigments, and produces PΦB from biliverdin, a heme-derived linear tetrapyrrole pigment. Here, we determined the crystal structure of tomato PΦB synthase in complex with biliverdin at 1.95 Å resolution. The overall structure of tomato PΦB synthase was similar to those of other FDBRs, except for the addition of a long C-terminal loop and short helices. The structure further revealed that the C-terminal loop is part of the biliverdin-binding pocket and that two basic residues in the C-terminal loop form salt bridges with the propionate groups of biliverdin. This suggested that the C-terminal loop is involved in the interaction with ferredoxin and biliverdin. The configuration of biliverdin bound to tomato PΦB synthase differed from that of biliverdin bound to other FDBRs, and its orientation in PΦB synthase was inverted relative to its orientation in the other FDBRs. Structural and enzymatic analyses disclosed that two aspartic acid residues, Asp-123 and Asp-263, form hydrogen bonds with water molecules and are essential for the site-specific A-ring reduction of biliverdin. On the basis of these observations and enzymatic assays with a V121A PΦB synthase variant, we propose the following mechanistic product release mechanism: PΦB synthase-catalyzed stereospecific reduction produces 2(R)-PΦB, which when bound to PΦB synthase collides with the side chain of Val-121, releasing 2(R)-PΦB from the synthase.


Asunto(s)
Biliverdina/química , Oxidorreductasas/química , Fitocromo/biosíntesis , Conformación Proteica , Aminoácidos/química , Aminoácidos/genética , Pigmentos Biliares/biosíntesis , Pigmentos Biliares/química , Biliverdina/genética , Catálisis , Cristalografía por Rayos X , Enlace de Hidrógeno , Solanum lycopersicum/enzimología , Oxidorreductasas/genética , Oxidorreductasas/ultraestructura , Fotosíntesis/genética , Fitocromo/química , Fitocromo/genética , Estructura Secundaria de Proteína
5.
J Biol Chem ; 295(28): 9502-9512, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32409586

RESUMEN

Six-transmembrane epithelial antigen of the prostate 1 (STEAP1) is an integral membrane protein that is highly up-regulated on the cell surface of several human cancers, making it a promising therapeutic target to manage these diseases. It shares sequence homology with three enzymes (STEAP2-STEAP4) that catalyze the NADPH-dependent reduction of iron(III). However, STEAP1 lacks an intracellular NADPH-binding domain and does not exhibit cellular ferric reductase activity. Thus, both the molecular function of STEAP1 and its role in cancer progression remain elusive. Here, we present a ∼3.0-Šcryo-EM structure of trimeric human STEAP1 bound to three antigen-binding fragments (Fabs) of the clinically used antibody mAb120.545. The structure revealed that STEAP1 adopts a reductase-like conformation and interacts with the Fabs through its extracellular helices. Enzymatic assays in human cells revealed that STEAP1 promotes iron(III) reduction when fused to the intracellular NADPH-binding domain of its family member STEAP4, suggesting that STEAP1 functions as a ferric reductase in STEAP heterotrimers. Our work provides a foundation for deciphering the molecular mechanisms of STEAP1 and may be useful in the design of new therapeutic strategies to target STEAP1 in cancer.


Asunto(s)
Antígenos de Neoplasias , Proteínas de Neoplasias , Neoplasias/enzimología , Oxidorreductasas , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/ultraestructura , Antineoplásicos Inmunológicos/química , Microscopía por Crioelectrón , Células HEK293 , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/ultraestructura , Neoplasias/ultraestructura , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Oxidorreductasas/ultraestructura , Dominios Proteicos
6.
Proc Natl Acad Sci U S A ; 115(47): 11958-11963, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30397129

RESUMEN

Biotransformation enzymes ensure a viable homeostasis by regulating reversible cycles of oxidative and reductive reactions. The metabolism of nitrogen-containing compounds is of high pharmaceutical and toxicological relevance because N-oxygenated metabolites derived from reactions mediated by cytochrome P450 enzymes or flavin-dependent monooxygenases are in some cases highly toxic or mutagenic. The molybdenum-dependent mitochondrial amidoxime-reducing component (mARC) was found to be an extremely efficient counterpart, which is able to reduce the full range of N-oxygenated compounds and thereby mediates detoxification reactions. However, the 3D structure of this enzyme was unknown. Here we present the high-resolution crystal structure of human mARC. We give detailed insight into the coordination of its molybdenum cofactor (Moco), the catalytic mechanism, and its ability to reduce a wide range of N-oxygenated compounds. The identification of two key residues will allow future discrimination between mARC paralogs and ensure correct annotation. Since our structural findings contradict in silico predictions that are currently made by online databases, we propose domain definitions for members of the superfamily of Moco sulfurase C-terminal (MOSC) domain-containing proteins. Furthermore, we present evidence for an evolutionary role of mARC for the emergence of the xanthine oxidase protein superfamily. We anticipate the hereby presented crystal structure to be a starting point for future descriptions of MOSC proteins, which are currently poorly structurally characterized.


Asunto(s)
Proteínas Mitocondriales/química , Proteínas Mitocondriales/ultraestructura , Oxidorreductasas/química , Oxidorreductasas/ultraestructura , Catálisis , Coenzimas , Cristalografía por Rayos X/métodos , Células Eucariotas/metabolismo , Humanos , Metaloproteínas , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Molibdeno/metabolismo , Cofactores de Molibdeno , Oxidación-Reducción , Oxidorreductasas/metabolismo , Estructura Terciaria de Proteína , Pteridinas
7.
Proteins ; 82(9): 2263-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24523098

RESUMEN

The ammonia monooxygenase (AMO)/particulate methane monooxygenase (pMMO) superfamily is a diverse group of membrane-bound enzymes of which only pMMO has been characterized on the molecular level. The pMMO active site is believed to reside in the soluble N-terminal region of the pmoB subunit. To understand the degree of structural conservation within this superfamily, the crystal structure of the corresponding domain of an archaeal amoB subunit from Nitrosocaldus yellowstonii has been determined to 1.8 Å resolution. The structure reveals a remarkable conservation of overall fold and copper binding site location as well as several notable differences that may have implications for function and stability.


Asunto(s)
Dominio Catalítico , Crenarchaeota/enzimología , Oxidorreductasas/ultraestructura , Oxigenasas/ultraestructura , Secuencia de Aminoácidos , Azurina/química , Sitios de Unión , Cobre/química , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína
8.
Proteins ; 82(9): 1708-20, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24470304

RESUMEN

The dibenzothiophene (DBT) monooxygenase DszC, which is the key initiating enzyme in "4S" metabolic pathway, catalyzes sequential sulphoxidation reaction of DBT to DBT sulfoxide (DBTO), then DBT sulfone (DBTO2). Here, we report the crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å. Intriguingly, two distinct conformations occur in the flexible lid loops adjacent to the active site (residue 280-295, between α9 and α10). They are named "open"' and "closed" state respectively, and might show the status of the free and ligand-bound DszC. The molecular docking results suggest that the reduced FMN reacts with an oxygen molecule at C4a position of the isoalloxazine ring, producing the C4a-(hydro)peroxyflavin intermediate which is stabilized by H391 and S163. H391 may contribute to the formation of the C4a-(hydro)peroxyflavin by acting as a proton donor to the proximal peroxy oxygen, and it might also be involved in the protonation process of the C4a-(hydro)xyflavin. Site-directed mutagenesis study shows that mutations in the residues involved either in catalysis or in flavin or substrate-binding result in a complete loss of enzyme activity, suggesting that the accurate positions of flavin and substrate are crucial for the enzyme activity.


Asunto(s)
Oxidorreductasas/ultraestructura , Rhodococcus/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Mononucleótido de Flavina/química , Flavinas/química , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidorreductasas/genética , Oxígeno/química , Unión Proteica , Conformación Proteica , Alineación de Secuencia , Tiofenos/metabolismo
9.
Phys Chem Chem Phys ; 16(27): 14220-30, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24912395

RESUMEN

Superoxide reductases (SOR) are a family of non-heme iron enzymes that limit oxidative stress by catalysing the reduction of superoxide to hydrogen peroxide and, thus, represent model systems for the detoxification of reactive oxygen species. In several enzymes of this type, reductive activation of the active site involves the reversible dissociation of a glutamate from the proposed substrate binding site at the iron. In this study we have employed IR spectroscopic and theoretical methods to gain insights into redox-linked structural changes of 1Fe-type superoxide reductases, focusing on the enzyme from the archaeon Ignicoccus hospitalis. Guided by crystal structure data and complemented by spectra calculation for an active site model, the main IR difference signals could be assigned. These signals reflect redox-induced structural changes in the first coordination sphere of the iron centre, adjacent loop and helical regions, and more remote ß-sheets. By comparison with the spectra obtained for the E23A mutant of Ignicoccus hospitalis SOR, it is shown that glutamate E23 dissociates reversibly from the ferrous iron during reductive activation of the wild type enzyme. Moreover, this process is found to trigger a global conformational transition of the protein that is strictly dependent on the presence of E23. Similar concerted structural changes can be inferred from the IR spectra of related SORs such as that from Archaeoglobus fulgidus, indicating a widespread mechanism. A possible functional role of this process in terms of synergistic effects during reductive activation of the homotetrameric enzyme is proposed.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Oxidorreductasas/química , Oxidorreductasas/ultraestructura , Espectrofotometría Infrarroja/métodos , Simulación por Computador , Activación Enzimática , Oxidación-Reducción , Conformación Proteica
10.
Phys Chem Chem Phys ; 16(26): 13367-75, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-24875125

RESUMEN

The effect of proper enzyme orientation at the electrode surface was explored for two multi-copper oxygen reducing enzymes: Bilirubin Oxidase (BOx) and Laccase (Lac). Simultaneous utilization of "tethering" agent (1-pyrenebutanoic acid, succinimidyl ester; PBSE), for stable enzyme immobilization, and syringaldazine (Syr), for enzyme orientation, of both Lac and BOx led to a notable enhancement of the electrode performance. For Lac cathodes tested in solution it was established that PBSE-Lac and PBSE-Syr-Lac modified cathodes demonstrated approximately 6 and 9 times increase in current density, respectively, compared to physically adsorbed and randomly oriented Lac cathodes. Further testing in solution utilizing BOx showed an even higher increase in achievable current densities, thus BOx was chosen for additional testing in air-breathing mode. In subsequent air-breathing experiments the incorporation of PBSE and Syr with BOx resulted in current densities of 0.65 ± 0.1 mA cm(-2); 2.5 times higher when compared to an unmodified BOx cathode. A fully tethered/oriented BOx cathode was combined with a NAD-dependent Glucose Dehydrogenase anode for the fabrication of a complete enzymatic membraneless fuel cell. A maximum power of 1.03 ± 0.06 mW cm(-2) was recorded for the complete fuel cell. The observed significant enhancement in the performance of "oriented" cathodes was a result of proper enzyme orientation, leading to facilitated enzyme/electrode interface interactions.


Asunto(s)
Conductometría/instrumentación , Electrodos , Hidrazonas/química , Modelos Químicos , Modelos Moleculares , Oxidorreductasas/química , Oxidorreductasas/ultraestructura , Adsorción , Simulación por Computador , Conductometría/métodos , Activación Enzimática , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/ultraestructura , Complejos Multienzimáticos/química , Complejos Multienzimáticos/ultraestructura , Conformación Proteica
11.
Phys Chem Chem Phys ; 16(26): 13059-62, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-24871387

RESUMEN

The effects of pre-treatment with surfactants on the electrocatalytic reaction of multi-copper oxidases were quantitatively evaluated using a well-structured carbon nanotube forest electrode. It was found that both the charge polarity of the head group and the aromatics in the tail part of the surfactants affect the efficiency of enzymatic electrocatalysis.


Asunto(s)
Electrodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Oxidorreductasas/química , Tensoactivos/química , Conductividad Eléctrica , Transporte de Electrón , Activación Enzimática , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Complejos Multienzimáticos , Nanoporos/ultraestructura , Nanotecnología/instrumentación , Oxidorreductasas/ultraestructura , Porosidad
12.
J Struct Funct Genomics ; 14(3): 119-26, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23963952

RESUMEN

High-quality NMR structures of the C-terminal domain comprising residues 484-537 of the 537-residue protein Bacterial chlorophyll subunit B (BchB) from Chlorobium tepidum and residues 9-61 of 61-residue Asr4154 from Nostoc sp. (strain PCC 7120) exhibit a mixed α/ß fold comprised of three α-helices and a small ß-sheet packed against second α-helix. These two proteins share 29% sequence similarity and their structures are globally quite similar. The structures of BchB(484-537) and Asr4154(9-61) are the first representative structures for the large protein family (Pfam) PF08369, a family of unknown function currently containing 610 members in bacteria and eukaryotes. Furthermore, BchB(484-537) complements the structural coverage of the dark-operating protochlorophyllide oxidoreductase.


Asunto(s)
Proteínas de Unión a Clorofila/ultraestructura , Resonancia Magnética Nuclear Biomolecular/métodos , Oxidorreductasas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Chlorobium/química , Proteínas de Unión a Clorofila/química , Nostoc/química , Oxidorreductasas/química , Protoclorofilida/metabolismo
13.
Arch Biochem Biophys ; 537(2): 233-42, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23911721

RESUMEN

Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the proton-coupled four-electron reduction of biliverdin IXα's two vinyl groups to produce phycocyanobilin, an essential chromophore for phytochromes, cyanobacteriochromes and phycobiliproteins. Previous site directed mutagenesis studies indicated that the fully conserved residue His74 plays a critical role in the H-bonding network that permits proton transfer. Here, we exploit X-ray crystallography, enzymology and molecular dynamics simulations to understand the functional role of this invariant histidine. The structures of the H74A, H74E and H74Q variants of PcyA reveal that a "conserved" buried water molecule that bridges His74 and catalytically essential His88 is not required for activity. Despite distinct conformations of Glu74 and Gln74 in the H74E and H74Q variants, both retain reasonable activity while the H74A variant is inactive, suggesting smaller residues may generate cavities that increase flexibility, thereby reducing enzymatic activity. Molecular dynamic simulations further reveal that the crucial active site residue Asp105 is more dynamic in H74A compared to wild-type PcyA and the two other His74 variants, supporting the conclusion that the Ala74 mutation has increased the flexibility of the active site.


Asunto(s)
Pigmentos Biliares/química , Histidina/química , Modelos Químicos , Modelos Moleculares , Oxidorreductasas/química , Oxidorreductasas/ultraestructura , Secuencia de Aminoácidos , Simulación por Computador , Secuencia Conservada , Activación Enzimática , Datos de Secuencia Molecular , Relación Estructura-Actividad , Especificidad por Sustrato
14.
FEBS J ; 289(2): 457-472, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34492164

RESUMEN

Saccharomyces cerevisiae LIP1 encodes a regulatory subunit that forms a complex with the ceramide synthase catalytic subunits, Lag1/Lac1, which is localized on the membrane of endoplasmic reticulum. To understand the underlying regulatory mechanism of sphingolipid biosynthesis, we generated strains upon replacing the chromosomal LIP1 promoter with a Tet-off promoter, which enables the expression in Dox-dependent manner. The lip1-1 strain, obtained through the promoter substitution, exhibits severe growth inhibition and remarkable decrease in sphingolipid synthesis in the presence of Dox. Using this strain, we investigated the effect of a decrease in ceramide synthesis on TOR complex 2 (TORC2)-Ypk1 signaling, which senses the complex sphingolipid level at the plasma membrane and promotes sphingolipid biosynthesis. In lip1-1 cells, Ypk1 was activated via both upstream kinases, TORC2 and yeast PDK1 homologues, Pkh1/2, thereby inducing hyperphosphorylation of Lag1, but not of another Ypk1-substrate, Orm1, which is a known negative regulator of the first step of sphingolipid metabolism, in the presence of Dox. Therefore, our data suggest that the metabolic enzyme activities at each step of the sphingolipid biosynthetic pathway are controlled through a fine regulatory mechanism.


Asunto(s)
Glucógeno Sintasa Quinasa 3/genética , Proteínas de la Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Esfingolípidos/biosíntesis , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Dominio Catalítico/genética , Membrana Celular/genética , Retículo Endoplásmico/genética , Regulación Fúngica de la Expresión Génica/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Oxidorreductasas/genética , Oxidorreductasas/ultraestructura , Fosforilación/genética , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Esfingolípidos/genética
15.
Nat Commun ; 12(1): 2132, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837197

RESUMEN

Oxidative plant cell-wall processing enzymes are of great importance in biology and biotechnology. Yet, our insight into the functional interplay amongst such oxidative enzymes remains limited. Here, a phylogenetic analysis of the auxiliary activity 7 family (AA7), currently harbouring oligosaccharide flavo-oxidases, reveals a striking abundance of AA7-genes in phytopathogenic fungi and Oomycetes. Expression of five fungal enzymes, including three from unexplored clades, expands the AA7-substrate range and unveils a cellooligosaccharide dehydrogenase activity, previously unknown within AA7. Sequence and structural analyses identify unique signatures distinguishing the strict dehydrogenase clade from canonical AA7 oxidases. The discovered dehydrogenase directly is able to transfer electrons to an AA9 lytic polysaccharide monooxygenase (LPMO) and fuel cellulose degradation by LPMOs without exogenous reductants. The expansion of redox-profiles and substrate range highlights the functional diversity within AA7 and sets the stage for harnessing AA7 dehydrogenases to fine-tune LPMO activity in biotechnological conversion of plant feedstocks.


Asunto(s)
Celulosa/metabolismo , Proteínas Fúngicas/metabolismo , Oomicetos/enzimología , Oxidorreductasas/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Cristalografía por Rayos X , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Flavoproteínas Transportadoras de Electrones/metabolismo , Pruebas de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/ultraestructura , Microbiología Industrial/métodos , Espectroscopía de Resonancia Magnética , Oomicetos/genética , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/aislamiento & purificación , Oxidorreductasas/ultraestructura , Filogenia , Análisis de Secuencia de ADN , Especificidad por Sustrato
16.
Nat Commun ; 12(1): 4621, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330928

RESUMEN

Cytochromes bd are ubiquitous amongst prokaryotes including many human-pathogenic bacteria. Such complexes are targets for the development of antimicrobial drugs. However, an understanding of the relationship between the structure and functional mechanisms of these oxidases is incomplete. Here, we have determined the 2.8 Å structure of Mycobacterium smegmatis cytochrome bd by single-particle cryo-electron microscopy. This bd oxidase consists of two subunits CydA and CydB, that adopt a pseudo two-fold symmetrical arrangement. The structural topology of its Q-loop domain, whose function is to bind the substrate, quinol, is significantly different compared to the C-terminal region reported for cytochromes bd from Geobacillus thermodenitrificans (G. th) and Escherichia coli (E. coli). In addition, we have identified two potential oxygen access channels in the structure and shown that similar tunnels also exist in G. th and E. coli cytochromes bd. This study provides insights to develop a framework for the rational design of antituberculosis compounds that block the oxygen access channels of this oxidase.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón/métodos , Grupo Citocromo b/ultraestructura , Proteínas del Complejo de Cadena de Transporte de Electrón/ultraestructura , Mycobacterium smegmatis/enzimología , Oxidorreductasas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Grupo Citocromo b/química , Grupo Citocromo b/metabolismo , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Hemo/química , Hemo/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/genética , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Especificidad por Sustrato
17.
Nat Commun ; 12(1): 790, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542233

RESUMEN

Gut microbial transformations of flavonoids, an enormous class of polyphenolic compounds abundant in plant-based diets, are closely associated with human health. However, the enzymes that initiate the gut microbial metabolism of flavones and flavonols, the two most abundant groups of flavonoids, as well as their underlying molecular mechanisms of action remain unclear. Here, we discovered a flavone reductase (FLR) from the gut bacterium, Flavonifractor plautii ATCC 49531 (originally assigned as Clostridium orbiscindens DSM 6740), which specifically catalyses the hydrogenation of the C2-C3 double bond of flavones/flavonols and initiates their metabolism as a key step. Crystal structure analysis revealed the molecular basis for the distinct catalytic property of FLR. Notably, FLR and its widespread homologues represent a class of ene-reductases that has not been previously identified. Genetic and biochemical analyses further indicated the importance of FLR in gut microbial consumption of dietary and medicinal flavonoids, providing broader insight into gut microbial xenobiotic transformations and possible guidance for personalized nutrition and medicine.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavonas/metabolismo , Flavonoles/metabolismo , Microbioma Gastrointestinal/fisiología , Oxidorreductasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Clostridiales/enzimología , Clostridiales/genética , Cristalografía por Rayos X , Oxidorreductasas/genética , Oxidorreductasas/aislamiento & purificación , Oxidorreductasas/ultraestructura , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura
18.
FEBS J ; 286(16): 3117-3128, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31033202

RESUMEN

Most ene-reductases belong to the Old Yellow Enzyme (OYE) family of flavin-dependent oxidoreductases. OYEs use nicotinamide coenzymes as hydride donors to catalyze the reduction of alkenes that contain an electron-withdrawing group. There have been many investigations of the structures and catalytic mechanisms of OYEs. However, the origin of coenzyme specificity in the OYE family is unknown. Structural NMR and X-ray crystallographic data were used to rationally design variants of two OYEs, pentaerythritol tetranitrate reductase (PETNR) and morphinone reductase (MR), to discover the basis of coenzyme selectivity. PETNR has dual-specificity and reacts with NADH and NADPH; MR accepts only NADH as hydride donor. Variants of a ß-hairpin motif in an active site loop of both these enzymes were studied using stopped-flow spectroscopy. Specific attention was placed on the potential role of arginine residues within the ß-hairpin motif. Mutagenesis demonstrated that Arg130 governs the preference of PETNR for NADPH, and that Arg142 interacts with the coenzyme pyrophosphate group. These observations were used to switch coenzyme specificity in MR by replacing either Glu134 or Leu146 with arginine residues. These variants had increased (~15-fold) affinity for NADH. Mutagenesis enabled MR to accept NADPH as a hydride donor, with E134R MR showing a significant (55-fold) increase in efficiency in the reductive half-reaction, when compared to the essentially unreactive wild-type enzyme. Insight into the question of coenzyme selectivity in OYEs has therefore been addressed through rational redesign. This should enable coenzyme selectivity to be improved and switched in other OYEs.


Asunto(s)
Proteínas Bacterianas/química , Coenzimas/química , NADPH Deshidrogenasa/química , Oxidorreductasas/química , Arginina/química , Arginina/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Sitios de Unión/genética , Catálisis , Dominio Catalítico/genética , Coenzimas/genética , Cristalografía por Rayos X , Enterobacter cloacae/enzimología , Humanos , Espectroscopía de Resonancia Magnética , Mutagénesis/genética , NADP/genética , NADP/metabolismo , NADPH Deshidrogenasa/genética , NADPH Deshidrogenasa/ultraestructura , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/ultraestructura , Ingeniería de Proteínas , Pseudomonas putida/enzimología , Especificidad por Sustrato
19.
Nat Commun ; 10(1): 5138, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723136

RESUMEN

Cytochrome bd oxidases are terminal reductases of bacterial and archaeal respiratory chains. The enzyme couples the oxidation of ubiquinol or menaquinol with the reduction of dioxygen to water, thus contributing to the generation of the protonmotive force. Here, we determine the structure of the Escherichia coli bd oxidase treated with the specific inhibitor aurachin by cryo-electron microscopy (cryo-EM). The major subunits CydA and CydB are related by a pseudo two fold symmetry. The heme b and d cofactors are found in CydA, while ubiquinone-8 is bound at the homologous positions in CydB to stabilize its structure. The architecture of the E. coli enzyme is highly similar to that of Geobacillus thermodenitrificans, however, the positions of heme b595 and d are interchanged, and a common oxygen channel is blocked by a fourth subunit and substituted by a more narrow, alternative channel. Thus, with the same overall fold, the homologous enzymes exhibit a different mechanism.


Asunto(s)
Grupo Citocromo b/química , Grupo Citocromo b/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Homología de Secuencia de Aminoácido , Grupo Citocromo b/ultraestructura , Proteínas del Complejo de Cadena de Transporte de Electrón/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Geobacillus/enzimología , Hemo/química , Hemo/metabolismo , Modelos Moleculares , Oxidorreductasas/ultraestructura , Oxígeno/metabolismo , Protones , Especificidad por Sustrato , Ubiquinona/química , Ubiquinona/metabolismo , Agua
20.
Nat Commun ; 9(1): 274, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348404

RESUMEN

Flavin is covalently attached to the protein scaffold in ~10% of flavoenzymes. However, the mechanism of covalent modification is unclear, due in part to challenges in stabilizing assembly intermediates. Here, we capture the structure of an assembly intermediate of the Escherichia coli Complex II (quinol:fumarate reductase (FrdABCD)). The structure contains the E. coli FrdA subunit bound to covalent FAD and crosslinked with its assembly factor, SdhE. The structure contains two global conformational changes as compared to prior structures of the mature protein: the rotation of a domain within the FrdA subunit, and the destabilization of two large loops of the FrdA subunit, which may create a tunnel to the active site. We infer a mechanism for covalent flavinylation. As supported by spectroscopic and kinetic analyses, we suggest that SdhE shifts the conformational equilibrium of the FrdA active site to disfavor succinate/fumarate interconversion and enhance covalent flavinylation.


Asunto(s)
Complejo II de Transporte de Electrones/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Oxidorreductasas/ultraestructura , Cristalografía por Rayos X , Escherichia coli , Flavina-Adenina Dinucleótido
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda