Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 681
Filtrar
1.
Semin Immunol ; 70: 101844, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778179

RESUMEN

Sepsis remains one of the most common and lethal conditions globally. Currently, no proposed target specific to sepsis improves survival in clinical trials. Thus, an in-depth understanding of the pathogenesis of sepsis is needed to propel the discovery of effective treatment. Recently attention to sepsis has intensified because of a growing recognition of a non-canonical inflammasome-triggered lytic mode of cell death termed pyroptosis upon sensing cytosolic lipopolysaccharide (LPS). Although the consequences of activation of the canonical and non-canonical inflammasome are similar, the non-canonical inflammasome formation requires caspase-4/5/11, which enzymatically cleave the pore-forming protein gasdermin D (GSDMD) and thereby cause pyroptosis. The non-canonical inflammasome assembly triggers such inflammatory cell death by itself; or leverages a secondary activation of the canonical NLRP3 inflammasome pathway. Excessive cell death induced by oligomerization of GSDMD and NINJ1 leads to cytokine release and massive tissue damage, facilitating devastating consequences and death. This review summarized the updated mechanisms that initiate and regulate non-canonical inflammasome activation and pyroptosis and highlighted various endogenous or synthetic molecules as potential therapeutic targets for treating sepsis.


Asunto(s)
Sepsis , Choque Séptico , Humanos , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Piroptosis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Caspasas/metabolismo , Caspasas/farmacología , Factores de Crecimiento Nervioso/farmacología , Moléculas de Adhesión Celular Neuronal/farmacología
2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34404725

RESUMEN

Ethylene influences plant growth, development, and stress responses via crosstalk with other phytohormones; however, the underlying molecular mechanisms are still unclear. Here, we describe a mechanistic link between the brassinosteroid (BR) and ethylene biosynthesis, which regulates cellular protein homeostasis and stress responses. We demonstrate that as a scaffold, 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS), a rate-limiting enzyme in ethylene biosynthesis, promote the interaction between Seven-in-Absentia of Arabidopsis (SINAT), a RING-domain containing E3 ligase involved in stress response, and ETHYLENE OVERPRODUCER 1 (ETO1) and ETO1-like (EOL) proteins, the E3 ligase adaptors that target a subset of ACS isoforms. Each E3 ligase promotes the degradation of the other, and this reciprocally antagonistic interaction affects the protein stability of ACS. Furthermore, 14-3-3, a phosphoprotein-binding protein, interacts with SINAT in a BR-dependent manner, thus activating reciprocal degradation. Disrupted reciprocal degradation between the E3 ligases compromises the survival of plants in carbon-deficient conditions. Our study reveals a mechanism by which plants respond to stress by modulating the homeostasis of ACS and its cognate E3 ligases.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Proteínas Portadoras/metabolismo , Liasas/metabolismo , Estrés Fisiológico/fisiología , Proteínas 14-3-3/genética , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/fisiología , Homeostasis , Péptidos y Proteínas de Señalización Intracelular/farmacología , Liasas/genética , Isoformas de Proteínas , Estabilidad Proteica
3.
Allergol Immunopathol (Madr) ; 52(2): 3-9, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38459884

RESUMEN

OBJECTIVE: To detect the expression of RING finger protein 135 (RNF135) in lung adenocarcinoma tissues and explore its role in the progression of lung adenocarcinoma. METHODS: Bioinformation analysis, quantitative polymerase chain reaction, and immunoblotting technique discovered the expression of RNF135 in lung adenocarcinoma tissues. Cell counting kit-8 and colony formation, immunostaining, and immunoblot assays examined the effects of RNF135 on cell growth and autophagy. Co-immunoprecipitation (Co-IP), immunostaining, and immuoblotting were conducted to confirm the mechanism. RESULTS: RNF135 was highly expressed in lung adenocarcinoma. In addition, RNF135 promoted lung adenocarcinoma cell growth. Further, data confirmed that RNF135 promoted autophagy in lung adenocarcinoma cells. Mechanically, RNF135 directly interacted with Unc-51-like autophagy activating kinase 1 (ULK1) to promote its phosphorylation level. CONCLUSION: RNF135 promoted cell growth and autophagy in lung adenocarcinoma by promoting the phosphorylation of ULK1.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Ubiquitina-Proteína Ligasas , Humanos , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proliferación Celular , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Neoplasias Pulmonares/patología , Fosforilación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/farmacología
4.
Biochem Biophys Res Commun ; 655: 138-144, 2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-36934589

RESUMEN

Drug resistance is one of the most important obstacles in effective cancer therapy triggered through various mechanisms. One of these mechanisms is caused by the upregulation of Inhibitor of Apoptosis Proteins (IAPs). IAPs, inhibit apoptosis through direct and/or indirect caspase inhibition, which themselves are antagonized by an endogenous protein called Second Mitochondrial-derived Activator of Caspases, Smac/Diablo, mediated by the presence of a tetrapeptide IAP binding motif at its N-terminus. Accordingly, Smac-based peptides are under intense investigation as anti-cancer drugs and have reached Phase 2 clinical trials, although, Smac based peptides or mimetics alone have not been effective as anti-cancer agents. On the other hand, KLA peptide has shown major toxicity against cancer cells through the induction of apoptosis. Consequently, we designed an anti-cancer chimera by fusing an octa-peptide from the N-terminus of mature Smac protein to a modified proapoptotic KLA peptide (KLAKLCKKLAKLCK) to be called Smac-KLA. This chimera, therefore, possesses both proapoptotic and anti-IAP activities. In addition, we dimerized this chimera via intermolecular disulfide bonds in order to enhance their cellular permeability. Both the Smac-KLA monomeric and dimeric peptides exhibited cytotoxic activity against both MCF-7 and MDA-MB231 breast cancer cell lines at low micromolar concentrations. Importantly, the dimerization of the chimeras enhanced their potency 2-4- fold due to higher cellular uptake.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Femenino , Humanos , Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Caspasa 3/metabolismo , Caspasas/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Células MCF-7 , Proteínas Mitocondriales/metabolismo , Péptidos/química
5.
Biomarkers ; 28(6): 555-561, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37552125

RESUMEN

INTRODUCTION: Breast cancer is a leading cause of cancer death in women worldwide, and early detection is crucial for effective treatment. Mitochondrial dysfunction has been linked to cancer development and progression. Humanin, a mitochondrial-derived peptide, has been shown to have cytoprotective effects and may be involved in breast cancer development. In this study, we aimed to investigate the potential of humanin as a biomarker for breast cancer. METHODS: We recruited 45 female patients diagnosed with primary invasive ductal breast cancer and 45 healthy volunteers. Serum humanin levels were measured using ELISA, and other cancer markers were measured using an Advia Centaur Immunology Analyser. RESULTS: Our results showed that serum humanin levels were significantly higher in breast cancer patients than in healthy controls (p = 0.008). ROC curve analysis indicated that humanin could effectively discriminate between patients and healthy individuals, with a sensitivity of 62.5% and a specificity of 77.5%. CONCLUSION: This suggests that humanin may be a potential new biomarker for breast cancer screening and early detection. Further research is needed to fully understand the relationship between humanin and breast cancer and to develop new diagnostic and therapeutic strategies.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Péptidos y Proteínas de Señalización Intracelular/farmacología , Mitocondrias , Biomarcadores
6.
Part Fibre Toxicol ; 20(1): 44, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993864

RESUMEN

BACKGROUND: Microplastics and nanoplastics (MNPs) are emerging environmental contaminants detected in human samples, and have raised concerns regarding their potential risks to human health, particularly neurotoxicity. This study aimed to investigate the deleterious effects of polystyrene nanoplastics (PS-NPs, 50 nm) and understand their mechanisms in inducing Parkinson's disease (PD)-like neurodegeneration, along with exploring preventive strategies. METHODS: Following exposure to PS-NPs (0.5-500 µg/mL), we assessed cytotoxicity, mitochondrial integrity, ATP levels, and mitochondrial respiration in dopaminergic-differentiated SH-SY5Y cells. Molecular docking and dynamic simulations explored PS-NPs' interactions with mitochondrial complexes. We further probed mitophagy's pivotal role in PS-NP-induced mitochondrial damage and examined melatonin's ameliorative potential in vitro. We validated melatonin's intervention (intraperitoneal, 10 mg/kg/d) in C57BL/6 J mice exposed to 250 mg/kg/d of PS-NPs for 28 days. RESULTS: In our in vitro experiments, we observed PS-NP accumulation in cells, including mitochondria, leading to cell toxicity and reduced viability. Notably, antioxidant treatment failed to fully rescue viability, suggesting reactive oxygen species (ROS)-independent cytotoxicity. PS-NPs caused significant mitochondrial damage, characterized by altered morphology, reduced mitochondrial membrane potential, and decreased ATP production. Subsequent investigations pointed to PS-NP-induced disruption of mitochondrial respiration, potentially through interference with complex I (CI), a concept supported by molecular docking studies highlighting the influence of PS-NPs on CI. Rescue experiments using an AMPK pathway inhibitor (compound C) and an autophagy inhibitor (3-methyladenine) revealed that excessive mitophagy was induced through AMPK/ULK1 pathway activation, worsening mitochondrial damage and subsequent cell death in differentiated SH-SY5Y cells. Notably, we identified melatonin as a potential protective agent, capable of alleviating PS-NP-induced mitochondrial dysfunction. Lastly, our in vivo experiments demonstrated that melatonin could mitigate dopaminergic neuron loss and motor impairments by restoring mitophagy regulation in mice. CONCLUSIONS: Our study demonstrated that PS-NPs disrupt mitochondrial function by affecting CI, leading to excessive mitophagy through the AMPK/ULK1 pathway, causing dopaminergic neuron death. Melatonin can counteract PS-NP-induced mitochondrial dysfunction and motor impairments by regulating mitochondrial autophagy. These findings offer novel insights into the MNP-induced PD-like neurodegenerative mechanisms, and highlight melatonin's protective potential in mitigating the MNP's environmental risk.


Asunto(s)
Melatonina , Neuroblastoma , Humanos , Ratones , Animales , Mitofagia , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Poliestirenos/metabolismo , Microplásticos , Neuronas Dopaminérgicas/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Simulación del Acoplamiento Molecular , Plásticos , Ratones Endogámicos C57BL , Neuroblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología
7.
Phytother Res ; 37(3): 781-797, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36479746

RESUMEN

Thymoquinone (TQ) has been proved to exert wide-ranging pharmacological activities, with anti-inflammatory, antioxidant, anticonvulsant, antimicrobial, anti-tumor, and antidiabetic properties. In this study, we investigated the beneficial effects of TQ on a high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) in C57BL/6 N mice in vivo and free fatty acid (FFA)-induced human hepatocellular carcinoma HepG2 cells in vitro. Further, the underlying mechanisms of TQ to promote hepatic autophagy were also discovered. Data showed that TQ caused (p < 0.01) body weight reduction, improved glucose homeostasis, alleviated hepatosteatosis, and decreased hepatic lipid accumulation related to the induction of autophagy in HFD-fed mice. In vitro, TQ obviously increased (p < 0.01) autophagic flux in FFA-induced HepG2 cells and consequently reduced the lipid accumulation in combination with activation of AMPK/mTOR/ULK1 signaling pathways. Moreover, pharmacological inhibition of the AMPK pathway by addition with AMPK inhibitor Compound C (CC) or silence of ULK1 by transfection with siRNA(ULK1) into HepG2 cells reversed these beneficial effects of TQ on triggering hepatic autophagy and reducing lipid accumulation (p < 0.01). Taken together, these results suggested that TQ alleviated hepatic lipid accumulation by triggering autophagy through the AMPK/mTOR/ULK1-dependent signaling pathway. Our study supports a potential role for TQ in ameliorating NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Humanos , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Hígado , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Lípidos , Dieta Alta en Grasa , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología
8.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37569774

RESUMEN

The evidence sustaining the regenerative properties of mesenchymal stem cells' (MSCs) secretome has prompted a paradigm change, where MSCs have shifted from being considered direct contributors to tissue regeneration toward being seen as cell factories for producing biotech medicines. We have previously designed a method to prime MSCs towards osteogenic differentiation by silencing the Wnt/ß-Catenin inhibitor Sfpr1. This approach produces a significant increase in bone formation in osteoporotic mice. In this current work, we set to investigate the contribution of the secretome from the MSCs where Sfrp1 has been silenced, to the positive effect seen on bone regeneration in vivo. The conditioned media (CM) of the murine MSCs line C3H10T1/2, where Sfrp1 has been transiently silenced (CM-Sfrp1), was found to induce, in vitro, an increase in the osteogenic differentiation of this same cell line, as well as a decrease of the expression of the Wnt inhibitor Dkk1 in murine osteocytes ex vivo. A reduction in the RANKL/OPG ratio was also detected ex vivo, suggesting a negative effect of CM-Sfrp1 on osteoclastogenesis. Moreover, this CM significantly increases the mineralization of human primary MSCs isolated from osteoportotic patients in vitro. Proteomic analysis identified enrichment of proteins involved in osteogenesis within the soluble and vesicular fractions of this secretome. Altogether, we demonstrate the pro-osteogenic potential of the secretome of MSCs primmed in this fashion, suggesting that this is a valid approach to enhance the osteo-regenerative properties of MSCs' secretome.


Asunto(s)
Osteogénesis , Proteómica , Humanos , Animales , Ratones , Osteogénesis/genética , Secretoma , Péptidos y Proteínas de Señalización Intracelular/farmacología , Diferenciación Celular/genética
9.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108830

RESUMEN

One of the main inducers of autophagy-dependent self-cannibalism, called ULK1, is tightly regulated by the two sensor molecules of nutrient conditions and energy status, known as mTOR and AMPK kinases, respectively. Recently, we developed a freely available mathematical model to explore the oscillatory characteristic of the AMPK-mTOR-ULK1 regulatory triangle. Here, we introduce a systems biology analysis to explain in detail the dynamical features of the essential negative and double-negative feedback loops and also the periodic repeat of autophagy induction upon cellular stress. We propose an additional regulatory molecule in the autophagy control network that delays some of AMPK's effect on the system, making the model output more consistent with experimental results. Furthermore, a network analysis on AutophagyNet was carried out to identify which proteins could be the proposed regulatory components in the system. These regulatory proteins should satisfy the following rules: (1) they are induced by AMPK; (2) they promote ULK1; (3) they down-regulate mTOR upon cellular stress. We have found 16 such regulatory components that have been experimentally proven to satisfy at least two of the given rules. Identifying such critical regulators of autophagy induction could support anti-cancer- and ageing-related therapeutic efforts.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Péptidos y Proteínas de Señalización Intracelular , Proteínas Quinasas Activadas por AMP/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Biología de Sistemas , Serina-Treonina Quinasas TOR/metabolismo , Autofagia
10.
Pharm Biol ; 61(1): 271-280, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36655371

RESUMEN

CONTEXT: Therapeutic effects of Qiangjing tablets (QJT) on sperm vitality and asthenozoospermia (AZS) have been confirmed. However, the mechanism of action remains unclear. OBJECTIVE: This study investigates the effects of QJT on AZS and the underlying mechanism of action. MATERIALS AND METHODS: Sixty Sprague-Dawley rats were randomly divided into six groups: Control, ORN (ornidazole; 200 mg/kg), ORN + QJT-low (0.17 g/mL), ORN + QJT-middle (0.33 g/mL), ORN + QJT-high (0.67 g/mL), and ORN + QJT + Radicicol (0.67 g/mL QJT and 20 mg/kg radicicol) groups. Pathological evaluation and analysis of mitophagy were conducted by H&E staining and transmission electron microscopy, respectively. Reactive oxygen species were detected by flow cytometry. Protein expression was determined by Western blotting. RESULTS: QJT significantly improved ORN-treated sperm motility and kinematic parameters, as well as the pathological symptoms of testicular and epididymal tissues. In particular, QJT mitigated impaired mitochondrial morphology, and increased the PHB, Beclin-1, LC3-II protein, and ROS levels (p < 0.05), and reduced the protein expression levels of LC3-I and p62 (p < 0.05). Mechanistically, QJT antagonized the downregulation of SCF and Parkin protein levels (p < 0.05). Furthermore, QJT significantly increased the protein expressions levels of LKB1, AMPKα, p-AMPKα, ULK1 and p-ULK1 (p < 0.05). The ameliorative effect of QJT on pathological manifestations, mitochondrial morphology, and the expressions of mitophagy and mitochondrial ubiquitination-related proteins was counteracted by radicicol. DISCUSSION AND CONCLUSIONS: QJT improved AZS via mitochondrial ubiquitination and mitophagy mediated by the LKB1/AMPK/ULK1 signaling pathway. Our study provides a theoretical basis for the treatment of AZS and male infertility.


Asunto(s)
Astenozoospermia , Medicamentos Herbarios Chinos , Animales , Masculino , Ratas , Proteínas Quinasas Activadas por AMP , Astenozoospermia/tratamiento farmacológico , Homólogo de la Proteína 1 Relacionada con la Autofagia , Medicamentos Herbarios Chinos/uso terapéutico , Péptidos y Proteínas de Señalización Intracelular/farmacología , Péptidos y Proteínas de Señalización Intracelular/uso terapéutico , Mitofagia , Ratas Sprague-Dawley , Semen , Motilidad Espermática , Comprimidos/uso terapéutico , Ubiquitinación
11.
BMC Neurosci ; 23(1): 63, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357913

RESUMEN

BACKGROUND: Retinal ganglion cells (RGCs) are important retinal neurons that connect visual receptors to the brain, and lysine-specific demethylase 1 (LSD1) is implicated in the development of RGCs. This study expounded the mechanism of LSD1 in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced pyroptosis of RGCs. METHODS: Mouse RGCs underwent OGD/R exposure, and then RGC viability was examined using the cell counting kit-8 method. The mRNA levels of Caspase 1, the protein levels of NOD-like receptor family pyrin domain-containing 3 (NLRP3), N-terminal fragment of gasdermin D (GSDMD-N), and cleaved-Caspase1, and the concentrations of interleukin (IL)-1ß and IL-18 were respectively examined. Subsequently, LSD1 expression was intervened to explore the underlying effect of LSD1 on OGD/R-induced pyroptosis of RGCs. Afterwards, the enrichments of LSD1 and histone H3 lysine 4 methylation (H3K4me) 1/2 on the microRNA (miR)-21-5p promoter were determined using chromatin-immunoprecipitation assay. And the binding interaction between miR-21-5p and NLRP12 was detected using dual-luciferase and RNA pull-down assays. Finally, the effects of miR-21-5p/NLRP12 on LSD1-mediated pyroptosis of RGCs were verified through functional rescue experiments. RESULTS: OGD/R treatment increased pyroptosis of RGCs and LSD1 expression. Silencing LSD1 declined levels of Caspase 1 mRNA, NLRP3, GSDMD-N, cleaved-Caspase1, IL-1ß, and IL-18 and limited pyroptosis of OGD/R-treated RGCs. Mechanically, LSD1 suppressed miR-21-5p expression via demethylation of H3K4me2 on the miR-21-5p promoter to hamper the binding of miR-21-5p to NLRP12, and thereby increased NLRP12 expression. Silencing miR-21-5p or overexpressing NLRP12 facilitated OGD/R-induced pyroptosis of RGCs. CONCLUSION: LSD1-mediated demethylation of H3K4me2 decreased miR-21-5p expression to increase NLRP12 expression, promoting pyroptosis of OGD/R-treated RGCs.


Asunto(s)
MicroARNs , Piroptosis , Ratones , Animales , Piroptosis/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacología , Caspasa 1/metabolismo , Caspasa 1/farmacología , Glucosa , Células Ganglionares de la Retina/metabolismo , Oxígeno , Lisina , Línea Celular , MicroARNs/genética , Histona Demetilasas/farmacología , ARN Mensajero , Péptidos y Proteínas de Señalización Intracelular/farmacología
12.
Invest New Drugs ; 40(6): 1244-1253, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36306030

RESUMEN

The endoplasmic reticulum (ER) is a critical organelle that preserves the protein homeostasis of cells. Under various stress conditions, cells evolve a degree of capacity to maintain ER proteostasis, which is usually augmented in tumor cells, including colorectal cancer (CRC) cells, to bolster their survival and resistance to apoptosis. Bortezomib (BTZ) is a promising drug used in CRC treatment; however, its main limitation result from drug resistance. Here, we identified the role of tripartite motif-containing protein 59 (TRIM59)-a protein localized on the ER membrane- in the prevention of BTZ-mediated CRC killing. Depletion of TRIM59 is associated with the enhancement of ER stress and a remarkable increase in unfolded protein response (UPR) signaling. Besides, TRIM59 strengthens ER-associated degradation (ERAD) and alleviates the generation of ROS. Of note, TRIM59 knockdown synergizes with the anti-cancer effect of BTZ both in vitro and in vivo. Our findings revealed a role for TRIM59 in the ER by guarding ER proteostasis and represents a novel therapeutic target of CRC.


Asunto(s)
Neoplasias Colorrectales , Proteostasis , Humanos , Bortezomib/farmacología , Retículo Endoplásmico/metabolismo , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico , Apoptosis , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología
13.
Neurochem Res ; 47(10): 3167-3177, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35842555

RESUMEN

Tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2) possesses potent anti-inflammatory effect. However, if TIPE2 ameliorates sciatic nerve injury (SNI)-induced inflammation and pain remains undiscussed, and the underlying role TAK1 in it were unknown. To verify our imagine, we performed SNI surgery, and analyzed expression and colocalization of TIPE2 and TAK1 in spinal cord and dorsal root neurons (DRG) by immunofluorescence staining and western blot. And the biological analysis, inflammatory factors, and pathological improvement were determined, and the regulation of TIPE2 in TAK1, phosphor-NF-κB, phospho-JNK was also tested by immunofluorescence staining and western blot. Experimental results showed the parabola-like change of TIPE2 and rising expression of TAK1 in spinal cord and DRG. And intrathecal TIPE2 injection could significantly improve the status of SNI rats, inhibit level of IL-6, IL-10 and TNF-α, raise the thermal withdrawal relax latency and mechanical withdrawal thresholds. Meanwhile, we also detected how TIPE2 regulated TAK1, and the downstream pathway NF-κB and JNK. The result indicated that TIPE2 could reduce TAK1 expression, and make NF-κB and JNK inactivated. To deeply discuss the potential mechanism, we injected TAK1 oligodeoxynucleotide into rats, and found that TIPE2 exerted the protective role against SNI through TAK1. In brief, TIPE2 reduced expression of TAK1, thereby inhibiting activation of NF-kB and JNK, further improving the neuroinflammation and neuropathic pain. TIPE2 played a protective role in sciatic nerve injury rats through regulating TAK1.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Quinasas Quinasa Quinasa PAM , Neuralgia , Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Animales , Inflamación/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/farmacología , Quinasas Quinasa Quinasa PAM/genética , FN-kappa B/metabolismo , Neuralgia/metabolismo , Ratas , Nervio Ciático/metabolismo , Neuropatía Ciática/tratamiento farmacológico
14.
Anticancer Drugs ; 33(9): 871-882, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36136987

RESUMEN

Exosomal circular RNA was found to mediate cancer chemoresistance. However, whether exosomal circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) was involved in the chemoresistance of prostate cancer (PCa) remains unclear. The docetaxel (DTX) resistance of PCa cells was analyzed by Cell Counting Kit 8 assay. Quantitative real-time PCR was used to measure circSFMBT2, microRNA (miR)-136-5p and tribbles homolog 1 (TRIB1) expression. Cell proliferation, apoptosis, migration and invasion were analyzed by 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, wound-healing assay and transwell assay. RNA interaction was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Protein expression was measured by western blot analysis. Exosomes-extracted from cells were identified by transmission electron microscope, nanoparticles tracking analysis and western blot. Xenograft mice models were constructed to analyze the effect of exosomal circSFMBT2 on the DTX sensitivity of PCa tumors in vivo. CircSFMBT2 was upregulated in DTX-resistant PCa cells, and its knockdown enhanced the DTX sensitivity of DTX-resistant PCa cells by suppressing cell proliferation, migration, invasion and enhancing apoptosis. CircSFMBT2 severed as miR-136-5p sponge to positively regulate TRIB1. The regulation of circSFMBT2 knockdown on the DTX sensitivity of DTX-resistant PCa cells could be reversed by miR-136-5p inhibitor or TRIB1 overexpression. Exosomal circSFMBT2 from DTX-resistant PCa could increase the DTX resistance of normal PCa cells. In addition, exosomal circSFMBT2 also enhanced the DTX resistance of PCa tumors in vivo, and it was highly expressed in the serum of DTX-resistance PCa patients. Exosomal circSFMBT2 enhanced the DTX resistance of PCa by miR-136-5p/TRIB1 axis, indicating that circSFMBT2 might be a potential target for the treatment of PCa chemoresistance.


Asunto(s)
Neoplasias Encefálicas , MicroARNs , Neoplasias de la Próstata , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Docetaxel/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , ARN Circular/genética , Proteínas Represoras/genética
15.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35562990

RESUMEN

Sleep and wakefulness are basic behavioral states that require coordination between several brain regions, and they involve multiple neurochemical systems, including neuropeptides. Neuropeptides are a group of peptides produced by neurons and neuroendocrine cells of the central nervous system. Like traditional neurotransmitters, neuropeptides can bind to specific surface receptors and subsequently regulate neuronal activities. For example, orexin is a crucial component for the maintenance of wakefulness and the suppression of rapid eye movement (REM) sleep. In addition to orexin, melanin-concentrating hormone, and galanin may promote REM sleep. These results suggest that neuropeptides play an important role in sleep-wake regulation. These neuropeptides can be divided into three categories according to their effects on sleep-wake behaviors in rodents and humans. (i) Galanin, melanin-concentrating hormone, and vasoactive intestinal polypeptide are sleep-promoting peptides. It is also noticeable that vasoactive intestinal polypeptide particularly increases REM sleep. (ii) Orexin and neuropeptide S have been shown to induce wakefulness. (iii) Neuropeptide Y and substance P may have a bidirectional function as they can produce both arousal and sleep-inducing effects. This review will introduce the distribution of various neuropeptides in the brain and summarize the roles of different neuropeptides in sleep-wake regulation. We aim to lay the foundation for future studies to uncover the mechanisms that underlie the initiation, maintenance, and end of sleep-wake states.


Asunto(s)
Galanina , Neuropéptidos , Galanina/farmacología , Péptidos y Proteínas de Señalización Intracelular/farmacología , Neuropéptidos/metabolismo , Orexinas/farmacología , Sueño/fisiología , Péptido Intestinal Vasoactivo/farmacología
16.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35457010

RESUMEN

Rotenone (ROT) inhibits mitochondrial complex I, leading to reactive oxygen species formation, which causes neurodegeneration and alpha-synuclein (α-syn) aggregation and, consequently, Parkinson's disease. We previously found that a neurogenic differentiated human adipose tissue-derived stem cell-conditioned medium (NI-hADSC-CM) was protective against ROT-induced toxicity in SH-SY5Y cells. In the present study, ROT significantly decreased the phospho (p)-mTORC1/total (t)-mTOR, p-mTORC2/t-mTOR, and p-/t-ULK1 ratios and the ATG13 level by increasing the DEPTOR level and p-/t-AMPK ratio. Moreover, ROT increased the p-/t-Akt ratio and glycogen synthase kinase-3ß (GSK3ß) activity by decreasing the p-/t-ERK1/2 ratios and beclin-1 level. ROT also promoted the lipidation of LC3B-I to LC3B-II by inducing autophagosome formation in Triton X-100-soluble and -insoluble cell lysate fractions. Additionally, the levels of ATG3, 5, 7, and 12 were decreased, along with those of lysosomal LAMP1, LAMP2, and TFEB, leading to lysosomal dysfunction. However, NI-hADSC-CM treatment increased the p-mTORC1, p-mTORC2, p-ULK1, p-Akt, p-ERK1/2, ATG13, and beclin-1 levels and decreased the p-AMPK level and GSK3ß activity in response to ROT-induced toxicity. Additionally, NI-hADSC-CM restored the LC3B-I level, increased the p62 level, and normalized the ATG and lysosomal protein amounts to control levels. Autophagy array revealed that the secreted proteins in NI-hADSC-CM could be crucial in the neuroprotection. Taken together, our results showed that the neuroprotective effects of NI-hADSC-CM on the autophagy signaling pathways could alleviate the aggregation of α-syn in Parkinson's disease and other neurodegenerative disorders.


Asunto(s)
Células-Madre Neurales , Enfermedad de Parkinson , Proteínas Quinasas Activadas por AMP , Tejido Adiposo/metabolismo , Autofagia , Beclina-1/metabolismo , Medios de Cultivo Condicionados/farmacología , Glucógeno Sintasa Quinasa 3 beta , Humanos , Péptidos y Proteínas de Señalización Intracelular/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Células-Madre Neurales/metabolismo , Proteínas Proto-Oncogénicas c-akt , Rotenona/toxicidad , Serina-Treonina Quinasas TOR
17.
Molecules ; 27(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35565977

RESUMEN

There is an urgent need to develop new effective therapies for HCC. Our previous study identified ULK1 as the potential target for HCC therapy and screened the compound XST-14 as a specific inhibitor of ULK1 to suppress HCC progression. However, the poor manufacturability of XST-14 impeded the process of its clinical translation. In this study, we first generated pharmacophore models of ULK1 based on the X-ray structure of UKL1 in complex with ligands. We then screened the Specs chemical library for potential UKL1 inhibitors. By molecular docking, we screened out the 19 compounds through structure-based virtual screening. Through CCK8 activity screening on HCC cells, we found that ZZY-19 displayed obvious cell killing effects on HCC cells. SPR assay indicated that ZZY-19 had a higher binding affinity for ULK1 than XST-14. Moreover, ZZY-19 induced the effects of anti-proliferation, anti-invasion and anti-migration in HCC cells. Mechanistically, ZZY-19 induces autophagy inhibition by reducing the expression of ULK1 on HCC cells. Especially, the combination of ZZY-19 with sorafenib synergistically suppresses the progression of HCC in vivo. Taken together, ZZY-19 was a potential candidate compound that targeted ULK1 and possessed promising anti-HCC activities by inhibiting autophagy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia/química , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Simulación del Acoplamiento Molecular
18.
Mol Med ; 27(1): 150, 2021 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-34837964

RESUMEN

BACKGROUND: Alzheimer's disease (AD), the most common form of dementia, is caused by the degeneration of the central nervous system (CNS). A previous study reported that signal transducer and activator of transcription 3 (STAT3) is activated during AD development; nonetheless, the related mechanism remains unknown. Thus, this study used a cell model to explore whether and how the protein inhibitor of activated STAT3 (PIAS3) is involved in AD development. METHODS: Cerebrospinal fluid (CSF) specimens of 30 patients with AD and 10 normal participants were included in this study. SH-SY5Y cells were used to constructed AD model. Relevant indices were then detected and analyzed. RESULTS: The results showed that compared with the control group, PIAS3 expression was substantially decreased in patients with AD and amyloid beta (Aß)-treated SH-SY5Y cells. PIAS3 overexpression was able to reverse the detrimental effects of Aß treatment on cell survival and growth. Further, it could also ameliorate apoptosis and oxidative stress in Aß-treated SH-SY5Y cells. Additionally, PIAS3 was shown to reduce the activated form of STAT3 and increase the activity of the downstream Nestin/nuclear factor erythroid 2-related factor/heme oxygenase-1 pathway. CONCLUSIONS: STAT3 reactivation by colivelin treatment negated the influence of PIAS3 on the survival, growth, apoptosis, and oxidative stress of Aß-treated SH-SY5Y cells.


Asunto(s)
Enfermedad de Alzheimer , Chaperonas Moleculares , Proteínas Inhibidoras de STAT Activados , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/farmacología , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Hemo-Oxigenasa 1/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/farmacología , Persona de Mediana Edad , Modelos Biológicos , Chaperonas Moleculares/líquido cefalorraquídeo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Factor 2 Relacionado con NF-E2/genética , Nestina/genética , Proteínas Inhibidoras de STAT Activados/líquido cefalorraquídeo , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Adulto Joven
19.
Chembiochem ; 22(5): 834-838, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33085143

RESUMEN

Phosphoprotein phosphatase-1 (PP1) is a key player in the regulation of phospho-serine (pSer) and phospho-threonine (pThr) dephosphorylation and is involved in a large fraction of cellular signaling pathways. Aberrant activity of PP1 has been linked to many diseases, including cancer and heart failure. Besides a well-established activity control by regulatory proteins, an inhibitory function for phosphorylation (p) of a Thr residue in the C-terminal intrinsically disordered tail of PP1 has been demonstrated. The associated phenotype of cell-cycle arrest was repeatedly proposed to be due to autoinhibition of PP1 through either conformational changes or substrate competition. Here, we use PP1 variants created by mutations and protein semisynthesis to differentiate between these hypotheses. Our data support the hypothesis that pThr exerts its inhibitory function by mediating protein complex formation rather than by a direct mechanism of structural changes or substrate competition.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/farmacología , Proteína Fosfatasa 1/antagonistas & inhibidores , Serina/química , Treonina/química , Humanos , Fosforilación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteína Fosfatasa 1/genética
20.
Biol Reprod ; 104(3): 717-730, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33330922

RESUMEN

Humanin (HN) is a mitochondrial-derived peptide that protects many cells/tissues from damage. We previously demonstrated that HN reduces stress-induced male germ cell apoptosis in rodents. HN action in neuronal cells is mediated through its binding to a trimeric cell membrane receptor composed of glycoprotein 130 (gp130), IL-27 receptor subunit (IL-27R, also known as WSX-1/TCCR), and ciliary neurotrophic factor receptor subunit (CNTFR). The mechanisms of HN action in testis remain unclear. We demonstrated in ex-vivo seminiferous tubules culture that HN prevented heat-induced germ cell apoptosis was blocked by specific anti-IL-27R, anti-gp130, and anti-EBI-3, but not by anti-CNTFR antibodies significantly. The cytoprotective action of HN was studied by using groups of il-27r-/- or ebi-3-/- mice administered the following treatment: (1) vehicle; (2) a single intraperitoneal (IP) injection of HN peptide; (3) testicular hyperthermia; and (4) testicular hyperthermia plus HN. We demonstrated that HN inhibited heat-induced germ cell apoptosis in wildtype but not in il-27r-/- or ebi-3-/- mice. HN restored heat-suppressed STAT3 phosphorylation in wildtype but not il-27r-/- or ebi-3-/- mice. Dot blot analyses showed the direct interaction of HN with IL-27R or EBI-3 peptide. Immunofluorescence staining showed the co-localization of IL-27R with HN and gp130 in Leydig cells and germ cells. We conclude that the anti-apoptotic effects of HN in mouse testes are mediated through interaction with EBI-3, IL-27R, and activation of gp130, whereas the role of CNTFR needs further studies. This suggests a multicomponent tissue-specific receptor for HN in the testis and links HN action with the IL-12/IL-27 family of cytokines.


Asunto(s)
Células Madre Germinales Adultas/efectos de los fármacos , Interleucinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Antígenos de Histocompatibilidad Menor/metabolismo , Receptores de Citocinas/metabolismo , Células Madre Germinales Adultas/metabolismo , Animales , Anticuerpos Neutralizantes , Apoptosis , Regulación de la Expresión Génica , Calor , Fragmentos Fc de Inmunoglobulinas , Inmunoglobulina G , Interleucinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antígenos de Histocompatibilidad Menor/genética , Receptores de Citocinas/genética , Receptores de Interleucina , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda